KR20040054198A - Method for manufacturing high-tensile steel sheets having excellent low temperature toughness - Google Patents

Method for manufacturing high-tensile steel sheets having excellent low temperature toughness Download PDF

Info

Publication number
KR20040054198A
KR20040054198A KR1020020081019A KR20020081019A KR20040054198A KR 20040054198 A KR20040054198 A KR 20040054198A KR 1020020081019 A KR1020020081019 A KR 1020020081019A KR 20020081019 A KR20020081019 A KR 20020081019A KR 20040054198 A KR20040054198 A KR 20040054198A
Authority
KR
South Korea
Prior art keywords
steel sheet
steel
cooling
toughness
temperature
Prior art date
Application number
KR1020020081019A
Other languages
Korean (ko)
Other versions
KR100957929B1 (en
Inventor
서인식
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020081019A priority Critical patent/KR100957929B1/en
Publication of KR20040054198A publication Critical patent/KR20040054198A/en
Application granted granted Critical
Publication of KR100957929B1 publication Critical patent/KR100957929B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0252Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with application of tension
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Abstract

PURPOSE: A method for manufacturing high tensile strength steel sheets having excellent toughness at low temperature by properly controlling constituents and heat treatment conditions of steel, thereby controlling micro-structure of steel is provided. CONSTITUTION: The method comprises a step of hot rolling the reheated steel slab to a desired thickness after reheating a steel slab comprising 0.04 to 0.10 wt.% of C, 0.05 to 0.5 wt.% of Si, 0.4 to 1.0 wt.% of Mn, 0.1 to 0.5 wt.% of Mo, 4.0 to 6.0 wt.% of Ni, 0.005 to 0.1 wt.% of Al, 0.015 wt.% or less of P, 0.005 wt.% or less of S and a balance of Fe and other inevitable impurities, wherein contents of the C, Mn, Mo and Ni satisfy the following relational expression: 0.7<=£C(%)+0.4Mn(%)+0.8Mo(%)+0.1Ni(%)|x(A/24)<=1.5, where A is cooling rate (deg.C/sec); a step of reheating the hot rolled steel sheet to a temperature of Ac3 to 950 deg.C, maintaining the reheated hot rolled steel sheet for 1.9T(thickness of steel sheet, mm) to 1.9T+50 minutes, and water cooling the heated steel sheet in a cooling rate of 10 to 50 deg.C/sec; a step of reheating the water cooled steel sheet to a temperature of 700 to 750 deg.C, maintaining the reheated steel sheet for 1.9T to 1.9T+50 minutes, and water cooling the heated steel sheet in a cooling rate of 10 to 50 deg.C/sec; and a step of tempering the water cooled steel sheet at a temperature of 550 to 640 deg.C for 1.9T to 1.9T+50 minutes, and cooling the tempered steel sheet in a cooling rate of 10 to 50 deg.C/sec.

Description

저온인성이 우수한 고장력 강판의 제조방법{Method for manufacturing high-tensile steel sheets having excellent low temperature toughness}Method for manufacturing high-tensile steel sheets having excellent low temperature toughness

본 발명은 LNG, 에틸렌, LPG 등의 저장용기로 사용되는 고장력 강판의 제조방법에 관한 것으로, 보다 상세하게는 강의 성분과 열처리 조건을 적절히 조정함으로써 강의 미세조직을 제어하여 저온에서의 인성이 매우 우수한 고장력 강판의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a high tensile strength steel sheet used for storage containers such as LNG, ethylene, LPG, and more particularly, by controlling steel microstructures by appropriately adjusting steel components and heat treatment conditions, thereby having excellent toughness at low temperatures. It relates to a method for producing high tensile steel sheet.

LNG, 에틸렌, LPG 등과 같은 액화가스는 저장온도가 매우 낮기 때문에, 저장용기로 사용되는 재료는 저장 가스의 액화온도에서 우수한 인성 뿐만 아니라 우수한 강도 또한 요구된다. 이러한 요구는 강에 Ni을 첨가함으로써 만족시켜 왔으며, IMO(International Marine Organization)의 코드(code)에 따르면 액화온도가 -164℃ 정도인 LNG 저장용기용 강재로는 Ni을 9% 첨가한 강을 사용하고, 액화온도가 -105℃인 에틸렌 저장용기용 강재로는 Ni을 5% 첨가한 강을 사용하고, 액화온도가 -50℃ 정도인 LPG 저장용기용 강재로는 Ni을 1.5% 첨가한 강을 사용할 것을 제안하고 있다. 즉, 사용온도가 낮아짐에 따라 Ni의 함량을 증가시킴으로써, 더 낮은 온도에서도 우수한 인성이 얻어지도록 하고 있다. 그러나, Ni은 가격이 매우 비싸 강재의 가격을 인상시키기 때문에 경제성에 문제가 있다. 따라서, Ni 함량을 낮추면서도 우수한 인성을 나타내는 강재를 제공하는 것이 요구되고 있다.Since liquefied gas such as LNG, ethylene, LPG, and the like has a very low storage temperature, the material used for the storage container requires not only good toughness but also good strength at the liquefied temperature of the stored gas. This requirement has been satisfied by adding Ni to the steel, and according to the code of the International Marine Organization (IMO), 9% of Ni is used as the steel for LNG storage vessels with a liquefaction temperature of about -164 ° C. The steel for ethylene storage vessels with a liquefaction temperature of -105 ° C is added with 5% of Ni. The steel for LPG storage containers with a liquefaction temperature of -50 ° C is added with 1.5% of Ni. It is suggested to use. That is, by increasing the content of Ni as the use temperature is lowered, it is possible to obtain excellent toughness even at a lower temperature. However, since Ni is very expensive and raises the price of steel, there is a problem in economy. Therefore, it is desired to provide a steel material exhibiting excellent toughness while lowering the Ni content.

Ni의 함량을 낮추면서 저온인성과 강도를 향상시키는 것에 관한 종래기술로는 인성에 유해한 P와 S 등의 불순물 원소를 낮추는 것이 있다. 상기 P는 마르텐사이트 조직을 갖는 강에서 소려처리에 의해서 구 오스테나이트 입계에 편석됨으로써 취화를 일으키는 원소이며, 그 함량이 증가할수록 인성은 낮아진다. 현재의 정련기술에서는 P의 함량을 20ppm 수준까지 낮추는 것이 가능하지만, 정련설비 가동에 따른 비용 상승의 문제점이 있다.Conventional techniques for improving low temperature toughness and strength while lowering the content of Ni include lowering impurity elements such as P and S that are harmful to toughness. P is an element that causes embrittlement by segregation at the old austenite grain boundary by roughening in a steel having a martensite structure, and the toughness decreases as the content thereof increases. In the current refining technology it is possible to lower the P content to 20ppm level, but there is a problem of the cost increase due to the operation of the refining equipment.

Ni의 함량을 낮추면서 저온인성과 강도를 향상시키는 것에 관한 또 다른 종래기술로는 직접소입을 이용하는 방법이 있으며, 대표적인 예로는 일본 공개특허공보 평3-229818호, 공개특허공보 소61-17885호, 공개특허공보 평6-192729호가 있다. 상기 종래기술들은 압연 중의 미세조직제어와 직접소입에 의한 조직제어에 의해서 Ni 함량을 5% 정도로 낮추었음에도 불구하고, LNG 저장용기용 재료로 사용할 수 있을정도의 재질을 갖는 강재를 제공한다. 그러나, 상기 종래기술들은 직접소입 과정에서 발생하는 판변형에 의한 불량의 발생으로 실수율이 떨어질 뿐만 아니라 조직제어를 위해서 저온압연을 실시해야 하기 때문에 생산성이 저하되는 문제점이 있다. 또한, 상기 종래기술에서는 제어압연성 향상을 위해서 Nb을 첨가하고 있는데, 상기 Nb이 2차 경화에 의한 취화를 일으킴으로써 Ni이 9% 함유된 강에 비해서 인성이 상당히 낮은 문제점도 있다.Another conventional technique for improving the low temperature toughness and strength while lowering the content of Ni is a method using direct quenching, and examples thereof include JP-A-3-229818 and JP-A-61-17885. Published Patent Application Publication No. 6-192729. The prior art provides a steel having a material that can be used as a material for LNG storage vessels, even though the Ni content is reduced to about 5% by microstructure control during rolling and texture control by direct quenching. However, the conventional technologies have a problem that productivity is lowered because low-temperature rolling is required for tissue control as well as the error rate decreases due to defects caused by plate deformation generated during direct quenching. In addition, in the prior art, Nb is added to improve the controllability. However, the Nb causes embrittlement by secondary hardening, so that the toughness is considerably lower than that of the steel containing 9% Ni.

Ni의 함량을 낮추면서 저온인성과 강도를 향상시키는 것에 관한 또 다른 종래기술로는 Mo를 첨가하는 방법이 있으며, 대표적인 예로는 일본 공개특허공보 소53-97917호, 공개특허공보 평4-9861호, 공개특허공보 평4-371520호, 공개특허공보 평6-184630호 및 공개특허공보 평9-302445호가 있다. 상기 일본 공개특허공보 소53-97917호, 공개특허공보 평4-9861호, 공개특허공보 평4-371520호, 공개특허공보 평6-184630호는 Ni을 7.0% 이상, 실질적으로 LNG 저장용기용으로는 9% 이상의 Ni 첨가가 필요, 첨가하는 것에 관한 것으로서, 기존의 Ni이 9% 함유된 강에 비해서 경제적으로 강재를 제공한다고 할 수가 없다. 또한, 상기 공개특허공보 평9-302445호는 Mo를 0.02~0.08% 첨가함으로써 모재의 강도와 인성을 증가시키고 용접부 인성을 향상시키는 방법을 제공하고 있으나, Ni이 5% 정도로 낮은 경우에는 Ni이 9% 함유된 강에 비하여 강도와 인성이 훨씬 떨어질 뿐만 아니라 LNG 저장용기용 재료로 사용하기에도 부적합한 문제점이 있다.Another conventional technique related to improving the low temperature toughness and strength while lowering the content of Ni is a method of adding Mo, and examples thereof include Japanese Patent Application Laid-Open No. 53-97917 and Japanese Patent Laid-Open No. 4-9861. , JP-A 4-371520, JP-A 6-184630, and JP-A 9-302445. Japanese Laid-Open Patent Publication Nos. 53-97917, 4-49861, 4-43720 and 6-184630 disclose that Ni is at least 7.0%, substantially for LNG storage containers. As for the addition and addition of 9% or more of Ni, it cannot be said that the steel is provided economically as compared to the steel containing 9% of Ni. In addition, the Patent Publication No. Hei 9-302445 provides a method of increasing the strength and toughness of the base material and improving the weldability by adding 0.02 to 0.08% of Mo, but when Ni is as low as 5%, Ni is 9 Compared with the steel containing%, strength and toughness are much lower, and there is a problem that is not suitable for use as a material for LNG storage containers.

본 발명은 상기한 종래기술의 문제점을 해결하기 위한 것으로, 강의 성분과 열처리 조건을 조절하여 미세조직을 제어함으로써, 우수한 저온인성과 함께 경제성을 겸비한 고장력 강판의 제조방법을 제공하는데, 그 목적이 있다.The present invention is to solve the above problems of the prior art, by controlling the microstructure by adjusting the composition and heat treatment conditions of the steel, to provide a method for producing a high-tensile strength steel sheet having excellent low-temperature toughness and economical, the object is .

도 1은 H값 변화에 따른 마르텐사이트 분율 변화를 나타내는 그래프1 is a graph showing the change in martensite fraction according to the change in H value

도 2는 본 발명의 열처리 공정을 나타내는 모식도2 is a schematic diagram showing a heat treatment process of the present invention.

상기한 목적을 달성하기 위한 본 발명은 중량%로, C: 0.04~0.10%, Si: 0.05~0.5%, Mn: 0.4~1.0%, Mo: 0.1~0.5%, Ni: 4.0~6.0%, Al: 0.005~0.1%, P: 0.015% 이하, S: 0.005% 이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, 상기 C, Mn, Mo, Ni의 함량이 다음 관계,The present invention for achieving the above object is by weight, C: 0.04-0.10%, Si: 0.05-0.5%, Mn: 0.4-1.0%, Mo: 0.1-0.5%, Ni: 4.0-6.0%, Al : 0.005 ~ 0.1%, P: 0.015% or less, S: 0.005% or less, remaining Fe and other inevitable impurities, the content of the C, Mn, Mo, Ni is the following relationship,

0.7 ≤ [C(%) + 0.4Mn(%) + 0.8Mo(%) + 0.1Ni(%)] × (A/24) ≤ 1.50.7 ≤ [C (%) + 0.4Mn (%) + 0.8Mo (%) + 0.1Ni (%)] × (A / 24) ≤ 1.5

(단, A는 냉각속도(℃/초))(Where A is the cooling rate (° C / sec))

를 만족하는 강을,To satisfy the river,

재가열한 다음 원하는 두께로 열간압연하는 단계,Reheat and then hot rolled to the desired thickness,

상기 열간압연한 강판을 Ac3~950℃로 재가열한 다음 1.9T(강판의 두께, mm)~1.9T+50분 동안 유지하고 10~50℃/초의 냉각속도로 냉각하는 단계,Reheating the hot rolled steel sheet to A c3 ~ 950 ℃ and then maintained for 1.9T (thickness of the steel sheet, mm) ~ 1.9T + 50 minutes and cooling at a cooling rate of 10 ~ 50 ℃ / seconds,

상기 수냉한 강판을 700~750℃로 재가열한 다음 1.9T~1.9T+50분 동안 유지하고 10~50℃/초의 냉각속도로 냉각하는 단계 및Reheating the water-cooled steel sheet to 700 ~ 750 ℃ and then maintained for 1.9T ~ 1.9T + 50 minutes and cooling at a cooling rate of 10 ~ 50 ℃ / second and

상기 수냉한 강판을 550~640℃에서 1.9T~1.9T+50분 동안 소려처리한 다음 10~50℃/초의 냉각속도로 냉각하는 것을 포함하여 이루어진다.The water-cooled steel sheet is subjected to annealing at 1.9T-1.9T + 50 minutes at 550-640 ° C. and then cooled at a cooling rate of 10-50 ° C./sec.

이하, 본 발명에 대하여 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

상술한 바와 같이, IMO code에서 액화가스의 액화온도가 낮아짐에 따라 저장용기용 강재의 Ni 함량이 증가되도록 추천하는 것은 Ni이 강재의 저온인성과 강도를 향상시키는 효과가 있기 때문이다. 따라서, 우수한 재질과 함께 Ni 함량 감소에 의한 경제성 확보를 위해서는 Ni에 의한 저온인성 향상과 강도증가 효과를 대신할 수 있는 야금학적인 방법을 찾는 것이 매우 중요하다.As described above, the IMO code recommends that the Ni content of the steel for storage containers be increased as the liquefaction temperature of the liquefied gas is lowered because Ni has an effect of improving the low temperature toughness and strength of the steel. Therefore, it is very important to find a metallurgical method that can replace the effect of improving the low temperature toughness and strength by Ni in order to secure economical efficiency by reducing Ni content together with excellent materials.

본 발명자는 Ni이 함유된 마르텐사이트 강에서 강도와 인성에 미치는 미세조직의 영향과 미세조직을 제어하기 위한 야금학적인 방법에 대해서 심도 있는 연구와 실험을 행한 결과, 마르텐사이트의 유효 결정립을 미세화 하는 것이 저온인성 향상에 매우 효과적이라는 사실을 알아냈다. 즉, 합금성분을 적절히 조절하여 소입 후 변태조직을 제어함으로써 유효 결정립을 미세화시키고, 2상역 열처리와 소려처리 온도를 조절함으로써 유효 결정립 미세화가 극대화 되는 것이다.The present inventors have conducted in-depth studies and experiments on the effect of microstructures on strength and toughness and metallurgical methods for controlling microstructures in martensitic steels containing Ni. It has been found to be very effective in improving low temperature toughness. That is, by controlling the alloy structure after quenching by appropriately adjusting the alloying component to refine the effective grains, by controlling the two-phase inverse heat treatment and the soaking temperature is to maximize the effective grain refinement.

먼저, 마르텐사이트 유효 결정립을 충분히 미세화 하려면 소입상태에서 미세조직이 대부분 마르텐사이트이어야 한다. 소입 후 변태조직에 크게 영향을 미치는 원소는 C, Mn, Mo, Ni인데 본 발명에서는 이들 원소의 개별적인 함량보다는 하기 수학식 1에 의해서 조합되는 수식에 의해서 소입 후 변태조직이 결정되는 것을 발견하였다.First, in order to sufficiently fine martensite effective grains, the microstructure must be mostly martensite in the quenched state. The elements that greatly affect the metamorphic structure after quenching are C, Mn, Mo, and Ni. In the present invention, it was found that the metamorphic structure after quenching was determined by the formula combined by Equation 1 below, rather than the individual content of these elements.

H = [C(%) + 0.4Mn(%) + 0.8Mo(%) + 0.1Ni(%)] × (A/24)H = [C (%) + 0.4Mn (%) + 0.8Mo (%) + 0.1Ni (%)] × (A / 24)

상기 수학식 1은 본 발명자가 연구도중 얻어낸 경험식으로, 각 성분은 질량 백분율을 의미하며, A는 강판의 두께와 냉매에 의해서 결정되는 냉각속도(℃/초)를 의미한다.Equation 1 is an empirical formula obtained by the inventors during the study, each component means a mass percentage, A means a cooling rate (° C./sec) determined by the thickness of the steel sheet and the refrigerant.

상기와 같은 방법으로 소입처리한 상태에서 Ac3이하의 적절한 2상역 온도 구간에서 열처리한 후 소입처리 하는 것과 최종적으로 550~640℃ 온도 구간에서 소려처리 하는 것에 의해서 마르텐사이트 조직 내에 오스테나이트를 미세하게 석출시킴으로써 유효 결정립을 매우 미세하게 만들 수 있다. 이때 석출된 오스테나이트가 열적으로 불안정하면 액화가스 사용온도인 저온에 노출될 경우에 마르텐사이트로 변태되며 이런 마르텐사이트는 매우 취약하여 오히려 인성을 크게 감소시킨다. 따라서, 열처리에 의해서 석출되는 오스테나이트는 사용온도(LNG의 경우 -165℃, 에틸렌의 경우 -105℃)에서도 열적으로 매우 안정해야 한다. 본 발명에 의하면 최종 소려처리 온도를 적절히 조절하는 한편 소입처리와 소려처리 중간에 2 상역의 적절한 온도에서 중간 열처리한 후 소입하는 것에 의해서 오스테나이트를 -196℃ 이하의 저온에서도 매우 안정하게 만들 수 있게 된다.In the above-mentioned method, the austenite is finely contained in the martensite structure by heat-treating at an appropriate two-phase temperature range of A c3 or less in the quenched state, followed by annealing at a temperature range of 550 to 640 ° C. Precipitation can make the effective crystal grains very fine. At this time, if the precipitated austenite is thermally unstable, it is transformed to martensite when exposed to low temperature, which is the liquefied gas use temperature. Therefore, austenite precipitated by heat treatment should be thermally very stable even at service temperature (-165 ° C for LNG and -105 ° C for ethylene). According to the present invention, it is possible to make austenite very stable even at low temperatures of -196 ° C or lower by appropriately adjusting the final soaking temperature while quenching the intermediate heat treatment at an appropriate temperature of two phases in the middle of the hardening treatment and the soaking treatment. do.

또한, 최종 소려처리를 완료한 후에 빠른 냉각속도로 냉각함으로써 P에 의한 소려취화를 억제하여 저온인성을 향상시킬 수 있다. 이는 합금성분 조절과 열처리 조건의 조절에 의해서 유효 결정립을 미세화하는 효과 뿐만 아니라 저온인성을 향상시키는 결과를 가져오게 된다. 또한, 이는 P 함량을 극도로 낮게 하지 않으면서도 우수한 저온인성을 얻게 하는 효과가 있다.In addition, by cooling at a high cooling rate after completion of the final soaking treatment, soaking embrittlement by P can be suppressed to improve low-temperature toughness. This results in improving the low temperature toughness as well as the effect of miniaturizing the effective grains by controlling the alloy composition and controlling the heat treatment conditions. In addition, this has the effect of obtaining excellent low temperature toughness without making the P content extremely low.

먼저, 본 발명의 성분제한 이유부터 살펴본다.First, look at the reasons for limiting the components of the present invention.

C: 0.04~0.10중량%C: 0.04-0.10 wt%

상기 C의 함량이 0.04중량% 미만이면 소려처리 동안에 탄화물이 거의 석출되지 않음으로써 강도가 너무 낮을 뿐만 아니라 경화능도 크게 감소하여 마르텐사이트 유효 결정립이 충분히 미세화되지 않고, 0.10중량%를 초과하면 마르텐사이트 유효 결정립이 효과적으로 미세화 되어도 탄화물에 의한 인성저하가 매우 커지므로, 그 함량을 0.04~0.10중량%로 제한하는 것이 바람직하다.When the C content is less than 0.04% by weight, carbides hardly precipitate during the soaking treatment, so that not only the strength is too low but also the hardenability is greatly reduced, so that the effective martensite grains are not sufficiently refined. Even if the effective crystal grains are effectively miniaturized, the toughness deterioration due to carbides becomes very large, and the content thereof is preferably limited to 0.04 to 0.10% by weight.

Si: 0.05~0.5중량%Si: 0.05-0.5 wt%

상기 Si는 탈산과 고용강화를 위해서 첨가되는 성분으로, 0.05중량% 미만 첨가되면 탈산과 강도 확보가 미미하고, 0.5중량%를 초과하여 첨가되면 용접성이 감소될 뿐만 아니라 철감람석(fayalite)이라는 Si 함유 산화물이 발생하여 표면결함 발생의 원인이 되므로, 그 함량을 0.05~0.5중량%로 제한하는 것이 바람직하다.The Si is a component added for the deoxidation and solid solution strengthening, if less than 0.05% by weight is less secured deoxidation and strength, when added in excess of 0.5% by weight not only the weldability is reduced, but also containing Si called iron olivine Since oxides are generated to cause surface defects, the content is preferably limited to 0.05 to 0.5% by weight.

Mn: 0.4~1.0중량%Mn: 0.4-1.0 wt%

상기 Mn의 함량이 0.4중량% 미만이면 고용강화 효과 감소에 의해서 강도가 낮아질뿐만 아니라 경화능이 감소하여 충분하게 유효 결정립이 미세화되기 어렵고, 1.0중량%를 초과하면 유효결정립 감소 효과는 포화되며 강도 증가와 소려취화가 심화됨에 따라 인성이 저하될 뿐만 아니라 용접성도 열화되므로, 그 함량을 0.4~1.0중량%로 제한하는 것이 바람직하다.When the content of Mn is less than 0.4% by weight, not only the strength is lowered by the decrease of the solid-solution strengthening effect, but also the hardenability decreases, so that the effective grains are not sufficiently refined. As the brittle embrittlement is intensified, not only the toughness is lowered but also the weldability is deteriorated, so that the content is preferably limited to 0.4 to 1.0% by weight.

Mo: 0.1~0.5중량%Mo: 0.1-0.5 weight%

상기 Mo은 마르텐사이트 조직을 확보함으로써 유효 결정립을 미세화 하는데 있어서 매우 중요한 성분으로, 0.1중량% 미만 첨가되면 상기 효과를 얻을 수 없고, 0.5중량%를 초과하여 첨가되면 유효 결정립 크기 감소 효과는 포화되고 제조원가의 상승과 용접성 불량의 문제점이 발생하므로, 그 함량을 0.1~0.5중량%로 제한하는 것이 바람직하다.The Mo is a very important component in miniaturizing the effective grains by securing martensite structure, when the addition of less than 0.1% by weight can not obtain the effect, the addition of more than 0.5% by weight is effective in reducing the effective grain size and manufacturing cost Since problems of the rise of and poor weldability occur, it is preferable to limit the content to 0.1 to 0.5% by weight.

Ni: 4.0~6.0중량%Ni: 4.0-6.0 wt%

상기 Ni는 경화능을 향상시킴으로써 유효 결정립을 미세화하는 역할을 하는 본 발명의 핵심적인 성분으로, Ae1온도를 낮춤으로써 열처리 중에 오스테나이트가 석출할 수 있도록 하며 석출된 오스테나이트에 우선적으로 고용되어 오스테나이트의 열적 안정성을 향상시켜 유효 결정립을 매우 미세하게 만드는 역할을 한다. 상기 Ni의 함량이 4.0중량% 미만 첨가되면 상기 유효결정립 미세화 효과를 얻을 수 없고, 6.0중량%를 초과하면 제조원가를 상승시키므로, 그 함량을 4.0~6.0중량%로 제한하는 것이 바람직하다.The Ni is a key component of the present invention that serves to refine the effective grain by improving the hardenability, and by lowering the A e1 temperature to allow austenite to precipitate during heat treatment and preferentially solid solution in the austenite precipitated austenite It improves the thermal stability of the knight, making the effective grain very fine. When the content of Ni is less than 4.0% by weight, the effective grain refining effect cannot be obtained. When the content of Ni is more than 6.0% by weight, the production cost is increased. Therefore, the content is preferably limited to 4.0 to 6.0% by weight.

Al: 0.005~0.1중량%Al: 0.005 to 0.1 wt%

상기 Al은 탈산을 위해서 첨가되는 성분으로, 0.005중량% 미만 첨가되면 상기 탈산 효과를 얻을 수 없고, 0.1중량%를 초과하여 첨가되면 용접성을 해칠 뿐만 아니라 개재물 함량이 증가하여 인성을 해치므로, 그 함량을 0.005~0.1중량%로 제한하는 것이 바람직하다.The Al is a component added for deoxidation. If less than 0.005% by weight is added, the deoxidation effect cannot be obtained. If Al is added in excess of 0.1% by weight, the Al content not only impairs weldability but also increases inclusion content, thereby deteriorating toughness. Is preferably limited to 0.005 to 0.1% by weight.

P: 0.015중량% 이하P: 0.015% by weight or less

상기 P는 불순물로서, 마르텐사이트 조직을 갖는 강재에서 소려취화를 야기함으로써 인성을 해친다. 인성의 향상을 위해서는 P의 함량이 낮을수록 유리하지만 정련공정에서 부하를 초래한다. 본 발명에서 제안하고 있는 열처리 조건을 적용하는 경우에는 P가 0.015중량% 이하인 경우에는 소려취화가 크게 문제가 되지 않으나, 이를 초과할 경우에는 소려취화에 의해서 인성이 저하되므로, 그 함량을 0.015중량% 이하로 제한하는 것이 바람직하다.P, as an impurity, impairs toughness by causing rough embrittlement in steel having a martensite structure. The lower the P content is, the better the toughness is, but it causes a load in the refining process. In the case of applying the heat treatment conditions proposed in the present invention, when P is 0.015% by weight or less, the brittle embrittlement is not a problem, but when it exceeds this, the toughness is lowered by the brittle embrittlement, so the content thereof is 0.015% by weight. It is preferable to limit to the following.

S: 0.005중량% 이하S: 0.005 wt% or less

상기 S도 P와 같이 불순물로서, 그 함량이 0.005중량%를 초과하면 MnS 개재물 증가에 의해서 인성을 해치므로, 그 함량을 0.005중량% 이하로 제한하는 것이 바람직하다.S is also an impurity like P, and if its content exceeds 0.005% by weight, the toughness is impaired by the increase of MnS inclusions, so the content is preferably limited to 0.005% by weight or less.

상기한 조성 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다.In addition to the above compositions, the remainder is composed of Fe and other unavoidable impurities.

본 발명의 목적을 달성하기 위해서는 상기와 같은 성분의 범위도 중요하지만 상술한 바와 같이 C, Mn, Mo, Ni과 A(냉각속도)에 의해서 조합되는 수학식 1의 H 값의 범위가 무엇 보다도 중요하다. 하기 수학식 1의 H값이 0.7 미만인 경우에는 마르텐사이트 변태가 충분히 일어나지 않기 때문에 효과적으로 유효 결정립을 미세화 시킬 수 없어 저온인성이 감소하고, 1.5를 초과하는 경우에는 유효결정립 미세화 효과는 포화되고 오히려 지나친 강도 증가에 의해서 저온인성이 낮아지고 용접성이 저하되는 문제가 발생하므로, 상기 수학식 1의 H 값은 0.7~1.5 범위로 제한하는 것이 바람직하다.In order to achieve the object of the present invention, the range of the above components is also important, but as described above, the range of the H value of Equation 1 combined by C, Mn, Mo, Ni, and A (cooling rate) is most important. Do. When the H value of the following Equation 1 is less than 0.7, the martensite transformation does not occur sufficiently, so that the effective grains cannot be effectively refined, so that the low temperature toughness decreases. When the H value exceeds 1.5, the effective grain refinement effect is saturated and rather excessive strength. Since the low temperature toughness decreases and the weldability decreases due to the increase, the H value of Equation 1 is preferably limited to the range of 0.7 to 1.5.

[수학식 1][Equation 1]

H = [C(%) + 0.4Mn(%) + 0.8Mo(%) + 0.1Ni(%)] × (A/24)H = [C (%) + 0.4Mn (%) + 0.8Mo (%) + 0.1Ni (%)] × (A / 24)

(단, A는 냉각속도(℃/초))(Where A is the cooling rate (° C / sec))

즉, 상기 수학식 1의 값이 0.7 미만일 경우에는 소입상태의 조직에 영향을 미침으로써 유효 결정립의 미세화가 충분히 달성되지 않는다. 이것은 도 1에서도 잘 나타나고 있다. 즉, 도 1은 소입상태에서 마르텐사이트 분율이 하기 수학식 1의 H 값 변화에 따라서 변하는 정도를 측정한 결과인데, H가 0.7 미만까지는 H값 변화에 의해서 마르텐사이트 분율이 크게 증가하다가 0.7 이상에서는 95% 이상이 마르텐사이트이며, 그 이상에서는 큰 변화가 없음을 알 수 있다.In other words, when the value of Equation 1 is less than 0.7, the effective grain size is not sufficiently achieved by affecting the structure in the hardened state. This is well illustrated in FIG. 1. That is, Figure 1 is a result of measuring the degree of change of the martensite fraction in accordance with the change in the H value of the following equation 1 in the quenched state, the martensite fraction greatly increases by H value change until H is less than 0.7, but in more than 0.7 It can be seen that more than 95% is martensite, there is no significant change above.

상기와 같이 조성되는 강 슬라브를 열간압연 하는데 있어서 특별한 제약은 없으며 재가열과 열간압연을 통한 통상의 제조방법으로 원하는 두께의 강판을 제조하면 된다.There is no particular limitation in hot rolling the steel slabs formed as described above, and a steel sheet having a desired thickness may be manufactured by a conventional manufacturing method through reheating and hot rolling.

보다 바람직하게는 압연성을 충분히 확보하고 지나친 고온산화를 방지하기 위해서 슬라브 재가열 온도 범위는 1000~1350℃의 온도로 하는 것이 필요하며 압연성 확보를 위해서 Ar3이상에서 열간 압연을 종료하고 공냉을 하는 것이 바람직하다.More preferably sufficient rolling property and excessive high temperature slab reheating temperature range in order to prevent oxidation, it is necessary to a temperature of 1000 ~ 1350 ℃ and terminate the hot rolling at the above A r3 to the rolling property to attract and to the air-cooling It is preferable.

이후, 본 발명의 열처리 공정은 도 2에 나타낸 바와 같이 소입열처리, 2상역 소입열처리, 소려열처리의 3단계에 걸쳐서 실시하는데, 다음은 3단계 열처리 공정에 대해서 상술한다.Thereafter, the heat treatment process of the present invention is carried out in three stages of quenching heat treatment, two-phase reverse quenching heat treatment, and sorrow heat treatment as shown in FIG.

[소입열처리][Annealing Heat Treatment]

상기 통상의 열간압연과 공냉을 행한 후, Ac3~950℃로 재가열한 다음 1.9T(강판의 두께, mm)~1.9T+50분 동안 유지하고 10~50℃/초의 냉각속도로 냉각한다. 상기 소입열처리는 고온에서 오스테나이트 조직화한 다음 소입에 의해서 마르텐사이트 조직으로 만드는 것이 목표이며, 고온의 재가열과 냉각하는 과정으로 이루어져 있다. 상기 재가열 온도가 Ac3미만이면 충분한 오스테나이트화가 이루어지지 않고, 950℃를 초과하면 오스테나이트 결정립이 조대해 짐으로써 인성이 낮아지므로, 상기 재가열 온도는 Ac3~950℃로 제한하는 것이 바람직하다. 또한, 상기 재가열 후 유지시간이 1.9T분 미만이면 충분한 오스테나이트화가 이루어지지 않고, 1.9T+50분을 초과하면 오스테나이트 결정립이 조대해 짐으로써 인성이 낮아지므로, 상기 유지시간은 1.9T~1.9T+50분으로 제한하는 것이 바람직하다. 또한, 상기 오스테나이트 열처리 후에 수냉함에 있어서 냉각속도가 10℃/초 미만이면 충분한 마르텐사이트 조직을 얻는 것이 불가능하고, 50℃/초를 초과하면 심한 변형이 발생될 우려가 있으므로, 상기 냉각속도는 10~50oC/초로 제한하는 것이 바람직하다.After performing the conventional hot rolling and air cooling, reheating to the A c3 ~ 950 ℃ then maintained 1.9T (the thickness of the steel plate, mm) ~ 1.9T + for 50 minutes and cooled to 10 ~ 50 ℃ / sec cooling rate. The hardening heat treatment aims to form austenite at high temperature and then to martensite structure by hardening, and consists of a process of reheating and cooling at high temperature. If the reheating temperature is less than A c3, sufficient austenitization is not achieved. If the reheating temperature is higher than 950 ° C., the austenite grains become coarse, so the toughness is lowered. Therefore, the reheating temperature is preferably limited to A c3 to 950 ° C. In addition, if the holding time after reheating is less than 1.9T minutes, sufficient austenitization is not achieved. If the holding time is more than 1.9T + 50 minutes, the austenite grains become coarse and the toughness is lowered, so the holding time is 1.9T to 1.9. It is preferred to limit to T + 50 minutes. In addition, it is impossible to obtain sufficient martensite structure when the cooling rate is less than 10 ° C / sec in water cooling after the austenite heat treatment, and when the cooling rate exceeds 50 ° C / sec, there is a fear that severe deformation may occur. It is desirable to limit to ˜50 o C / sec.

[2상역 소입열처리][2-phase quenching heat treatment]

상기 소입열처리한 강판을 Ac3이하의 2상역인 700~750℃로 재가열한 다음 1.9T~1.9T+50분 동안 유지하고 10~50℃/초의 냉각속도로 냉각한다. 상기 2상역 열처리의 목적은 후속의 소려처리에서 석출되는 오스테나이트가 열적으로 매우 안정해지도록 하는 것이며, 이를 위해서는 2상역 열처리 동안에 적당량의 오스테나이트가 미리 형성된 후에 소입처리에 의해서 다시 마르텐사이트로 변태하는 것이 중요하다. 상기 재가열 온도가 700℃ 미만이면 2상역 재가열처리 효과가 없고 750℃를 초과하면 결정립이 조대해지므로, 상기 재가열 온도는 700~750℃로 제한하는 것이 바람직하다. 또한, 상기 재가열 후 유지시간이 1.9T분 미만이면 오스테나이트가 충분히 형성되지 않고, 1.9T+50분을 초과하면 결정립이 조대해지므로, 상기 유지시간은 1.9T~1.9T+50분으로 제한하는 것이 바람직하다. 또한, 상기 2상역 열처리 후에 수냉함에 있어서 냉각속도가 10℃/초 미만이면 2상역 열처리에서 생성된 오스테나이트가 충분히 마르텐사이트로 변태하는 것이 불가능하고, 50℃/초를 초과하면 심한 변형이 발생할 우려가 있으므로, 상기 2상역 열처리 후 냉각속도는 10~50℃/초로 제한하는 것이 바람직하다.The quenched heat-treated steel sheet is reheated to 700 to 750 ° C., which is a two-phase zone of A c3 or less, and then maintained for 1.9T to 1.9 T + 50 minutes and cooled at a cooling rate of 10 to 50 ° C./sec. The purpose of the two-phase heat treatment is to make the austenite precipitated in the subsequent soaking process very thermally stable. For this purpose, after the appropriate amount of austenite is formed in advance during the two-phase heat treatment, it is transformed back into martensite. It is important. If the reheating temperature is less than 700 ° C., there is no two-phase reheating effect, and if the reheating temperature is more than 750 ° C., grains become coarse. Therefore, the reheating temperature is preferably limited to 700 to 750 ° C. In addition, if the holding time after reheating is less than 1.9T minutes, austenite is not sufficiently formed, and if the holding time exceeds 1.9T + 50 minutes, grains become coarse, and thus the holding time is limited to 1.9T to 1.9T + 50 minutes. It is preferable. In addition, if the cooling rate is less than 10 ° C / sec in water cooling after the two-phase heat treatment, austenite produced in the two-phase heat treatment is impossible to sufficiently convert to martensite, and if it exceeds 50 ° C / second, severe deformation may occur. Therefore, the cooling rate after the two-phase reverse heat treatment is preferably limited to 10 ~ 50 ℃ / sec.

[소려열처리][Sour heat treatment]

상기 2상역 소입열처리한 강판을 550~640℃에서 1.9T~1.9T+50분 동안 소려처리한 다음 10~50℃/초의 냉각속도로 냉각한다. 상기 소려열처리는 본 발명에 의해서 제공되는 강재의 재질을 최종적으로 결정하는 매우 중요한 공정이다. 일반적인 강재들에서 소려열처리의 온도 범위는 강도와 인성의 조합의 관점이 우선된다. 그러나, 본 발명에서는 이러한 강도와 인성의 조합의 관점과 함께 유효 결정립 미세화를 위한 안정한 오스테나이트의 석출이 우선적으로 고려되어야 한다. 이러한 2가지 조건을 모두 만족하기 위해서는 소려열처리 온도를 550~640℃로 제한하는 것이 바람직하다. 상기 소려열처리 온도가 550℃ 미만이면 오스테나이트가 석출되기 매우 어렵고, 640℃를 초과하게 되면 석출되는 오스테나이트가 열적으로 불안정할 뿐만 아니라 매우 큰 항복강도의 감소를 초래하기 때문이다. 또한, 상기 소려처리 시간이 1.9T분 미만이면 소려처리가 충분히 이루어지지 않고, 1.9T+50분을 초과하면 소려처리가 너무 지나쳐 강도가 감소할 수 있으므로, 상기 소려처리 시간은 1.9T~1.9T+50분으로 제한하는 것이 바람직하다. 상기 소려처리 후에 수냉을 하는이유는 소려취화를 억제하기 위함이다. 상기 소려취화는 소려처리 후에 냉각 중에 불순물 원소인 P가 구 오스테나이트 결정립계 또는 마르텐사이트 패킷(packet) 경계로 이동하여 편석됨으로써 인성이 낮아지는 현상이다. 소려처리 후에 빠르게 냉각하면 P가 구 오스테나이트 결정립계 또는 마르텐사이트 패킷(packet) 경계로 편석되는 것을 억제함으로써, 소려취화를 억제하여 P 함량이 높은 경우에도 우수한 저온인성을 얻을 수 있게 된다. 상기 소려처리 후 냉각속도가 10℃/초 미만이면 P의 편석에 의한 소려취화가 문제가 되고, 50℃/초를 초과하면 판변형이 생길 수 있으므로, 상기 냉각속도는 10~50℃/초로 제한하는 것이 바람직하다.The steel sheet subjected to the two-phase quenching heat treatment was subjected to annealing at 550 to 640 ° C for 1.9T to 1.9T + 50 minutes and then cooled at a cooling rate of 10 to 50 ° C / sec. The heat treatment is a very important process of finally determining the material of the steel provided by the present invention. In general steels, the temperature range of heat treatment is preferred in terms of the combination of strength and toughness. However, in the present invention, the precipitation of stable austenite for effective grain refinement should be considered first with the viewpoint of such a combination of strength and toughness. In order to satisfy both of these conditions, it is preferable to limit the sour heat treatment temperature to 550 to 640 ° C. This is because when the sorption heat treatment temperature is less than 550 ° C., austenite is very hard to precipitate, and when the sorption heat treatment temperature exceeds 640 ° C., the austenite precipitated is not only thermally unstable, but also causes a great decrease in yield strength. In addition, when the soaking treatment time is less than 1.9T minutes, the soaking treatment is not sufficiently performed. If the soaking treatment time is more than 1.9T + 50 minutes, the soaking treatment may be excessively excessive and the strength may be reduced. It is desirable to limit to +50 minutes. The reason for the water cooling after the soaking treatment is to suppress the soaking embrittlement. The blurring embrittlement is a phenomenon in which toughness is lowered as the impurity element P moves to the old austenite grain boundary or martensite packet boundary and segregates during cooling after the soaking treatment. Rapid cooling after the soaking treatment prevents P from segregating to the former austenite grain boundary or martensite packet boundary, thereby suppressing soot embrittlement and obtaining excellent low temperature toughness even when the P content is high. When the cooling rate after the soaking treatment is less than 10 ℃ / sec, the fragility embrittlement due to the segregation of P is a problem, if exceeding 50 ℃ / second plate deformation may occur, the cooling rate is limited to 10 ~ 50 ℃ / second It is desirable to.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예1]Example 1

본 실시예는 강성분에 따른 시편의 인장특성 및 저온인성을 알아보기 위한 것이다.This embodiment is to find the tensile properties and low temperature toughness of the specimen according to the steel component.

하기 표 1과 같이 조성되는 강 슬라브를 1200℃로 가열한 후에 20mm의 두께의 강판으로 열간압연하였다. 상기 압연된 강판을 900℃에서 오스테나이트화 열처리를 행한 다음 58분 유지 후, 하기 표 1의 냉각속도로 수냉을 실시하였다. 이후, 720℃에서 58분 동안 2상역 열처리를 실시한 다음 하기 표 1의 냉각속도로 수냉을 실시하였다. 이후, 마지막으로 580℃에서 68분 동안 소려열처리를 행한 후, 하기 표 1의 냉각속도로 수냉하였다. 상기와 같이 제조된 강판에 대해서 인장시험과 샤피(Charpy) 충격시험을 행하였으며, 그 결과는 하기 표 2와 같다.The steel slab, as shown in Table 1 below, was heated to 1200 ° C. and then hot rolled into a steel plate having a thickness of 20 mm. After the rolled steel sheet was subjected to austenitization heat treatment at 900 ° C. for 58 minutes, water cooling was performed at the cooling rate of Table 1 below. Thereafter, two-phase reverse heat treatment was performed at 720 ° C. for 58 minutes, and then water cooling was performed at the cooling rate of Table 1 below. Then, after finally performing a heat treatment for 68 minutes at 580 ℃, it was water-cooled at the cooling rate of Table 1 below. Tensile tests and Charpy impact tests were performed on the steel sheets prepared as described above, and the results are shown in Table 2 below.

상기 표 2에 나타난 바와 같이, 본 발명의 범위를 만족하는 발명강(A~L)을 이용하여 제조된 발명재(1~12)는 LNG 저장용기용 강재에서 요구되는 항복강도 590MPa, 인장강도 690MPa 및 -196℃에서의 충격인성 100J에 비하여 우수한 특성을 가짐을 알 수 있다.As shown in Table 2, the invention material (1 ~ 12) manufactured using the invention steel (A ~ L) satisfying the scope of the present invention is yield strength 590MPa, tensile strength 690MPa required for steel for LNG storage vessels And it can be seen that it has excellent properties compared to the impact toughness 100J at -196 ℃.

그러나, C 함량이 본 발명 범위보다 낮은 비교재(1)은 강도가 낮음으로써 LNG의 저장용기용 강재에서 요구하고 있는 항복강도 590Mpa와 인장강도 690Mpa에 미치지 못하며, C 함량이 본 발명 범위보다 높은 비교재(2)는 LNG의 저장용기용 강재에서 요구하고 있는 영하 196oC에서의 충격인성인 100J에 비해서 낮은 인성을 보일 뿐만 아니라 강도도 지나치게 높다.However, the comparative material (1) having a lower C content than the range of the present invention has a low strength, which is less than the yield strength of 590 Mpa and the tensile strength of 690 Mpa required for the LNG storage vessel steel, and the C content is higher than the present range. The ash (2) exhibits not only low toughness but also high strength compared to 100J, which is the impact toughness at minus 196 ° C required by LNG storage vessel steels.

또한, Mn 함량이 본 발명의 범위보다 낮은 비교재(3)은 강도와 인성이 모두 낮으며, Mn 함량이 본 발명의 범위보다 높은 비교재(4)는 강도는 지나치게 높으면서 인성은 100J 이하로 매우 낮다.In addition, the comparative material (3) having a Mn content lower than the range of the present invention has both low strength and toughness, and the comparative material (4) having a Mn content higher than the range of the present invention has very high strength and toughness of 100 J or less. low.

또한, Mo 함량이 본 발명의 범위보다 낮은 비교재(5)는 강도와 인성이 모두 낮으며, 0.5중량%를 초과한 비교재(6)은 더 이상의 재질 향상이 관찰되지 않았다.In addition, the comparative material 5 having a Mo content lower than the range of the present invention had both low strength and toughness, and no more material improvement was observed for the comparative material 6 exceeding 0.5 wt%.

또한, Ni 함량이 본 발명의 범위보다 낮은 비교재(7)은 강도가 LNG의 저장용기용 강재에서 요구하고 있는 수준과 거의 유사하지만 인성이 매우 낮았다.In addition, the comparative material (7) having a Ni content lower than the range of the present invention has a strength that is almost similar to that required by LNG storage vessel steels, but has a very low toughness.

또한, 불순물인 P 함량이 본 발명의 범위보다 높은 비교재(8)은 100J 이하의 매우 낮은 인성을 나타내고 있다.In addition, the comparative material 8 having an impurity P content higher than the range of the present invention exhibits very low toughness of 100 J or less.

마지막으로, H 값이 본 발명의 범위보다 낮은 비교재(9)는 인성이 100J 이하로 낮으며, H 값이 본 발명의 범위를 초과하는 비교재(10)은 강도는 크게 증가하나 인성은 오히려 크게 감소하여 100J 이하를 나타내고 있다.Finally, the comparative material 9 having a H value lower than the range of the present invention has a low toughness of 100 J or less, and the comparative material 10 having a H value exceeding the range of the present invention has a large increase in strength but rather toughness. It is greatly reduced to show 100 J or less.

[실시예2]Example 2

본 실시예는 열처리 조건에 따른 시편의 인장특성 및 저온인성을 알아보기 위한 것이다.This embodiment is to determine the tensile properties and low temperature toughness of the specimen according to the heat treatment conditions.

상기 표 1에서 본 발명의 성분 범위에 해당하는 발명강(A~B)를 1200℃로 가열한 후에 20mm의 두께의 강판으로 열간압연 하였다. 상기 압연된 강판을 하기 표 3의 열처리 조건으로 열처리를 행한 후에 인장시험과 샤피(Charpy) 충격시험을 행하였으며, 그 결과는 하기 표 4와 같다.In the above Table 1, the invention steel (A-B) corresponding to the component range of the present invention was heated to 1200 ° C., and then hot rolled into a steel plate having a thickness of 20 mm. Tensile test and Charpy impact test were performed after the rolled steel sheet was heat treated under the heat treatment conditions shown in Table 3 below, and the results are shown in Table 4 below.

상기 표 4에 나타난 바와 같이, 본 발명의 열처리 조건을 만족하는 발명재(13~24)는 LNG 저장용기용 강재에서 요구되는 항복강도 590MPa, 인장강도 690MPa 및 -196℃에서의 충격인성 100J에 비하여 우수한 특성을 가짐을 알 수 있다.As shown in Table 4, the invention materials 13 to 24 satisfying the heat treatment conditions of the present invention compared to the yield strength of 590MPa, tensile strength 690MPa and impact toughness 100J at -196 ℃ required for steel for LNG storage vessels It can be seen that it has excellent characteristics.

그러나, 본 발명이 열처리 조건을 만족하지 않는 비교재(11~30)은 LNG 저장용기용 강재에서 요구되는 인장특성 및 저온 충격인성을 갖지 못하는 것을 알 수 있다.However, it can be seen that the comparative materials 11 to 30 in which the present invention does not satisfy the heat treatment conditions do not have the tensile properties and low temperature impact toughness required in the steel for LNG storage containers.

상술한 바와 같이, 본 발명은 강의 성분과 열처리 조건을 조절하여 미세조직을 제어함으로써, 우수한 저온인성을 갖는 고장력 강판을 제공할 뿐만 아니라 Ni함량의 감소로 인해 제조비용도 저감되는 효과가 있다.As described above, the present invention controls the microstructure by controlling the steel components and heat treatment conditions, thereby providing a high tensile strength steel sheet having excellent low temperature toughness, as well as reducing the manufacturing cost due to the reduction of the Ni content.

Claims (1)

중량%로, C: 0.04~0.10%, Si: 0.05~0.5%, Mn: 0.4~1.0%, Mo: 0.1~0.5%, Ni: 4.0~6.0%, Al: 0.005~0.1%, P: 0.015% 이하, S: 0.005% 이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, 상기 C, Mn, Mo, Ni의 함량이 다음 관계,By weight%, C: 0.04-0.10%, Si: 0.05-0.5%, Mn: 0.4-1.0%, Mo: 0.1-0.5%, Ni: 4.0-6.0%, Al: 0.005-0.1%, P: 0.015% Or less, S: 0.005% or less, remaining Fe and other inevitable impurities, the content of the C, Mn, Mo, Ni is the following relationship, 0.7 ≤ [C(%) + 0.4Mn(%) + 0.8Mo(%) + 0.1Ni(%)] × (A/24) ≤ 1.50.7 ≤ [C (%) + 0.4Mn (%) + 0.8Mo (%) + 0.1Ni (%)] × (A / 24) ≤ 1.5 (단, A는 냉각속도(℃/초))(Where A is the cooling rate (° C / sec)) 를 만족하는 강을,To satisfy the river, 재가열한 다음 원하는 두께로 열간압연하는 단계,Reheat and then hot rolled to the desired thickness, 상기 열간압연한 강판을 Ac3~950℃로 재가열한 다음 1.9T(강판의 두께, mm)~1.9T+50분 동안 유지하고 10~50℃/초의 냉각속도로 냉각하는 단계,Reheating the hot rolled steel sheet to A c3 ~ 950 ℃ and then maintained for 1.9T (thickness of the steel sheet, mm) ~ 1.9T + 50 minutes and cooling at a cooling rate of 10 ~ 50 ℃ / seconds, 상기 수냉한 강판을 700~750℃로 재가열한 다음 1.9T~1.9T+50분 동안 유지하고 10~50℃/초의 냉각속도로 냉각하는 단계 및Reheating the water-cooled steel sheet to 700 ~ 750 ℃ and then maintained for 1.9T ~ 1.9T + 50 minutes and cooling at a cooling rate of 10 ~ 50 ℃ / second and 상기 수냉한 강판을 550~640℃에서 1.9T~1.9T+50분 동안 소려처리한 다음 10~50℃/초의 냉각속도로 냉각하는 것을 포함하여 이루어지는 저온인성이 우수한 고장력 강판의 제조방법.A method of producing a high tensile strength steel sheet having excellent low temperature toughness, which comprises cooling the water-cooled steel sheet at 550 to 640 ° C. for 1.9T to 1.9 T + 50 minutes and then cooling it at a cooling rate of 10 to 50 ° C./sec.
KR1020020081019A 2002-12-18 2002-12-18 Method for manufacturing high-tensile steel sheets having excellent low temperature toughness KR100957929B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020081019A KR100957929B1 (en) 2002-12-18 2002-12-18 Method for manufacturing high-tensile steel sheets having excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020081019A KR100957929B1 (en) 2002-12-18 2002-12-18 Method for manufacturing high-tensile steel sheets having excellent low temperature toughness

Publications (2)

Publication Number Publication Date
KR20040054198A true KR20040054198A (en) 2004-06-25
KR100957929B1 KR100957929B1 (en) 2010-05-13

Family

ID=37347309

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020081019A KR100957929B1 (en) 2002-12-18 2002-12-18 Method for manufacturing high-tensile steel sheets having excellent low temperature toughness

Country Status (1)

Country Link
KR (1) KR100957929B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723201B1 (en) * 2005-12-16 2007-05-29 주식회사 포스코 High strength and toughness steel having superior toughness in multi-pass welded region and method for manufacturing the same
KR101054601B1 (en) * 2007-09-11 2011-08-04 가부시키가이샤 고베 세이코쇼 High tensile steel sheet for high heat input welding with excellent low temperature toughness
KR101312211B1 (en) * 2010-07-09 2013-09-27 신닛테츠스미킨 카부시키카이샤 Ni-CONTAINING STEEL SHEET AND PROCESS FOR PRODUCING SAME
US9260771B2 (en) 2011-09-28 2016-02-16 Nippon Steel & Sumitomo Metal Corporation Ni-added steel plate and method of manufacturing the same
KR20190077194A (en) * 2017-12-24 2019-07-03 주식회사 포스코 Low temperature steel materal having excellent toughness in welded zone and method for manufacturing the same
KR102065276B1 (en) * 2018-10-26 2020-02-17 주식회사 포스코 Steel Plate For Pressure Vessel With Excellent Toughness and Elongation Resistance And Manufacturing Method Thereof
CN111373066A (en) * 2017-11-17 2020-07-03 株式会社Posco Ultralow temperature steel and manufacturing method thereof
CN111433383A (en) * 2017-11-17 2020-07-17 株式会社Posco Low-temperature steel having excellent impact toughness and method for producing same
WO2021125624A1 (en) * 2019-12-19 2021-06-24 주식회사 포스코 Steel material having excellent strain-aging impact toughness at extremely low temperatures and method of manufacturing same
WO2022124633A1 (en) * 2020-12-10 2022-06-16 주식회사 포스코 Steel plate for pressure vessel with excellent cryogenic toughness, and method of manufacturing same
EP4026927A4 (en) * 2019-09-03 2023-05-10 Posco Steel plate for pressure vessel with excellent cryogenic lateral expansion and manufacturing method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195242A (en) * 1987-09-24 1989-08-07 Kobe Steel Ltd Manufacture of high tension steel plate having superior toughness at low temperature with uniformity in thickness direction
JPH0670250B2 (en) * 1988-11-19 1994-09-07 住友金属工業株式会社 Manufacturing method of tempered high strength steel sheet with excellent toughness
JPH06179909A (en) * 1992-12-14 1994-06-28 Sumitomo Metal Ind Ltd Production of steel material for very low temperature use
JP4461589B2 (en) 2000-08-23 2010-05-12 Jfeスチール株式会社 Manufacturing method of high yield strength steel with low yield ratio 780N / mm2 excellent in weld crack sensitivity

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723201B1 (en) * 2005-12-16 2007-05-29 주식회사 포스코 High strength and toughness steel having superior toughness in multi-pass welded region and method for manufacturing the same
KR101054601B1 (en) * 2007-09-11 2011-08-04 가부시키가이샤 고베 세이코쇼 High tensile steel sheet for high heat input welding with excellent low temperature toughness
KR101312211B1 (en) * 2010-07-09 2013-09-27 신닛테츠스미킨 카부시키카이샤 Ni-CONTAINING STEEL SHEET AND PROCESS FOR PRODUCING SAME
US8882942B2 (en) 2010-07-09 2014-11-11 Nippon Steel & Sumitomo Metal Corporation Ni-added steel plate and method of manufacturing the same
US9260771B2 (en) 2011-09-28 2016-02-16 Nippon Steel & Sumitomo Metal Corporation Ni-added steel plate and method of manufacturing the same
CN111373066A (en) * 2017-11-17 2020-07-03 株式会社Posco Ultralow temperature steel and manufacturing method thereof
CN111433383A (en) * 2017-11-17 2020-07-17 株式会社Posco Low-temperature steel having excellent impact toughness and method for producing same
US11608549B2 (en) 2017-11-17 2023-03-21 Posco Co., Ltd Cryogenic steel plate and method for manufacturing same
CN111433383B (en) * 2017-11-17 2022-05-10 株式会社Posco Low-temperature steel having excellent impact toughness and method for producing same
US11591679B2 (en) 2017-12-24 2023-02-28 Posco Co., Ltd Low-temperature steel material having excellent toughness in welding portion thereof and manufacturing method therefor
KR20190077194A (en) * 2017-12-24 2019-07-03 주식회사 포스코 Low temperature steel materal having excellent toughness in welded zone and method for manufacturing the same
KR102065276B1 (en) * 2018-10-26 2020-02-17 주식회사 포스코 Steel Plate For Pressure Vessel With Excellent Toughness and Elongation Resistance And Manufacturing Method Thereof
EP4026927A4 (en) * 2019-09-03 2023-05-10 Posco Steel plate for pressure vessel with excellent cryogenic lateral expansion and manufacturing method therefor
WO2021125624A1 (en) * 2019-12-19 2021-06-24 주식회사 포스코 Steel material having excellent strain-aging impact toughness at extremely low temperatures and method of manufacturing same
WO2022124633A1 (en) * 2020-12-10 2022-06-16 주식회사 포스코 Steel plate for pressure vessel with excellent cryogenic toughness, and method of manufacturing same

Also Published As

Publication number Publication date
KR100957929B1 (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP4957556B2 (en) Cryogenic steel
KR20110060449A (en) Pressure vessel steel plate with excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
WO2011061812A1 (en) High-toughness abrasion-resistant steel and manufacturing method therefor
US11453933B2 (en) High-strength steel material having enhanced resistance to crack initiation and propagation at low temperature and method for manufacturing the same
KR20160078669A (en) Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same
JP4362318B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
CN112236539B (en) High-tensile thick steel plate for extremely low temperature and method for producing same
JP6492862B2 (en) Low temperature thick steel plate and method for producing the same
KR100957929B1 (en) Method for manufacturing high-tensile steel sheets having excellent low temperature toughness
JP5126780B2 (en) Cryogenic steel with excellent CTOD characteristics in heat affected zone
JP2024500851A (en) Extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method
KR102164110B1 (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JP7070814B1 (en) Thick steel plate and its manufacturing method
JP3684895B2 (en) Manufacturing method of high toughness martensitic stainless steel with excellent stress corrosion cracking resistance
JP3858647B2 (en) High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same
JP2004250766A (en) METHOD OF PRODUCING Ni-CONTAINING STEEL HAVING EXCELLENT STRENGTH/LOW TEMPERATURE TOUGHNESS
KR100328051B1 (en) A Method of manufacturing high strength steel sheet
JPS63210234A (en) Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding
JPH05195156A (en) High-manganese ultrahigh tensile strength steel excellent in toughness in heat affected zone and its production
KR20160075900A (en) Steel having excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
KR20160078573A (en) Steel having excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
KR20200129163A (en) Low alloy 3rd generation high-tech high strength steel and manufacturing method
JP7367896B1 (en) Steel plate and its manufacturing method
KR101435258B1 (en) Method for manufacturing of steel plate
KR100447925B1 (en) Method of manufacturing high strength steel with high toughness

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130503

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140507

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150506

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180508

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee