CN104308104A - Novel casting powder and application thereof - Google Patents
Novel casting powder and application thereof Download PDFInfo
- Publication number
- CN104308104A CN104308104A CN201410481988.8A CN201410481988A CN104308104A CN 104308104 A CN104308104 A CN 104308104A CN 201410481988 A CN201410481988 A CN 201410481988A CN 104308104 A CN104308104 A CN 104308104A
- Authority
- CN
- China
- Prior art keywords
- mold flux
- mold
- continuous casting
- covering slag
- slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000843 powder Substances 0.000 title description 9
- 238000005266 casting Methods 0.000 title description 4
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 45
- 239000010959 steel Substances 0.000 claims abstract description 45
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 35
- 238000009749 continuous casting Methods 0.000 claims abstract description 28
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 25
- 238000002425 crystallisation Methods 0.000 claims abstract description 14
- 230000008025 crystallization Effects 0.000 claims abstract description 14
- 239000002893 slag Substances 0.000 claims description 44
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 3
- 230000004907 flux Effects 0.000 abstract description 72
- 239000011651 chromium Substances 0.000 abstract description 60
- 229910052804 chromium Inorganic materials 0.000 abstract description 33
- 229910052799 carbon Inorganic materials 0.000 abstract description 28
- 229910018068 Li 2 O Inorganic materials 0.000 abstract description 27
- 238000002844 melting Methods 0.000 abstract description 22
- 230000008018 melting Effects 0.000 abstract description 21
- 229910018072 Al 2 O 3 Inorganic materials 0.000 abstract description 12
- 230000005499 meniscus Effects 0.000 abstract description 10
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000012546 transfer Methods 0.000 abstract description 6
- 238000010583 slow cooling Methods 0.000 abstract description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 4
- 238000005461 lubrication Methods 0.000 abstract description 4
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 230000035515 penetration Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 17
- 239000000203 mixture Substances 0.000 description 12
- 230000000704 physical effect Effects 0.000 description 10
- 238000013461 design Methods 0.000 description 8
- 229910000677 High-carbon steel Inorganic materials 0.000 description 7
- 230000002195 synergetic effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- FXNGWBDIVIGISM-UHFFFAOYSA-N methylidynechromium Chemical compound [Cr]#[C] FXNGWBDIVIGISM-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 230000007903 penetration ability Effects 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
- B22D11/111—Treating the molten metal by using protecting powders
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
本发明涉及一种新型保护渣及其应用;属于钢铁连铸保护渣技术领域。本发明所述保护渣,以质量百分比计包括下述组分:CaO 30~33%、SiO228~34%、Al2O32~5%、MgO 1~3%、(Na2O+Li2O)12~16%、B2O31~6%、F-11~14%。该保护渣具有熔点低(950~1050℃)、粘度低(1300℃粘度为0.06~0.10Pa·s)、结晶温度高(1215~1302℃)等特点。本发明所设计的保护渣适用于C质量百分含量在1.3~1.8%,Cr质量百分含量在10~15%范围内的高碳含铬钢的连铸。将本发明所述的保护渣应用于高碳含铬钢板坯连铸生产过程中,能有效地吸收结晶器内Cr2O3等高熔点夹杂物,提高保护渣渗透能力,实现弯月面的缓冷,从而达到增加铸坯润滑,控制弯月面处传热,减少铸坯纵裂和夹杂,提高铸坯质量的目的。The invention relates to a novel mold flux and its application, and belongs to the technical field of iron and steel continuous casting mold flux. The mold flux of the present invention includes the following components in terms of mass percentage: 30-33% of CaO, 28-34% of SiO 2 , 2-5% of Al 2 O 3 , 1-3% of MgO, (Na 2 O+ Li 2 O) 12-16%, B 2 O 3 1-6%, F - 11-14%. The mold flux has the characteristics of low melting point (950-1050°C), low viscosity (0.06-0.10Pa·s at 1300°C), high crystallization temperature (1215-1302°C), and the like. The mold flux designed by the invention is suitable for continuous casting of high-carbon chromium-containing steel with a mass percent content of C of 1.3-1.8 percent and a mass percent content of Cr of 10-15 percent. Applying the mold flux described in the present invention to the continuous casting production process of high-carbon chromium-containing steel slabs can effectively absorb Cr 2 O 3 and other high-melting-point inclusions in the crystallizer, improve the penetration capacity of the mold flux, and realize the meniscus Slow cooling, so as to increase the lubrication of the slab, control the heat transfer at the meniscus, reduce the longitudinal cracks and inclusions of the slab, and improve the quality of the slab.
Description
技术领域technical field
本发明涉及一种新型保护渣及其应用;属于钢铁连铸保护渣技术领域。The invention relates to a novel mold flux and its application, and belongs to the technical field of iron and steel continuous casting mold flux.
背景技术Background technique
作为连铸过程中重要的功能材料,保护渣在连铸结晶器内发挥绝热保温、防止钢水二次氧化、吸收非金属夹杂、润滑坯壳和控制传热等重要作用。保护渣性能的好坏,直接决定着铸坯质量,从而影响生产效益。As an important functional material in the continuous casting process, mold slag plays an important role in thermal insulation, preventing secondary oxidation of molten steel, absorbing non-metallic inclusions, lubricating the billet shell and controlling heat transfer in the continuous casting mold. The performance of the mold flux directly determines the quality of the slab, thereby affecting the production efficiency.
高碳含铬钢首先作为高碳钢,由Fe-C二元相图可知,随着钢中碳含量的增加,钢的液固相线温温差变大,因此,高碳钢具有较宽的糊状温度区间,更容易引起碳和磷、硫等杂质元素的偏析宏观偏析,使得高碳钢高温塑性较差,高温抗拉强度低;同时,高碳钢在凝固过程中直接从液钢中析出奥氏体,因此初始凝固坯壳收缩小,在钢水静压力作用下坯壳和结晶器壁接触紧密,保护渣难以渗入,使得保护渣在结晶器/铸坯间隙内的分布不均匀,导致坯壳因润滑不好而受到的摩擦力和因传热不均匀而产生的额外热应力增加,铸坯容易产生裂纹,严重时产生拉漏事故。因此,保障高碳含铬钢连铸顺利进行的首要问题是如何满足铸坯润滑的需要,这需要保护渣具有较低的粘度和熔化温度。High-carbon chromium-containing steel is firstly used as high-carbon steel. From the Fe-C binary phase diagram, it can be seen that with the increase of carbon content in steel, the temperature difference between liquidus and solidus line of steel becomes larger. Therefore, high-carbon steel has a wider In the pasty temperature range, it is easier to cause segregation of impurity elements such as carbon, phosphorus, and sulfur. Macro segregation makes high-carbon steel poor in high-temperature plasticity and low in high-temperature tensile strength; at the same time, high-carbon steel directly melts from liquid steel during solidification. Precipitation of austenite, so the shrinkage of the initial solidified slab shell is small, and under the action of hydrostatic pressure, the slab shell and the mold wall are in close contact, and it is difficult for the mold slag to penetrate, which makes the distribution of the mold slag uneven in the mold/slab gap, resulting in The frictional force of the slab shell due to poor lubrication and the additional thermal stress due to uneven heat transfer increase, the slab is prone to cracks, and in severe cases, leakage accidents occur. Therefore, the primary issue to ensure smooth continuous casting of high-carbon chromium-containing steel is how to meet the needs of billet lubrication, which requires mold slag to have a lower viscosity and melting temperature.
其次高碳含铬钢中添加的合金元素Cr,虽然Cr的加入能大幅改善钢材质量,但Cr却对整个生产过程产生不利影响。Cr在炼钢、精炼和浇铸过程中易与空气中或者钢液中溶解的O结合,生产一定量的高熔点Cr2O3氧化物。这些高熔点氧化物进入结晶器后,会上浮进入保护渣中,从而恶化保护渣性能,抑制保护渣结晶。从而使保护渣无法有效控制弯月面处传热,实现弯月面的缓冷,最终导致高碳含铬钢连铸过程中铸坯产生大量纵裂和夹杂,严重影响铸坯质量。因此,这又要求保护渣能具有较强的结晶温度高。Secondly, the alloying element Cr added to high-carbon chromium-containing steel, although the addition of Cr can greatly improve the quality of steel, but Cr has an adverse effect on the entire production process. Cr is easy to combine with dissolved O in the air or molten steel during steelmaking, refining and casting to produce a certain amount of Cr 2 O 3 oxide with high melting point. After these high melting point oxides enter the crystallizer, they will float up into the mold slag, thereby deteriorating the performance of the mold slag and inhibiting the crystallization of the mold slag. As a result, the mold slag cannot effectively control the heat transfer at the meniscus and realize the slow cooling of the meniscus, which eventually leads to a large number of longitudinal cracks and inclusions in the slab during the continuous casting of high-carbon chromium-containing steel, which seriously affects the quality of the slab. Therefore, this in turn requires the mold flux to have a strong high crystallization temperature.
从文献检索的情况来看,目前有一些针对高碳钢连铸过程设计和开发的保护渣,如公开号为CN 102101162A的专利《CSP薄板坯高碳钢连铸用开浇渣》,公开号为CN 102335731A的专利《高碳刀模具钢用连铸保护渣》和公开号为CN 103223477A的专利《高碳钢用连铸结晶器保护渣》。但这些保护渣均未考虑高碳含铬钢中的Cr元素氧化形成的高熔点Cr2O3,对保护渣性能恶化的影响,以及由此而产生的铸坯产生大量纵裂和夹杂等问题,因此这些保护渣不适合用于板坯连铸机生产高碳含铬钢,尤其不适合用于板坯连铸机生产C质量百分含量在1.3~1.8%,Cr质量百分含量在10~15%的高碳含铬钢铸坯产品Judging from the situation of literature retrieval, there are currently some mold slags designed and developed for the continuous casting process of high carbon steel, such as the patent "CSP thin slab high carbon steel continuous casting casting slag" with publication number CN 102101162A, publication number It is the patent of CN 102335731A "Continuous Casting Mold Flux for High Carbon Die Steel" and the patent of CN 103223477A "Continuous Casting Mold Flux for High Carbon Steel". However, these mold fluxes do not take into account the high melting point Cr 2 O 3 formed by the oxidation of Cr in high-carbon chromium-containing steels, which affects the deterioration of the mold flux performance, and the resulting large number of longitudinal cracks and inclusions in the slab. , so these mold fluxes are not suitable for the production of high-carbon chromium-containing steel by slab continuous casting machines, especially not suitable for the production of slab continuous casting machines with a C mass percentage of 1.3-1.8% and a Cr content of 10% by mass. ~15% high-carbon chromium-containing steel billet products
发明内容Contents of the invention
本发明目的在于针对现有技术的不足,提供一种组分配比合理、粘度低、熔点低、结晶温度高的保护渣及其在高碳含铬钢中的应用。The object of the present invention is to address the deficiencies of the prior art and provide a mold flux with reasonable component distribution ratio, low viscosity, low melting point and high crystallization temperature and its application in high-carbon chromium-containing steel.
本发明一种保护渣,以质量百分比计包括下述组分:A mold powder of the present invention comprises the following components in terms of mass percentage:
CaO 30~33%,优选为30-32%,进一步优选为30.2-31.8%;CaO 30~33%, preferably 30-32%, more preferably 30.2-31.8%;
SiO228~34%,优选为28-31%,进一步优选为28.7-30.2%;SiO 2 28-34%, preferably 28-31%, more preferably 28.7-30.2%;
Al2O32~5%,优选为3-4%,进一步优选为3.2-3.8%;Al 2 O 3 2-5%, preferably 3-4%, more preferably 3.2-3.8%;
MgO 1~3%,优选为1.5-2.5%,进一步优选为1.8-2.2%;MgO 1~3%, preferably 1.5-2.5%, more preferably 1.8-2.2%;
(Na2O+Li2O)12~16%,优选为14-16%,进一步优选为14.5-15.5%;(Na 2 O+Li 2 O) 12-16%, preferably 14-16%, more preferably 14.5-15.5%;
B2O31~6%,优选为2-5%,进一步优选为2.5-3.2%;B 2 O 3 1-6%, preferably 2-5%, more preferably 2.5-3.2%;
F-11~14%;优选为11.5-13.5%,进一步优选为12-13%。F - 11-14%; preferably 11.5-13.5%, more preferably 12-13%.
本发明所述保护渣中,CaO与SiO2质量比为0.95~1.15:1。优选为1.0-1.15:1,进一步优选为1.05-1.15:1。In the mold flux of the present invention, the mass ratio of CaO to SiO 2 is 0.95˜1.15:1. Preferably it is 1.0-1.15:1, more preferably 1.05-1.15:1.
本发明所述保护渣中,所述F-以CaF2、NaF、Na3AlF6中任意一种的形式配入保护渣。In the mold flux of the present invention, the F - is mixed into the mold flux in the form of any one of CaF 2 , NaF, and Na 3 AlF 6 .
本发明所述保护渣的熔点范围为950~1050℃,1300℃的粘度范围为0.06~0.10Pa·s,结晶温度范围为1215~1302℃。The melting point range of the mold flux of the present invention is 950-1050°C, the viscosity range at 1300°C is 0.06-0.10 Pa·s, and the crystallization temperature range is 1215-1302°C.
本发明所述保护渣中,Na2O与Li2O的质量比为3~9:1,优选为4~8:1,进一步优选为6-7:1。In the mold flux of the present invention, the mass ratio of Na 2 O to Li 2 O is 3-9:1, preferably 4-8:1, more preferably 6-7:1.
本发明所述保护渣的应用,包括用做含铬钢连铸保护渣。The application of the mold flux in the present invention includes being used as mold flux for continuous casting of chromium-containing steel.
本发明所述保护渣的应用,所述含铬钢中Cr质量百分含量为10~15%。For the application of the mold slag in the present invention, the mass percentage of Cr in the chromium-containing steel is 10-15%.
本发明所述保护渣的应用,所述含铬钢中,C质量百分含量为1.3~1.8%。For the application of the mold flux in the present invention, in the chromium-containing steel, the mass percentage of C is 1.3-1.8%.
原理及优势Principles and advantages
原理principle
本发明所述保护渣中,添加B2O3的主要作用是:通过B2O3的与其他组分的协同作用,在增加保护渣溶解Cr2O3的能力同时,将保护渣的熔点控制在950~1050℃。B2O3用量需严格控制,过多会导致保护渣熔点过低,保护渣熔化速率过快,导致保护渣隔热保温效果不好;反过来,B2O3用量过低,则达不到完全吸收溶解Cr2O3的效果。In the mold flux of the present invention, the main effect of adding B2O3 is: through the synergistic effect of B2O3 and other components, while increasing the ability of the mold flux to dissolve Cr2O3 , the melting point of the mold flux Control at 950-1050°C. The amount of B 2 O 3 needs to be strictly controlled, too much will cause the melting point of the mold slag to be too low, and the melting rate of the mold slag is too fast, resulting in poor thermal insulation effect of the mold slag; To completely absorb the effect of dissolving Cr 2 O 3 .
本发明所述保护渣中,添加Na2O和Li2O的主要目的是:通过控制Na2O与Li2O的质量比以及二者与其他组元的协同作用,尤其是Na2O、Li2O与B2O3的协同作用,实现了降低保护渣粘度的目的,同时也实现了降低保护渣熔点的目的。In the mold flux described in the present invention, the main purpose of adding Na 2 O and Li 2 O is: by controlling the mass ratio of Na 2 O to Li 2 O and the synergistic effect between the two and other components, especially Na 2 O, The synergistic effect of Li 2 O and B 2 O 3 achieves the purpose of reducing the viscosity of the mold flux, and at the same time lowers the melting point of the mold flux.
本发明通过控制CaO与SiO2质量比为在0.95~1.15和F-10~13%的主要目的是确保保护渣具有较强的结晶能力,实现结晶器弯月面处缓冷。The present invention controls the mass ratio of CaO to SiO2 at 0.95-1.15 and F - 10-13% to ensure that the mold flux has strong crystallization ability and realize slow cooling at the meniscus of the crystallizer.
与现有技术相比较本发明所具有的优势Advantages that the present invention has compared with prior art
1)吸收高熔点Cr2O3夹杂物的能力强;本发明在其他组分的协同作用下,使得B2O3能与Cr2O3结合能形成低熔点化合物,从而使得钢液中合金元素Cr氧化生成的高熔点Cr2O3夹杂物,能在保护渣中快速熔解,从而降低保护渣熔点和粘度。1) Strong ability to absorb high melting point Cr 2 O 3 inclusions; under the synergistic effect of other components, the present invention enables B 2 O 3 to combine with Cr 2 O 3 to form a low melting point compound, so that the alloy in molten steel The high-melting Cr 2 O 3 inclusions generated by the oxidation of element Cr can quickly dissolve in the mold flux, thereby reducing the melting point and viscosity of the mold flux.
2)熔点和粘度低。通过添加助熔剂Na2O和Li2O并控制二者的质量比,在各组元的协同作用下,降低了保护渣的熔点和粘度,从而增加连铸过程中保护渣的消耗量,保障铸坯得到良好的润滑。2) Low melting point and viscosity. By adding flux Na 2 O and Li 2 O and controlling the mass ratio of the two, under the synergistic effect of each component, the melting point and viscosity of the mold slag are reduced, thereby increasing the consumption of the mold slag during continuous casting and ensuring The slab is well lubricated.
3)结晶性能好。通过控制CaO与SiO2质量比,也就是保护渣的二元碱度,通过控制CaF2的加入量,提高了保护渣结晶能力,使得结晶器内弯月面处能快速形成一层保护渣结晶层,减少弯月面处传热,实现弯月面缓冷。3) Good crystallization performance. By controlling the mass ratio of CaO to SiO 2 , that is, the binary basicity of the mold slag, and by controlling the amount of CaF 2 added, the crystallization ability of the mold slag is improved, so that a layer of mold slag can be quickly formed on the meniscus in the crystallizer. layer to reduce heat transfer at the meniscus and realize slow cooling of the meniscus.
综上所述,本发明提供的一种保护渣,具有熔点低、粘度低,结晶温度高,以及熔解、吸收高熔点Cr2O3夹杂物能力强等优点。在有效吸收结晶器内Cr2O3等高熔点夹杂物的同时,能提高保护渣渗透能力和控制弯月面处传热,从而实现铸坯有效润滑和弯月面的缓冷,大幅减少铸坯纵裂和夹杂等缺陷,显著提高铸坯质量和生产效益。适用于高碳含铬钢的连铸。In summary, the mold flux provided by the present invention has the advantages of low melting point, low viscosity, high crystallization temperature, and strong ability to melt and absorb Cr 2 O 3 inclusions with high melting point. While effectively absorbing Cr 2 O 3 and other high melting point inclusions in the crystallizer, it can improve the penetration ability of mold slag and control the heat transfer at the meniscus, so as to realize the effective lubrication of the billet and the slow cooling of the meniscus, and greatly reduce the casting cost. Defects such as billet longitudinal cracks and inclusions can be eliminated, and the quality of billet and production efficiency can be significantly improved. Suitable for continuous casting of high carbon chromium steel.
具体实施方式Detailed ways
以下结合实例对本发明作进一步的阐述,实例仅用于说明本发明,而不是以任何形式来限制本发明。The present invention will be further elaborated below in conjunction with examples, and examples are only used to illustrate the present invention, but not limit the present invention in any form.
本发明的保护渣的熔化温度、1300℃的粘度分别采用冶金行业标准YB/T186和YB/T185测定。结晶温度采用行业通用的热丝法测定。测试过程中首先将保护渣原料按目标成分称量混合,然后采用中频感应炉熔化,使其成分均匀,再将熔融态渣倒入水中急冷得到玻璃态保护渣块体,最后将保护渣将块状保护渣碾磨成粉末后进行热丝实验。热丝法测量保护渣结晶温度过程中,先将载有保护渣的热电偶升温至1500℃,在保温3分钟后以20℃/s的冷却速率降温,通过连接在光学显微镜上的摄像机观察记录保护渣中析出晶体的时间,再根据该时间查找计算机采集到的保护渣温度,从而精确获得保护渣的结晶温度。The melting temperature and viscosity at 1300°C of the mold flux of the present invention are respectively measured by metallurgical industry standards YB/T186 and YB/T185. The crystallization temperature was determined by the hot wire method commonly used in the industry. During the testing process, the raw materials of mold slag were first weighed and mixed according to the target composition, and then melted in an intermediate frequency induction furnace to make the composition uniform, and then the molten slag was poured into water for rapid cooling to obtain a glassy mold slag block, and finally the mold slag was put into the block The hot wire experiment was carried out after grinding the mold powder into powder. In the process of measuring the crystallization temperature of the mold flux by the hot wire method, the temperature of the thermocouple carrying the mold flux is first raised to 1500°C, and then the temperature is lowered at a cooling rate of 20°C/s after the heat preservation for 3 minutes, and the camera connected to the optical microscope is used to observe and record The crystal precipitation time in the mold flux, and then search the temperature of the mold flux collected by the computer according to the time, so as to accurately obtain the crystallization temperature of the mold flux.
实施例1Example 1
一种保护渣,其成分质量百分含量为:CaO:30.2%,SiO2:31.7%,Al2O3:3.6%,MgO:2.0%,(Na2O+Li2O):15.9%(Na2O/Li2O=4.3:1质量比),B2O3:3.1%,F-:13.5%。该保护渣的碱度CaO/SiO2为0.95。采用上述方法测得的保护渣的主要物性指标见表1所示。该实施例所设计的保护渣Cr质量百分含量为10%、C质量百分含量为1.3%的含铬钢连铸;所得铸坯纵裂和夹杂的情况出现的概率低于0.25%。A kind of mold flux, its composition mass percentage is: CaO: 30.2%, SiO 2 : 31.7%, Al 2 O 3 : 3.6%, MgO: 2.0%, (Na 2 O+Li 2 O): 15.9% ( Na 2 O/Li 2 O=4.3:1 mass ratio), B 2 O 3 : 3.1%, F − : 13.5%. The basicity CaO/SiO 2 of the mold flux is 0.95. The main physical properties of the mold flux measured by the above method are shown in Table 1. According to the design of this embodiment, the chromium-containing steel with mold slag Cr content of 10% by mass and C content of 1.3% by mass is continuously cast; the probability of longitudinal cracks and inclusions in the cast slab obtained is lower than 0.25%.
实施例2Example 2
一种高碳含铬钢连铸结晶器保护渣,其成分质量百分含量为:CaO:31.7%,SiO2:30.2%,Al2O3:3.6%,MgO:2.0%,(Na2O+Li2O):15.9%(Na2O/Li2O=6.9:1质量比),B2O3:3.1%,F-:13.5%。该保护渣的碱度CaO/SiO2为1.05。采用上述方法测得的保护渣的主要物性指标见表1所示。该实施例所设计的保护渣Cr质量百分含量为11%、C质量百分含量为1.4%的含铬钢连铸;所得铸坯纵裂和夹杂的情况出现的概率低于0.23%。A high-carbon chromium-containing steel continuous casting mold flux, the composition mass percent of which is: CaO: 31.7%, SiO 2 : 30.2%, Al 2 O 3 : 3.6%, MgO: 2.0%, (Na 2 O +Li 2 O): 15.9% (Na 2 O/Li 2 O=6.9:1 mass ratio), B 2 O 3 : 3.1%, F − : 13.5%. The basicity CaO/SiO 2 of the mold flux is 1.05. The main physical properties of the mold flux measured by the above method are shown in Table 1. According to the design of this embodiment, the chromium-containing steel with mold slag Cr content of 11% and C mass percentage content of 1.4% is continuously cast; the probability of longitudinal cracks and inclusions in the obtained slab is lower than 0.23%.
实施例3Example 3
一种高碳含铬钢连铸结晶器保护渣,其成分质量百分含量为:CaO:33.0%,SiO2:28.7%,Al2O3:3.6%,MgO:2.0%,(Na2O+Li2O):15.9%(Na2O/Li2O=6.9:1质量比),B2O3:3.2%,F-:13.6%。该保护渣的碱度CaO/SiO2为1.15。采用上述方法测得的保护渣的主要物性指标见表1所示。该实施例所设计的保护渣Cr质量百分含量为12%、C质量百分含量为1.5%的含铬钢连铸;所得铸坯纵裂和夹杂的情况出现的概率低于0.12%。A high-carbon chromium-containing steel continuous casting mold powder, its composition mass percentage is: CaO: 33.0%, SiO 2 : 28.7%, Al 2 O 3 : 3.6%, MgO: 2.0%, (Na 2 O +Li 2 O): 15.9% (Na 2 O/Li 2 O=6.9:1 mass ratio), B 2 O 3 : 3.2%, F − : 13.6%. The basicity CaO/SiO 2 of the mold flux is 1.15. The main physical properties of the mold flux measured by the above method are shown in Table 1. According to the design of this embodiment, the chromium-containing steel with mold flux Cr content of 12% and C mass percentage content of 1.5% is continuously cast; the probability of longitudinal cracks and inclusions in the cast slab obtained is lower than 0.12%.
实施例4Example 4
一种高碳含铬钢连铸结晶器保护渣,其成分质量百分含量为:CaO:31.0%,SiO2:29.5%,Al2O3:5.0%,MgO:2.0%,(Na2O+Li2O):15.9%(Na2O/Li2O=7.5:1质量比),B2O3:3.1%,F-:13.5%。该保护渣的碱度CaO/SiO2为1.05。采用上述方法测得的保护渣的主要物性指标见表1所示。该实施例所设计的保护渣Cr质量百分含量为13%、C质量百分含量为1.6%的含铬钢连铸;所得铸坯纵裂和夹杂的情况出现的概率低于0.15%。A high-carbon chromium-containing steel continuous casting mold flux, the composition mass percent of which is: CaO: 31.0%, SiO 2 : 29.5%, Al 2 O 3 : 5.0%, MgO: 2.0%, (Na 2 O +Li 2 O): 15.9% (Na 2 O/Li 2 O=7.5:1 mass ratio), B 2 O 3 : 3.1%, F − : 13.5%. The basicity CaO/SiO 2 of the mold flux is 1.05. The main physical properties of the mold flux measured by the above method are shown in Table 1. In this embodiment, the chromium-containing steel with mold slag Cr content of 13% by mass and C content of 1.6% by mass is continuously cast; the probability of longitudinal cracks and inclusions in the obtained slab is lower than 0.15%.
实施例5Example 5
一种高碳含铬钢连铸结晶器保护渣,其成分质量百分含量为:CaO:32.2%,SiO2:30.7%,Al2O3:3.6%,MgO:1.0%,(Na2O+Li2O):15.9%(Na2O/Li2O=6.9:1质量比),B2O3:3.1%,F-:13.5%。该保护渣的碱度为CaO/SiO2为1.05。采用上述方法测得的保护渣的主要物性指标见表1所示。该实施例所设计的保护渣Cr质量百分含量为14%、C质量百分含量为1.7%的含铬钢连铸;所得铸坯纵裂和夹杂的情况出现的概率低于0.21%。A high-carbon chromium-containing steel continuous casting mold powder, its composition mass percentage is: CaO: 32.2%, SiO 2 : 30.7%, Al 2 O 3 : 3.6%, MgO: 1.0%, (Na 2 O +Li 2 O): 15.9% (Na 2 O/Li 2 O=6.9:1 mass ratio), B 2 O 3 : 3.1%, F − : 13.5%. The basicity of the mold flux is CaO/SiO 2 is 1.05. The main physical properties of the mold flux measured by the above method are shown in Table 1. According to the design of this embodiment, the chromium-containing steel with a mass percentage of Cr of 14% and a mass percentage of C of C of 1.7% is continuously cast; the probability of longitudinal cracks and inclusions in the obtained slab is lower than 0.21%.
实施例6Example 6
一种高碳含铬钢连铸结晶器保护渣,其成分质量百分含量为:CaO:31.2%,SiO2:29.7%,Al2O3:3.6%,MgO:3.0%,(Na2O+Li2O):15.9%(Na2O/Li2O=6.9:1质量比),B2O3:3.1%,F-:13.5%。该保护渣的碱度CaO/SiO2为1.05。采用上述方法测得的保护渣的主要物性指标见表1所示。该实施例所设计的保护渣Cr质量百分含量为15%、C质量百分含量为1.8%的含铬钢连铸;所得铸坯纵裂和夹杂的情况出现的概率低于0.52%。A high-carbon chromium-containing steel continuous casting mold powder, its composition mass percentage is: CaO: 31.2%, SiO 2 : 29.7%, Al 2 O 3 : 3.6%, MgO: 3.0%, (Na 2 O +Li 2 O): 15.9% (Na 2 O/Li 2 O=6.9:1 mass ratio), B 2 O 3 : 3.1%, F − : 13.5%. The basicity CaO/SiO 2 of the mold flux is 1.05. The main physical properties of the mold flux measured by the above method are shown in Table 1. According to the design of this embodiment, the chromium-containing steel with mold flux Cr content of 15% and C mass percentage content of 1.8% is continuously cast; the probability of longitudinal cracks and inclusions in the obtained slab is lower than 0.52%.
实施例7Example 7
一种高碳含铬钢连铸结晶器保护渣,其成分质量百分含量为:CaO:34.2%,SiO2:32.6%,Al2O3:3.6%,MgO:2.0%,(Na2O+Li2O):11.0%(Na2O/Li2O=4.5:1质量比),B2O3:3.1%,F-:13.5%。该保护渣的碱度CaO/SiO2为1.05。采用上述方法测得的保护渣的主要物性指标见表1所示。该实施例所设计的保护渣Cr质量百分含量为15%、C质量百分含量为1.3%的含铬钢连铸;所得铸坯纵裂和夹杂的情况出现的概率低于0.62%。A high-carbon chromium-containing steel continuous casting mold powder, its composition mass percentage is: CaO: 34.2%, SiO 2 : 32.6%, Al 2 O 3 : 3.6%, MgO: 2.0%, (Na 2 O +Li 2 O): 11.0% (Na 2 O/Li 2 O=4.5:1 mass ratio), B 2 O 3 : 3.1%, F − : 13.5%. The basicity CaO/SiO 2 of the mold flux is 1.05. The main physical properties of the mold flux measured by the above method are shown in Table 1. According to the design of this embodiment, the chromium-containing steel with mold flux Cr content of 15% and C mass percentage content of 1.3% is continuously cast; the probability of longitudinal cracks and inclusions in the obtained slab is lower than 0.62%.
实施例8Example 8
一种高碳含铬钢连铸结晶器保护渣,其成分质量百分含量为:CaO:32.8%,SiO2:31.2%,Al2O3:3.6%,MgO:2.0%,(Na2O+Li2O):15.9%(Na2O/Li2O=6.9:1质量比),B2O3:1.0%,F-:13.5%。该保护渣的碱度为CaO/SiO2为1.05。采用上述方法测得的保护渣的主要物性指标见表1所示。该实施例所设计的保护渣Cr质量百分含量为10%、C质量百分含量为1.8%的含铬钢连铸;所得铸坯纵裂和夹杂的情况出现的概率低于0.46%。A high-carbon chromium-containing steel continuous casting mold flux, the composition mass percent of which is: CaO: 32.8%, SiO 2 : 31.2%, Al 2 O 3 : 3.6%, MgO: 2.0%, (Na 2 O +Li 2 O): 15.9% (Na 2 O/Li 2 O=6.9:1 mass ratio), B 2 O 3 : 1.0%, F − : 13.5%. The basicity of the mold flux is CaO/SiO 2 is 1.05. The main physical properties of the mold flux measured by the above method are shown in Table 1. According to the design of this embodiment, the chromium-containing steel with mold flux Cr content of 10% and C content of 1.8% is continuously cast; the probability of longitudinal cracks and inclusions in the obtained slab is lower than 0.46%.
实施例9Example 9
一种高碳含铬钢连铸结晶器保护渣,其成分质量百分含量为:CaO:30.2%,SiO2:28.8%,Al2O3:3.6%,MgO:2.0%,(Na2O+Li2O):15.9%(Na2O/Li2O=6.9:1质量比),B2O3:6.0%,F-:13.5%。该保护渣的碱度CaO/SiO2为1.05。采用上述方法测得的保护渣的主要物性指标见表1所示。该实施例所设计的保护渣Cr质量百分含量为12%、C质量百分含量为1.3%的含铬钢连铸;所得铸坯纵裂和夹杂的情况出现的概率低于0.33%。A high-carbon chromium-containing steel continuous casting mold powder, its composition mass percentage is: CaO: 30.2%, SiO 2 : 28.8%, Al 2 O 3 : 3.6%, MgO: 2.0%, (Na 2 O +Li 2 O): 15.9% (Na 2 O/Li 2 O=6.9:1 mass ratio), B 2 O 3 : 6.0%, F − : 13.5%. The basicity CaO/SiO 2 of the mold flux is 1.05. The main physical properties of the mold flux measured by the above method are shown in Table 1. According to the design of this embodiment, the chromium-containing steel with 12% Cr content and 1.3% C content is continuously cast; the probability of longitudinal cracking and inclusions in the cast slab is lower than 0.33%.
实施例10Example 10
一种高碳含铬钢连铸结晶器保护渣,其成分质量百分含量为:CaO:33.0%,SiO2:31.4%,Al2O3:3.6%,MgO:2.0%,(Na2O+Li2O):15.9%(Na2O/Li2O=6.9:1质量比),B2O3:3.1%,F-:11.0%。该保护渣的碱度CaO/SiO2为1.05。采用上述方法测得的保护渣的主要物性指标见表1所示。该实施例所设计的保护渣Cr质量百分含量为13%、C质量百分含量为1..5%的含铬钢连铸;所得铸坯纵裂和夹杂的情况出现的概率低于0.26%。A high-carbon chromium-containing steel continuous casting mold flux, the composition mass percentage of which is: CaO: 33.0%, SiO 2 : 31.4%, Al 2 O 3 : 3.6%, MgO: 2.0%, (Na 2 O +Li 2 O): 15.9% (Na 2 O/Li 2 O=6.9:1 mass ratio), B 2 O 3 : 3.1%, F − : 11.0%. The basicity CaO/SiO 2 of the mold flux is 1.05. The main physical properties of the mold flux measured by the above method are shown in Table 1. The mold slag designed in this embodiment has a mass percentage of Cr of 13% and a mass percentage of C of 1.5% for continuous casting of chromium-containing steel; %.
表1 保护渣的主要物性参数Table 1 Main physical parameters of mold flux
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410481988.8A CN104308104A (en) | 2014-09-19 | 2014-09-19 | Novel casting powder and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410481988.8A CN104308104A (en) | 2014-09-19 | 2014-09-19 | Novel casting powder and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104308104A true CN104308104A (en) | 2015-01-28 |
Family
ID=52363493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410481988.8A Withdrawn CN104308104A (en) | 2014-09-19 | 2014-09-19 | Novel casting powder and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104308104A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104607608A (en) * | 2015-01-29 | 2015-05-13 | 中南大学 | Novel medium manganese steel casting powder for automobile and application thereof |
CN104874755A (en) * | 2015-05-25 | 2015-09-02 | 中南大学 | Tundish covering agent used for chrome-bearing steel and application thereof |
CN105642848A (en) * | 2016-02-23 | 2016-06-08 | 宝钢特钢有限公司 | Continuous casting mould fluxes for high-carbon steel |
CN106001473A (en) * | 2016-06-24 | 2016-10-12 | 中南大学 | Protective slag for chromium-containing steel continuous-casting crystallizer and application of protective slag |
CN110918914A (en) * | 2019-11-29 | 2020-03-27 | 西峡龙成冶金材料有限公司 | Continuous casting crystallizer casting powder of super wear-resistant steel, preparation method and application |
CN112391541A (en) * | 2019-08-14 | 2021-02-23 | 山特维克材料技术公司 | Mold flux and method for manufacturing nickel-based alloy |
CN112605356A (en) * | 2020-12-16 | 2021-04-06 | 西峡龙成冶金材料有限公司 | Special covering slag for austenitic stainless steel continuous casting crystallizer and application thereof |
CN112620598A (en) * | 2020-12-16 | 2021-04-09 | 西峡龙成冶金材料有限公司 | Continuous casting crystallizer casting powder special for sorbite stainless steel and application thereof |
CN113584254A (en) * | 2021-07-28 | 2021-11-02 | 北京首钢股份有限公司 | Method for reducing longitudinal crack incidence rate of ultrahigh carbon steel casting blank |
CN114247860A (en) * | 2020-09-21 | 2022-03-29 | 上海梅山钢铁股份有限公司 | Continuous casting crystallizer casting powder for casting medium carbon steel |
CN114472823A (en) * | 2021-12-29 | 2022-05-13 | 武钢中冶工业技术服务有限公司 | Crystallizer casting powder |
-
2014
- 2014-09-19 CN CN201410481988.8A patent/CN104308104A/en not_active Withdrawn
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104607608A (en) * | 2015-01-29 | 2015-05-13 | 中南大学 | Novel medium manganese steel casting powder for automobile and application thereof |
CN104874755A (en) * | 2015-05-25 | 2015-09-02 | 中南大学 | Tundish covering agent used for chrome-bearing steel and application thereof |
CN105642848A (en) * | 2016-02-23 | 2016-06-08 | 宝钢特钢有限公司 | Continuous casting mould fluxes for high-carbon steel |
CN106001473A (en) * | 2016-06-24 | 2016-10-12 | 中南大学 | Protective slag for chromium-containing steel continuous-casting crystallizer and application of protective slag |
CN106001473B (en) * | 2016-06-24 | 2018-12-25 | 中南大学 | A kind of chrome-bearing steel continuous crystallizer protecting slag and its application |
CN112391541A (en) * | 2019-08-14 | 2021-02-23 | 山特维克材料技术公司 | Mold flux and method for manufacturing nickel-based alloy |
CN110918914A (en) * | 2019-11-29 | 2020-03-27 | 西峡龙成冶金材料有限公司 | Continuous casting crystallizer casting powder of super wear-resistant steel, preparation method and application |
CN114247860A (en) * | 2020-09-21 | 2022-03-29 | 上海梅山钢铁股份有限公司 | Continuous casting crystallizer casting powder for casting medium carbon steel |
CN112605356A (en) * | 2020-12-16 | 2021-04-06 | 西峡龙成冶金材料有限公司 | Special covering slag for austenitic stainless steel continuous casting crystallizer and application thereof |
CN112620598A (en) * | 2020-12-16 | 2021-04-09 | 西峡龙成冶金材料有限公司 | Continuous casting crystallizer casting powder special for sorbite stainless steel and application thereof |
CN112620598B (en) * | 2020-12-16 | 2022-02-11 | 西峡龙成冶金材料有限公司 | Continuous casting crystallizer casting powder special for sorbite stainless steel and application thereof |
CN113584254A (en) * | 2021-07-28 | 2021-11-02 | 北京首钢股份有限公司 | Method for reducing longitudinal crack incidence rate of ultrahigh carbon steel casting blank |
CN114472823A (en) * | 2021-12-29 | 2022-05-13 | 武钢中冶工业技术服务有限公司 | Crystallizer casting powder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104308104A (en) | Novel casting powder and application thereof | |
CN105562641B (en) | A kind of high manganese crystallizer casting powder for high-aluminum steel continuous casting and preparation method thereof | |
BRPI0904814B1 (en) | method of manufacturing a steel product | |
CN104057051B (en) | A kind of production method of small square billet continuous casting bearing steel | |
CN104439133A (en) | Novel casting powder and application thereof | |
CN104607608B (en) | Medium manganese steel casting powder for automobile and application thereof | |
CN102218514A (en) | Medium and low carbon steel continuous casting mold powder as well as preparation method thereof and continuous casting method | |
CN107952944A (en) | CSP sheet blank continuous casting high-carbon steel crystallizer protecting residues | |
CN105642847A (en) | Casting powder for continuous casting of low-carbon steel and application of casting powder | |
JP7272477B2 (en) | Mold powder for continuous casting of Al-containing hypo-peritectic steel and continuous casting method | |
JPH10258343A (en) | Hollow granular mold flux for continuous casting | |
CN104874755B (en) | A kind of chrome-bearing steel tundish covering flux and its application | |
CN107470576B (en) | A kind of high manganese high-aluminum steel covering slag and its application containing di-iron trioxide | |
CN109112418B (en) | A kind of continuous casting method of high manganese steel | |
CN107297475B (en) | A kind of high alumina steel continuous casting crystallizer Mold Powder Without Fluorine | |
CN106001473A (en) | Protective slag for chromium-containing steel continuous-casting crystallizer and application of protective slag | |
KR20170011712A (en) | Mold flux for continuous casting of high carbon steel | |
CN114178498A (en) | Special covering slag for non-quenched and tempered steel continuous casting crystallizer and preparation process thereof | |
CN106111928A (en) | A kind of novel containing Mn, Al steel covering slag and application thereof | |
KR20140058145A (en) | Method for manufacturing mold powder and method for the continuous casting of ferritic stainless steel using the method | |
KR101024358B1 (en) | Continuous cast iron casting method of spherical graphite cast iron | |
CN102019383B (en) | Special functional protection material of continuous casting crystallizer for alloy tool steel | |
CN104624998B (en) | A kind of especially big round billet peritectic steel function protecting material of continuous casting crystallizer | |
CN107671250A (en) | A kind of ocean platform medium managese steel continuous casting covering slag | |
CN101637807B (en) | Big square billet heavy rail steel functional protective material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C04 | Withdrawal of patent application after publication (patent law 2001) | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20150128 |