KR20040036973A - Apparatus for reducing face pressor of enclossed compressor - Google Patents
Apparatus for reducing face pressor of enclossed compressor Download PDFInfo
- Publication number
- KR20040036973A KR20040036973A KR1020020065574A KR20020065574A KR20040036973A KR 20040036973 A KR20040036973 A KR 20040036973A KR 1020020065574 A KR1020020065574 A KR 1020020065574A KR 20020065574 A KR20020065574 A KR 20020065574A KR 20040036973 A KR20040036973 A KR 20040036973A
- Authority
- KR
- South Korea
- Prior art keywords
- rotating shaft
- back pressure
- cylinder
- bearing
- casing
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0021—Systems for the equilibration of forces acting on the pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/356—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
- F04C18/3568—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member with axially movable vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/08—Rotary pistons
- F01C21/0809—Construction of vanes or vane holders
- F01C21/0818—Vane tracking; control therefor
- F01C21/0827—Vane tracking; control therefor by mechanical means
- F01C21/0845—Vane tracking; control therefor by mechanical means comprising elastic means, e.g. springs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/12—Casings; Cylinders; Cylinder heads; Fluid connections
- F04B39/127—Mounting of a cylinder block in a casing
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Rotary Pumps (AREA)
Abstract
Description
본 발명은 구획판을 이용하여 실린더의 내부공간을 복수 개의 압축실로 구획하는 밀폐형 압축기에 관한 것으로, 특히 회전축과 이에 대응하는 베어링플레이트 사이의 스러스트면에 대한 면압을 줄일 수 있는 밀폐형 압축기의 면압 저감 장치에 관한 것이다.The present invention relates to a hermetic compressor for dividing an inner space of a cylinder into a plurality of compression chambers by using a partition plate, and in particular, a surface pressure reduction device of a hermetic compressor that can reduce the surface pressure on a thrust surface between a rotating shaft and a corresponding bearing plate. It is about.
일반적으로 베인식 압축기는 회전체에 베인을 압접시켜 실린더의 내부공간을 흡입영역과 압축영역으로 구획한 상태에서 회전체를 회전하여 상기 흡입영역과 압축영역을 서로 연속적으로 바꾸면서 유체를 흡입 압축 토출하도록 하는 것이다.In general, the vane compressor presses a vane to a rotating body to rotate the rotating body in a state in which the inner space of the cylinder is divided into a suction area and a compression area so that the fluid is sucked and compressed while continuously changing the suction area and the compression area. It is.
도 1은 종래 베인식 밀폐형 압축기의 일례를 보인 종단면도이다.1 is a longitudinal sectional view showing an example of a conventional vane-type hermetic compressor.
이에 도시한 바와 같이 종래의 베인식 밀폐형 압축기는, 케이싱(1)의 내측 상부에 동력을 발생하도록 설치하는 전동기구부와, 전동기구부의 하부에 설치하여 유체를 흡입 압축 토출하도록 설치하는 압축기구부로 구성하고 있다.As shown in the drawing, a conventional vane-type hermetic compressor includes an electric mechanism part installed to generate power in the upper portion of the casing 1, and a compressor mechanism part installed in the lower part of the electric mechanism part to suction and discharge the fluid. Doing.
압축기구부는 냉매가스를 흡입 압축하기 위한 내부공간(V)을 구비하여 케이싱(1)의 하반부에 고정하는 실린더(2)와, 실린더(2)의 상면과 하면에 각각 체결하여 함께 실린더조립체를 형성하는 상부베어링플레이트(3A) 및 하부베어링플레이트(3B)와, 전동기구부에 결합하는 동시에 각각의 베어링플레이트(3A,3B)에 관통 결합하여 전동기구부의 동력을 압축기구부에 전달하는 회전축(4)과, 회전축(4)에 결합하거나 또는 일체로 성형하고 실린더(2)의 내부공간(V)을 제1 압축실(S1) 및 제2 압축실(S2)로 구획하기 위하여 상하 양 측면에 각각 절곡점을 가지도록 정현파 모양으로 형성하는 구획판(5)과, 구획판(5)의 양면에 각각 하단 및 상단을 접촉하여 회전축(4)의 회전시 각각의 압축실(S1)(S2)을 흡입영역 및 압축영역으로 구획하는 제1 베인(6A) 및 제2 베인(6B)과, 각 베인(6A)(6B)을 양단으로 함께 탄력 지지하는 제1 베인스프링(7A) 및 제2 베인스프링(7B)과, 상부베어링플레이트(3A)와 하부베어링플레이트(3B)의 외곽면에 설치하여 각 압축실(S1)(S2)에서 토출하는 압축가스를 토출 소음을 감쇠하는 상부머플러(8A) 및 하부머플러(8B)를 포함하고 있다.The compression mechanism has an internal space (V) for sucking and compressing refrigerant gas, and the cylinder (2) is fixed to the lower half of the casing (1) and the upper and lower surfaces of the cylinder (2), respectively, to form a cylinder assembly together. An upper bearing plate 3A and a lower bearing plate 3B, and a rotating shaft 4 which is coupled to the electric mechanism part and simultaneously coupled to the bearing plates 3A and 3B to transmit the power of the electric device part to the compressor sphere. Bent points on the upper and lower sides, respectively, in order to couple to or integrally form the rotating shaft 4 and partition the internal space V of the cylinder 2 into the first compression chamber S1 and the second compression chamber S2. The compression plate (S1) and the compression chamber (S2) in contact with the lower and upper ends of the partition plate (5) formed in a sinusoidal shape and the partition plate (5), respectively, so as to have a suction area. And first vanes 6A and second vanes 6B partitioned into compression regions, and each vane. (6A) and 6B are installed on the outer surfaces of the first vane spring 7A and the second vane spring 7B and the upper bearing plate 3A and the lower bearing plate 3B, which elastically support both ends together. The compressed gas discharged from the compression chambers S1 and S2 includes an upper muffler 8A and a lower muffler 8B for damping the discharge noise.
도 2에서와 같이 베어링플레이트(3A)(3B)는 실린더(2)의 상면과 하면을 복개하도록 원판 모양으로 형성하여 후술할 회전축(4)의 확장부(4b)를 축방향으로 미끄럼 지지하는 스러스트베어링부(3a)와, 그 중앙에 회전축(4)이 관통하는 축구멍을 형성하여 후술할 회전축(4)의 축부(4a)를 반경방향으로 회전 가능하게 지지하는 레이디얼베어링부(3b)로 이루어져 있다.As shown in FIG. 2, the bearing plates 3A and 3B are formed in a disc shape to cover the upper and lower surfaces of the cylinder 2, and thrust for slidably supporting the expansion portion 4b of the rotating shaft 4 to be described later in the axial direction. The bearing part 3a and the radial bearing part 3b which form the shaft hole through which the rotating shaft 4 penetrates in the center, and rotatably support the shaft part 4a of the rotating shaft 4 mentioned later to be radially rotated. consist of.
회전축(4)은 상하 베어링플레이트(3A)(3B)의 축구멍에 삽입하여 레이디얼베어링부(3b)에 반경방향으로 지지되는 축부(4a)와, 축부(4a)의 하반부에 반경방향으로 확장 형성하여 그 외주면에 상기 구획판(5)을 일체 또는 후조립으로 결합하고 상 하면이 상기한 상하 베어링플레이트(3A)(3B)의 스러스트베어링부(3a)에 얹혀 지지되는 확장부(4b)로 이루어져 있다.The rotary shaft 4 is inserted into the shaft hole of the upper and lower bearing plates 3A and 3B, and is formed in the radial direction in the lower half of the shaft portion 4a and the shaft portion 4a which is radially supported by the radial bearing portion 3b. The partition plate 5 is integrally or post-assembled on its outer circumferential surface, and the upper and lower surfaces are made up of an extension part 4b supported on the thrust bearing part 3a of the upper and lower bearing plates 3A and 3B. have.
확장부(4b)는 그 중심이 축부(4a)의 중심과 일치하는, 즉 평면투영시 축부(4a)와 동심상에 형성하고 있다.The expanded portion 4b is formed concentric with the central portion of the shaft portion 4a, that is, at the time of planar projection.
도면중 미설명 부호인 L은 스러스트베어링면의 폭, r1은 레이디얼베어링면, SP는 흡입관이다.In the drawings, reference numeral L denotes a width of the thrust bearing surface, r1 denotes a radial bearing surface, and SP denotes a suction pipe.
상기와 같은 종래 베인식 압축기는 다음과 같이 동작한다.The conventional vane compressor as described above operates as follows.
즉, 전동기구부에 전원을 인가하여 회전축(4)이 회전하면, 회전축(4)과 함께 구획판(5)이 어느 한 방향으로 회전하고, 구획판(5)의 상하 양 측면에 각각 접촉한 베인(6A,6B)이 구획판(5)의 높낮이를 따라 상하 서로 반대방향으로 왕복하면서 실린더(2)의 제1 압축실(S1)과 제2 압축실(S2)의 용적을 가변하며, 이와 함께 상기한 실린더(2)의 일 측에 구비한 흡입관(SP)을 통해 새로운 냉매가스가 제1 압축실(S1)과 제2 압축실(S2)로 연속으로 흡입하고, 이 냉매가스는 구획판(5)의 회전과 함께 점차 압축되었다가 구획판(5)의 양쪽 볼록곡면부가 토출개시시점에 도달하는 순간에서 각각의 토출구(미부호)를 통해 번갈아 가면서 토출된다.That is, when the rotary shaft 4 is rotated by applying power to the electric drive unit, the partition plate 5 rotates in one direction together with the rotary shaft 4, and vanes are in contact with the upper and lower sides of the partition plate 5, respectively. 6A and 6B reciprocate in the opposite direction up and down along the height of the partition plate 5, varying the volume of the first compression chamber S1 and the second compression chamber S2 of the cylinder 2, together with New refrigerant gas is continuously sucked into the first compression chamber S1 and the second compression chamber S2 through the suction pipe SP provided at one side of the cylinder 2, and the refrigerant gas is divided into a partition plate ( It is gradually compressed with the rotation of 5), and is discharged alternately through each discharge port (unsigned) at the moment when both convex curved portions of the partition plate 5 reach the discharge start point.
이때, 회전축(4)의 축부(4a)는 상하 베어링플레이트(3A)(3B)의 축구멍에 대응하여 반경방향으로 지지되는 한편 확장부(4b)는 상하 베어링플레이트(3A)(3B)의 평면에 대응하여 축방향으로 지지되면서 안정적으로 회전을 지속하는 것이었다.At this time, the shaft portion 4a of the rotating shaft 4 is radially supported corresponding to the shaft hole of the upper and lower bearing plates 3A and 3B, while the expansion portion 4b is in the plane of the upper and lower bearing plates 3A and 3B. Correspondingly, it was supported in the axial direction and continued to rotate stably.
그러나, 상기와 같은 종래 베인식 압축기에 있어서는, 회전축(4)이 회전하면서 축부(4a)와 확장부(4b)가 상하 베어링플레이트(3A)(3B)의 레이디얼베어링부(3b)(3b)와 스러스트베어링부(3a)(3a)에 각각 하중을 가하고 이 하중에 대응하여 상기한 레이디얼베어링부(3b)(3b)와 스러스트베어링부(3a)(3a)에는 각각 면압이 발생하게 되나, 이와 같이 회전축(4)의 축부(4a)와 확장부(4b)를 동심지게 형성하는 압축기의 경우에는 도 2와 도 3에서와 같이 그렇지 않은 다른압축기에 비해 회전축(4)의 비틀림 모멘트가 작아지면서 레이디얼베어링부(3b)에 가하는 하중은 작아지는 반면 스러스트베어링부(3a)에 집중하중이 가해져 결국 상하 베어링플레이트(3A)(3B)의 스러스트베어링부(3a)와 이에 대응하는 회전축(4)의 확장부(4b)에 심한 마모가 발생할 우려가 있었다.However, in the conventional vane-type compressor as described above, the shaft portion 4a and the expansion portion 4b are radial bearing portions 3b and 3b of the upper and lower bearing plates 3A and 3B while the rotating shaft 4 rotates. Loads are applied to the thrust bearing parts 3a and 3a, respectively, and the radial pressures are generated on the radial bearing parts 3b and 3b and the thrust bearing parts 3a and 3a in response to the loads. As described above, in the case of the compressor which concentrically forms the shaft portion 4a and the expansion portion 4b of the rotating shaft 4, the torsional moment of the rotating shaft 4 is smaller than that of other compressors as shown in FIGS. While the load applied to the radial bearing portion 3b decreases, the concentrated load is applied to the thrust bearing portion 3a, and thus the thrust bearing portion 3a of the upper and lower bearing plates 3A and 3B and the corresponding rotating shaft 4 There was a fear that severe wear occurs in the extension portion 4b.
또, 스러스트베어링부(3a)에서의 면압을 줄이기 위하여 상기한 스러스트베어링면(r2)의 면적을 넓힐 경우에는 그만큼 마찰손실이 증가하여 압축기의 효율이 저하하는 문제점이 있었다.In addition, when the area of the thrust bearing surface r2 is increased in order to reduce the surface pressure in the thrust bearing portion 3a, there is a problem in that the frictional loss increases and the efficiency of the compressor decreases.
본 발명은 상기와 같은 종래 밀폐형 압축기의 문제점을 감안하여 안출한 것으로, 회전축의 축부와 확장부를 동심상에 형성하는 경우 이 확장부와 스러스트베어링부에서 발생하는 면압을 줄이면서도 마찰손실의 상승을 방지할 수 있는 밀폐형 압축기의 면압 저감 장치를 제공하려는데 본 발명의 목적이 있다.The present invention has been made in view of the above problems of the conventional hermetic compressor, and when the shaft portion and the expansion portion of the rotating shaft are formed concentrically, the increase in friction loss while reducing the surface pressure generated in the expansion portion and the thrust bearing portion is prevented. It is an object of the present invention to provide a surface pressure reduction device of a hermetic compressor.
도 1은 종래 베인식 압축기의 압축기구부를 보인 종단면도,1 is a longitudinal sectional view showing a compression mechanism of a conventional vane compressor;
도 2 및 도 3은 종래 베어링플레이트와 회전축 간 스러스트면에 대한 하중과 면압과 하중의 관계를 보인 종단면도 및 개략도,2 and 3 are a longitudinal sectional view and a schematic view showing the relationship between the load, the surface pressure and the load on the thrust surface between the bearing plate and the rotating shaft,
도 4는 본 발명 베인식 압축기의 압축기구부를 분해하여 보인 사시도,Figure 4 is a perspective view showing an exploded compression mechanism of the vane compressor of the present invention,
도 5는 본 발명 베인식 압축기에서 베어링플레이트와 회전축 간 스러스트면에 대한 하중과 면압의 관계를 보인 종단면도,Figure 5 is a longitudinal cross-sectional view showing the relationship between the load and surface pressure on the thrust surface between the bearing plate and the rotating shaft in the vane compressor of the present invention,
도 6와 도 7은 베어링플레이트에 대한 각각의 저면도,6 and 7 are respective bottom views of the bearing plate,
도 8은 본 발명 베인식 압축기에서 베어링플레이트와 회전축 간 스러스트면에 대한 하중과 면압의 관계를 보인 개략도,8 is a schematic view showing the relationship between the load and the surface pressure on the thrust surface between the bearing plate and the rotating shaft in the vane compressor of the present invention,
도 9는 본 발명 압축기구부에 대한 변형예를 보인 종단면도.9 is a longitudinal sectional view showing a modification to the compression mechanism of the present invention.
** 도면의 주요 부분에 대한 부호의 설명 **** Description of symbols for the main parts of the drawing **
10,20 : 상부 및 하부 베어링플레이트 11,21 : 스러스트베어링부10,20: Upper and lower bearing plate 11,21: Thrust bearing part
11a,21a,32a : 배압포켓 11b,21b : 배압유로11a, 21a, 32a: back pressure pocket 11b, 21b: back pressure flow path
12,22 : 레이디얼베어링부 30 : 회전축12,22: radial bearing part 30: rotating shaft
31 : 축부 32 : 확장부31: shaft portion 32: expansion portion
본 발명의 목적을 달성하기 위하여, 밀폐된 케이싱과, 케이싱의 내부에 고정 설치하고 그 내부에 압축실을 이루는 내부공간을 가지는 실린더와, 실린더의 내부공간을 관통하고 구동모터의 회전자에 결합하여 함께 회전하는 회전축과, 실린더에 결합하여 상기 회전축을 축방향과 반경방향으로 지지하되 축방향을 지지하는 스러스트베어링면에는 압축가스를 수용할 수 있도록 소정의 체적을 가지는 적어도 한 개 이상의 배압포켓을 음형지게 형성하고 이 배압포켓을 케이싱의 내부와 연통하도록 하는 적어도 한 개 이상의 배압유로를 관통 형성하는 상하 베어링플레이트와,회전축에 결합하여 실린더의 내부공간을 적어도 두 개 이상의 압축실로 구획하면서 각 압축실의 유체를 이동시키는 구획판과, 각각의 베어링플레이트에 상하로 이동 가능하게 결합하는 동시에 구획판에 얹힌 상태에서 미끄러지면서 각 압축실내 유체를 차단하여 압축한 후 케이싱의 내부로 토출되도록 하는 적어도 한 개의 베인과, 베인을 탄력적으로 지지하여 그 베인이 구획판의 곡면을 따라 상하 왕복운동을 하도록 하는 베인스프링을 포함한 밀폐형 압축기의 면압 저감 장치를 제공한다.In order to achieve the object of the present invention, a cylinder having a sealed casing, the inner space fixedly installed in the casing and forming a compression chamber therein, and through the inner space of the cylinder and coupled to the rotor of the drive motor At least one back pressure pocket having a predetermined volume so as to receive compressed gas on the rotating shaft and the thrust bearing surface which is coupled to the cylinder to support the rotating shaft in the axial direction and the radial direction to support the axial direction. An upper and lower bearing plate which is formed in a fork and penetrates at least one back pressure passage for communicating the back pressure pocket with the inside of the casing, and the inner space of the cylinder is divided into at least two compression chambers by being coupled to the rotating shaft, Partition plate for moving the fluid, each bearing plate is coupled to move up and down At the same time, the slide slides on the partition plate, blocks and compresses the fluid in each compression chamber, compresses and discharges them into the casing, and elastically supports the vanes so that the vanes move up and down along the curved surface of the partition plate. Provided is a surface pressure reduction device for a hermetic compressor including a vane spring for exercising.
또, 상기 배압포켓을 회전축의 스러스트베어링면에 형성하고, 상기 배압유로는 각 베어링플레이트를 관통 형성하여서 된 것을 특징으로 하는 밀폐형 압축기의 면압 저감 장치를 제공한다.The back pressure pocket is formed on the thrust bearing surface of the rotating shaft, and the back pressure flow path is provided by penetrating the respective bearing plates.
이하, 본 발명에 의한 밀폐형 압축기의 면압 저감 장치를 첨부도면에 도시한 일실시예에 의거하여 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the surface pressure reduction apparatus of the hermetic compressor by this invention is demonstrated in detail based on one Example shown in an accompanying drawing.
도 4는 본 발명 베인식 압축기의 압축기구부를 분해하여 보인 사시도이고, 도 5는 본 발명 베인식 압축기에서 베어링플레이트와 회전축 간 스러스트면에 대한 하중과 면압의 관계를 보인 종단면도이며, 도 6와 도 7은 베어링플레이트에 대한 각각의 저면도이고, 도 8은 본 발명 베인식 압축기에서 베어링플레이트와 회전축 간 스러스트면에 대한 하중과 면압의 관계를 보인 개략도이다.Figure 4 is a perspective view showing an exploded compression mechanism of the vane compressor of the present invention, Figure 5 is a longitudinal cross-sectional view showing the relationship between the load and the surface pressure on the thrust surface between the bearing plate and the rotating shaft in the vane compressor of the present invention, Figure 7 is a respective bottom view of the bearing plate, Figure 8 is a schematic diagram showing the relationship between the load and the surface pressure on the thrust surface between the bearing plate and the rotating shaft in the vane compressor of the present invention.
이에 도시한 바와 같이 본 발명에 의한 베인식 압축기의 압축기구부는, 냉매가스를 흡입 압축하기 위한 내부공간(도 1에 도시)(V)을 구비하여 케이싱(도 1에 도시)(1)의 하반부에 고정하는 실린더(2)와, 실린더(2)의 상면과 하면에 각각 체결하여 함께 실린더조립체를 형성하고 각각의 스러스트베어링면(r2)(r2)에배압포켓(11a)(21a)을 형성하는 상부베어링플레이트(10) 및 하부베어링플레이트(20)와, 전동기구부에 결합하는 동시에 각각의 베어링플레이트(10,20)에 관통 결합하여 전동기구부의 동력을 압축기구부에 전달하는 회전축(30)과, 회전축(30)에 결합하거나 또는 일체로 성형하고 실린더(2)의 내부공간(V)을 제1 압축실(S1) 및 제2 압축실(S2)로 구획하기 위하여 상하 양 측면에 각각 절곡점을 가지도록 정현파 모양으로 형성하는 구획판(5)과, 구획판(5)의 양면에 각각 하단 및 상단을 접촉하여 회전축(30)의 회전시 각각의 압축실(S1)(S2)을 흡입영역 및 압축영역으로 구획하는 제1 베인(6A) 및 제2 베인(6B)을 포함한다.As shown therein, the compression mechanism of the vane compressor according to the present invention includes an inner space (shown in FIG. 1) V for suction-compressing refrigerant gas, and a lower half of the casing (shown in FIG. 1) 1. A cylinder assembly which is fastened to the upper and lower surfaces of the cylinder 2 fixed to the upper and lower surfaces of the cylinder 2, respectively, and forms back pressure pockets 11a and 21a on the respective thrust bearing surfaces r2 and r2. An upper bearing plate 10 and a lower bearing plate 20, a rotating shaft 30 which is coupled to the electric drive part and simultaneously coupled to the bearing plates 10 and 20 to transmit the power of the electric drive part to the compression mechanism, Bending points are formed on the upper and lower sides, respectively, to be coupled to or integrally formed on the rotating shaft 30 and partition the internal space V of the cylinder 2 into the first compression chamber S1 and the second compression chamber S2. On both sides of the partition plate 5 and the partition plate 5 formed in a sine wave shape so as to have To contact the respective lower and upper end comprises a respective compression chamber (S1) the first vanes (6A) and second vanes (6B) for partitioning the suction region and a compression region for (S2) during the rotation of the rotary shaft 30.
베어링플레이트(10)(20)는 실린더(2)의 상면과 하면을 복개하도록 원판 모양으로 형성하여 상기한 회전축(30)을 축방향으로 미끄럼 지지하는 스러스트베어링부(11)(21)와, 그 중앙에 회전축(30)이 관통하는 축구멍을 형성하여 상기한 회전축(30)을 반경방향으로 회전 가능하게 지지하는 레이디얼베어링부(12)(22)로 이루어진다.The bearing plates 10 and 20 are formed in a disc shape so as to cover the upper and lower surfaces of the cylinder 2, and thrust bearing portions 11 and 21 for sliding the shaft 30 in the axial direction. It consists of a radial bearing part 12 (22) which forms a shaft hole through which the rotating shaft 30 penetrates in the center thereof and rotatably supports the rotating shaft 30 in the radial direction.
스러스트베어링부(11)(21)의 스러스트베어링면(r2)에는 그 베어링면(r2)의 면적을 동일 직경 대비 일정 정도 축소할 수 있도록 소정의 폭과 깊이를 가지는 배압포켓(11a)(12a)을 형성하고, 이 배압포켓(11a)(21a)을 케이싱(1)의 내부와 연통하도록 하는 적어도 한 개 이상의 배압유로(11b)(21b)를 축방향으로 관통 형성한다.The thrust bearing surface r2 of the thrust bearing parts 11 and 21 has back pressure pockets 11a and 12a having a predetermined width and depth so that the area of the bearing surface r2 can be reduced to a certain extent with respect to the same diameter. And at least one back pressure passage (11b) (21b) through which the back pressure pockets (11a) (21a) communicate with the inside of the casing (1).
배압포켓(11a)(12a)은 도 5 및 도 6에서와 같이 평면 투영시 환형으로 형성하거나 원호형으로 형성할 수 있다.The back pressure pockets 11a and 12a may be formed in an annular shape or an arc shape in planar projection as shown in FIGS. 5 and 6.
배압유로(11b)(21b)는 배압포켓(11a)(21a)의 횡방향 면적 보다는 작게 형성하고, 상하 동일한 직경으로 형성하는 것이 가공상 용이하나 경우에 따라서는 배압포켓(11a)(21a)으로 케이싱(1) 내의 토출가스가 원활하게 유입할 수 있도록 상기한 배압포켓(11a)(21a)쪽으로 확장 형성할 수도 있다.The back pressure flow passages 11b and 21b are formed smaller than the lateral area of the back pressure pockets 11a and 21a, and are easily formed to have the same diameter up and down, but in some cases, the back pressure pockets 11a and 21a may be used. The discharge gas in the casing 1 may be extended toward the back pressure pockets 11a and 21a so as to smoothly flow therein.
회전축(30)은 상하부 베어링플레이트(10)(20)의 축구멍에 삽입하여 레이디얼베어링부(12)(22)에 반경방향으로 지지되는 축부(31)와, 축부(31)의 하반부에 반경방향으로 확장 형성하여 그 외주면에 상기 구획판(5)을 일체 또는 후조립으로 결합하고 상 하면이 상기한 상하 베어링플레이트(10)(20)의 스러스트베어링부(11)(21)에 얹혀 지지되는 확장부(32)로 이루어진다.The rotating shaft 30 is inserted into the shaft hole of the upper and lower bearing plates 10 and 20 to support the radial bearing portion 12 and 22 in the radial direction, and the radial portion in the lower half of the shaft portion 31. Expansion to form an outer peripheral surface and the partition plate 5 is integrally or post-assembled and the upper and lower surfaces are mounted on and supported on the thrust bearing parts 11 and 21 of the upper and lower bearing plates 10 and 20. It consists of a part (32).
확장부(32)는 그 중심이 축부(31)의 중심과 일치하도록 평면투영시 축부(31)와 동심상에 형성한다.The extension part 32 is formed concentrically with the shaft part 31 in planar projection so that the center thereof may coincide with the center of the shaft part 31.
또, 도 9에서와 같이 확장부(32)의 상하 스러스트베어링면(r2)에 상기한 배압포켓(32a)(32a)을 형성할 수도 있다. 이 경우에도 배압포켓(32a)(32a)은 환형 또는 원호형으로 형성하고, 배압유로(11b)(21b)는 전술한 바와 같이 상하부 베어링플레이트(10)(20)의 스러스트베어링부(11)(21)에 동일한 형상으로 각각 형성한다.9, the above-mentioned back pressure pockets 32a and 32a may be formed on the upper and lower thrust bearing surfaces r2 of the expansion part 32. As shown in FIG. Also in this case, the back pressure pockets 32a and 32a are formed in an annular or circular arc shape, and the back pressure flow paths 11b and 21b are the thrust bearing portions 11 and the top and bottom bearing plates 10 and 20 as described above. 21) in the same shape.
도면중 종래와 동일한 부분에 대하여는 동일한 부호를 부여하였다.In the drawings, the same reference numerals are given to the same parts as in the prior art.
도면중 미설명 부호인 13 및 23은 베인슬릿, 14 및 24는 볼트구멍, r1은 레이디얼베어링면이다.In the drawings, reference numerals 13 and 23 are vaneslit, 14 and 24 are bolt holes, and r1 is a radial bearing surface.
상기와 같은 본 발명 밀폐형 압축기의 작용 효과는 다음과 같다.Effects of the present invention hermetic compressor as described above are as follows.
즉, 전동기구부에 전원을 인가하여 회전축(30)이 회전하면, 이 회전축(30)에결합한 구획판(5)이 실린더(2)의 내부공간(V)에서 회전하면서 제1 압축실(S1) 및 제2 압축실(S2)로 냉매가스를 번갈아 흡입하고, 이 냉매가스는 구획판(5)을 따라 이동하다가 각각의 베인(6A)(6B)에 의해 차단되어 압축되다가 각 압축실(S1)(S2)의 토출구(미도시)를 통해 번갈아 토출된다.That is, when the rotary shaft 30 is rotated by applying power to the electric mechanism, the partition plate 5 coupled to the rotary shaft 30 rotates in the internal space V of the cylinder 2, and thus the first compression chamber S1. And alternately suck the refrigerant gas into the second compression chamber (S2), and the refrigerant gas moves along the partition plate (5) and is blocked by each vane (6A) 6B to be compressed and then compressed into each compression chamber (S1). It is alternately discharged through the discharge port (not shown) of (S2).
여기서, 회전축(30)은 실린더(2)의 상하 양측에 결합한 베어링플레이트(10)(20)의 축구멍에 삽입하여 회전하는데, 이때 회전축(30)의 축부(31)는 각 베어링플레이트(10)(20)의 레이디얼베어링부(12)(22)에 지지되는 반면 확장부(32)의 상하 양면은 각 베어링플레이트(10)(20)의 스러스트베어링부(11)(21)에 지지되어 실린더(2)에 대한 수직상태를 유지한다.Here, the rotating shaft 30 is inserted into the shaft hole of the bearing plate 10, 20 coupled to the upper and lower sides of the cylinder 2, and rotates, wherein the shaft portion 31 of the rotating shaft 30 is each bearing plate 10 ( 20 is supported by the radial bearing parts 12 and 22, while the upper and lower sides of the extension part 32 are supported by the thrust bearing parts 11 and 21 of the respective bearing plates 10 and 20 to support the cylinder ( Keep perpendicular to 2).
이러한 밀폐형 압축기는 회전축(30)의 축부(31)와 확장부(32)가 동심상에 형성됨에 따라 회전축(30)의 비틀림 모멘트는 이론적으로는 거의 발생하지 않게 되어 레이디얼베어링부(12)(22)에 비해 스러스트베어링부(11)(21)에 집중하중을 가하게 되고 이로 인해 각 베어링플레이트(10)(20)의 스러스트베어링부(11)(21)에서 면압이 크게 상승하게 되나, 도 8에서와 같이 각 스러스트베어링부(11)(21)의 베어링면(r2)이나 이에 대응하는 회전축(30)의 확장부(32)의 상하 스러스트베어링면(r2)에 배압포켓(11a)(21a)을 형성함에 따라 케이싱(1)의 내부로 토출되었던 압축가스의 일부가 상기한 배압유로(11b)(21b)를 통해 배압포켓(11a)(21a)으로 유입하여 새로운 면압을 생성하고, 이 면압에 의해 회전축(30)의 확장부(32)가 각 베어링플레이트(10)(20)의 스러스트베어링부(11)(21)에 가하는 하중을 일정 정도 상쇄시킬 수 있어 동일 직경 대비 스러스트베어링면(r2)의 면적을 작게 형성하더라도회전축(30)의 하중에 대응하는 총면압은 감소하지 않아 회전축의 축방향을 효과적으로 지지할 수 있다.In the hermetic compressor, as the shaft portion 31 and the expansion portion 32 of the rotating shaft 30 are formed concentrically, the torsional moment of the rotating shaft 30 is theoretically generated so that the radial bearing portion 12 ( Concentrated load is applied to the thrust bearing parts 11 and 21 as compared to 22, which causes a large increase in the surface pressure in the thrust bearing parts 11 and 21 of each bearing plate 10 and 20, but FIG. Back pressure pockets 11a and 21a on the bearing surface r2 of each thrust bearing part 11 and 21 or the upper and lower thrust bearing surface r2 of the expansion part 32 of the corresponding rotation shaft 30 as shown in FIG. As a result, a portion of the compressed gas discharged into the casing 1 flows into the back pressure pockets 11a and 21a through the back pressure passages 11b and 21b to generate a new surface pressure. By the expansion part 32 of the rotating shaft 30 to the thrust bearing parts 11 and 21 of each bearing plate 10 and 20 by To some extent, it is possible to compensate not reduce the total surface pressure to be formed reduce the area of the same diameter compared to the thrust bearing surface (r2) corresponding to the load of the rotary shaft 30 can be supported in the axial direction of the rotary shaft effectively.
또, 상기와 같이 스러스트베어링면(r2)의 폭길이(L)이 배압포켓(11a)(21a)의 폭길이(L1) 만큼 줄어 그만큼 절대면적이 작아짐에 따라 마찰손실이 그만큼 작아져 모터와 압축기의 효율을 높일 수 있다.In addition, as described above, the width length L of the thrust bearing surface r2 is reduced by the width length L1 of the back pressure pockets 11a and 21a, and as the absolute area becomes smaller, the friction loss becomes smaller so that the motor and the compressor are smaller. Can increase the efficiency.
한편, 배압포켓(32a)(32a)을 회전축(30)의 확장부(32)에 형성하는 경우에도 그 작용 효과는 전술한 일례와 동일하다.On the other hand, even in the case where the back pressure pockets 32a and 32a are formed in the extension portion 32 of the rotation shaft 30, the effects thereof are the same as in the above-described example.
본 발명에 의한 밀폐형 압축기의 면압 저감 장치는, 회전축의 축방향을 지지하는 각 베어링플레이트의 스러스트베어링면이나 이에 대응하는 회전축의 스러스트베어링면 중에서 적어도 어느 한 면에는 배압포켓을 적어도 한 개 이상 음형지게 형성하고 베어링플레이트에 배압유로를 관통 형성함으로써, 베어링플레이트의 스러스트베어링면이나 회전축의 스러스트베어링면에 작용하는 면압을 줄여 두 부재의 마모를 방지할 수 있다. 또, 베어링면의 절대면적을 작게 하여 마찰손실을 줄이고 이를 통해 모터와 압축기의 효율을 높일 수 있다.The surface pressure reduction device of the hermetic compressor according to the present invention includes at least one back pressure pocket on at least one of the thrust bearing surfaces of the respective bearing plates supporting the axial direction of the rotating shaft or the thrust bearing surfaces of the corresponding rotating shaft. By forming and penetrating the back pressure passage in the bearing plate, the surface pressure acting on the thrust bearing surface of the bearing plate or the thrust bearing surface of the rotating shaft can be reduced to prevent wear of the two members. In addition, by reducing the absolute area of the bearing surface to reduce the friction loss it can increase the efficiency of the motor and compressor.
Claims (6)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020065574A KR20040036973A (en) | 2002-10-25 | 2002-10-25 | Apparatus for reducing face pressor of enclossed compressor |
AU2003250560A AU2003250560A1 (en) | 2002-10-25 | 2003-07-23 | Compressor |
PCT/KR2003/001469 WO2004038225A1 (en) | 2002-10-25 | 2003-07-23 | Compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020065574A KR20040036973A (en) | 2002-10-25 | 2002-10-25 | Apparatus for reducing face pressor of enclossed compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20040036973A true KR20040036973A (en) | 2004-05-04 |
Family
ID=32171527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020065574A KR20040036973A (en) | 2002-10-25 | 2002-10-25 | Apparatus for reducing face pressor of enclossed compressor |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20040036973A (en) |
AU (1) | AU2003250560A1 (en) |
WO (1) | WO2004038225A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040036978A (en) * | 2002-10-25 | 2004-05-04 | 엘지전자 주식회사 | Apparatus for reducing face pressor of enclossed compressor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104454530B (en) * | 2014-12-04 | 2016-06-29 | 广东美芝制冷设备有限公司 | Compressing mechanism and there is its rotary compressor for rotary compressor |
CN104454529B (en) * | 2014-12-04 | 2017-02-22 | 广东美芝制冷设备有限公司 | Compression mechanism for rotary compressor and rotary compressor with same |
CN112727736B (en) * | 2020-12-29 | 2022-02-11 | 珠海格力电器股份有限公司 | Pump body assembly and fluid machine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1089266A (en) * | 1996-09-17 | 1998-04-07 | Toyoda Mach Works Ltd | Vane pump |
JP2001140772A (en) * | 1999-08-27 | 2001-05-22 | Bosch Braking Systems Co Ltd | Variable displacement pump |
KR20010105816A (en) * | 2000-05-18 | 2001-11-29 | 구자홍 | Structure for reducing noise in compressor |
KR20010105814A (en) * | 2000-05-18 | 2001-11-29 | 구자홍 | Compressor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3146963B2 (en) * | 1995-12-27 | 2001-03-19 | ダイキン工業株式会社 | Scroll type fluid machine |
US6422845B1 (en) * | 2000-12-01 | 2002-07-23 | Delphi Technologies, Inc. | Rotary hydraulic vane pump with improved undervane porting |
JP2002174190A (en) * | 2000-12-05 | 2002-06-21 | Seiko Instruments Inc | Gas compressor |
-
2002
- 2002-10-25 KR KR1020020065574A patent/KR20040036973A/en not_active Application Discontinuation
-
2003
- 2003-07-23 WO PCT/KR2003/001469 patent/WO2004038225A1/en not_active Application Discontinuation
- 2003-07-23 AU AU2003250560A patent/AU2003250560A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1089266A (en) * | 1996-09-17 | 1998-04-07 | Toyoda Mach Works Ltd | Vane pump |
JP2001140772A (en) * | 1999-08-27 | 2001-05-22 | Bosch Braking Systems Co Ltd | Variable displacement pump |
KR20010105816A (en) * | 2000-05-18 | 2001-11-29 | 구자홍 | Structure for reducing noise in compressor |
KR20010105814A (en) * | 2000-05-18 | 2001-11-29 | 구자홍 | Compressor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040036978A (en) * | 2002-10-25 | 2004-05-04 | 엘지전자 주식회사 | Apparatus for reducing face pressor of enclossed compressor |
Also Published As
Publication number | Publication date |
---|---|
AU2003250560A1 (en) | 2004-05-13 |
WO2004038225A1 (en) | 2004-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8177522B2 (en) | Mode changing apparatus for a scroll compressor | |
US20030108438A1 (en) | Compressor | |
KR20030041576A (en) | Oil leakage reducing apparatus for enclosed compressor | |
KR20130051346A (en) | Scroll compressor | |
KR20130051343A (en) | Scroll compressor | |
KR20180080885A (en) | Rotary compressor | |
KR20010035687A (en) | Compressor | |
KR20040036973A (en) | Apparatus for reducing face pressor of enclossed compressor | |
US8485805B2 (en) | Rotary compressor | |
JPH10141271A (en) | Rotary compressor | |
KR20040036978A (en) | Apparatus for reducing face pressor of enclossed compressor | |
KR100531833B1 (en) | Capacity changeable apparatus for scroll compressor | |
KR100480125B1 (en) | Suction gas guide apparatus for enclossed compressor | |
KR20040040190A (en) | Apparatus for reducing thrust face friction of enclossed compressor | |
KR100595581B1 (en) | Modulation apparatus for vain compressor | |
KR20040040189A (en) | Apparatus for reducing thrust face friction of enclossed compressor | |
KR20010097678A (en) | Structure for reducing gas leakage enclosed compressor | |
KR100844154B1 (en) | Rotary compressor | |
KR20040038332A (en) | Apparatus for reducing thrust face friction of enclossed compressor | |
KR100434079B1 (en) | Structure for reducing frictionloss of enclosed compressor | |
KR20040036975A (en) | Asymmetry volume type enclossed compressor | |
KR20040000584A (en) | Structure for reducing suctionloss of enclosed compressor | |
KR100324770B1 (en) | Stroke volume magnification structure for enclosed compressor | |
JP2003286978A (en) | Helical blade pump | |
KR20030041578A (en) | Swash plate structure for enclosed compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |