KR20040032198A - Method of metal organic chemical vapor deposition for film of tantalum oxide using by ozone - Google Patents

Method of metal organic chemical vapor deposition for film of tantalum oxide using by ozone Download PDF

Info

Publication number
KR20040032198A
KR20040032198A KR1020020059761A KR20020059761A KR20040032198A KR 20040032198 A KR20040032198 A KR 20040032198A KR 1020020059761 A KR1020020059761 A KR 1020020059761A KR 20020059761 A KR20020059761 A KR 20020059761A KR 20040032198 A KR20040032198 A KR 20040032198A
Authority
KR
South Korea
Prior art keywords
ozone
vapor deposition
chemical vapor
tantalum
tantalum oxide
Prior art date
Application number
KR1020020059761A
Other languages
Korean (ko)
Inventor
김근호
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Priority to KR1020020059761A priority Critical patent/KR20040032198A/en
Publication of KR20040032198A publication Critical patent/KR20040032198A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium

Abstract

PURPOSE: A metal organic chemical vapor deposition method is provided which forms a tantalum oxide film on wafer by oxidizing organic tantalum, and substantially reduces leakage current and increases deposition speed of the tantalum oxide film on the wafer by using ozone having superior oxidizing power as a reaction gas. CONSTITUTION: In a metal organic chemical vapor deposition method for forming a tantalum oxide film on a semiconductor wafer by oxidizing organic tantalum, the method is characterized in that the tantalum oxide film is deposited on the semiconductor wafer by reacting Ta(OC2H5)5 with ozone (O3), wherein the organic tantalum reacted with ozone is Ta(C2H5O)4(OCH2CH2N(CH3)), and wherein the organic tantalum reacted with ozone is Ta(CH3)3CN(N(C2H5)2)3.

Description

오존을 이용한 탄탈 산화막의 금속유기화학증착 방법{Method of metal organic chemical vapor deposition for film of tantalum oxide using by ozone}Method of metal organic chemical vapor deposition for film of tantalum oxide using by ozone}

본 발명은 반도체 처리시스템에서의 금속화합물의 박막을 형성하기 위한 금속유기화학적 증착(metal organic chemical vapor deposition, 이하 MOCVD라 칭한다)방법에 관한 것으로서, 더욱 상세하게는 유기탄탈을 산화시켜 웨이퍼에 산화탄탈막을 형성시키는 금속유기화학적 증착방법에 관한 것이다.The present invention relates to a method of metal organic chemical vapor deposition (hereinafter referred to as MOCVD) for forming a thin film of a metal compound in a semiconductor processing system, and more particularly, tantalum oxide on a wafer by oxidizing organic tantalum A metalorganic chemical vapor deposition method for forming a film.

박막을 형성하기 위한 증착방법은 화학기상증착법(chemical vapor deposition, 이하 CVD라고 칭한다)과 물리기상증착법(physical vapor deposition, 이하 PVD라고 칭한다)으로 크게 대별된다.Vapor deposition methods for forming thin films are roughly divided into chemical vapor deposition (hereinafter referred to as CVD) and physical vapor deposition (hereinafter referred to as PVD).

전기장 속에서 가속된 플라즈마 상태의 불활성 가스이온들이 타깃에 부딪혀 증발된 타깃 입자가 기판에서 재결합되어 박막을 만드는 스퍼터링(sputtering) 방법과 같은 PVD는 물리적 힘에 의해 떨어져 나온 입자들의 결합으로 박막이 형성되어 CVD에 비해 스텝커버리지(step coverage)가 나쁜 단점이 있으나 반도체장치 및 평판표시장치의 배선으로 사용되는 금속 박막의 증착은 주로 스퍼터링 방법을 이용하여 이루어지므로 단차가 생기는 곳에서는 막이 끊어지는 문제가 발생할 수 있다.PVD, such as a sputtering method in which inert gas ions in an accelerated plasma state in an electric field strikes a target and vaporizes target particles recombine on a substrate to form a thin film, is formed by a combination of particles separated by physical force. Step coverage is worse than that of CVD, but the deposition of metal thin films used for wiring of semiconductor devices and flat panel displays is mainly performed by sputtering, which can cause the film to break in the stepped area. have.

이에 따라 최근에는 유기금속 전구체(metal organic precursor)를 이용하여 CVD방법으로 금속 및 금속화합물을 증착하는 유기금속화학적 증착방법(MOCVD)이 이용되고 있다.Accordingly, recently, an organic metal chemical vapor deposition method (MOCVD), which deposits metals and metal compounds by a CVD method using a metal organic precursor, has been used.

MOCVD 방식은 챔버내부의 히터블록상단에 웨이퍼를 안착한 상태에서 Ta(OC2H5)5(펜타에톡시탄탈, 이하 PET라 칭한다)와 같은 유기금속 전구체와 반응가스를 유입시켜 웨이퍼상에 Ta2O5와 같은 탄탈 산화막을 형성시키는 방법이다.In the MOCVD method, an organic metal precursor such as Ta (OC 2 H 5 ) 5 (Pentaethoxy tantalum, hereinafter referred to as PET) and a reaction gas are introduced into a Ta 2 on the wafer while the wafer is placed on the heater block inside the chamber. It is a method of forming a tantalum oxide film such as O 5 .

그러나 종래 MOCVD 방식에서는 반응가스로서 산소(O2)를 사용하였는데, 반응가스로서 산소는 반응성(산화력)이 약해서 웨이퍼상 증착된 박막내에 많은 산소공핍(oxygen vacancy)을 형성하게 되며, 더욱이 유기금속 전구체는 열 적으로 불안정해 반응가스와 접하였을 때 낮은 온도에서도 쉽게 분해되어 부산물(특히 탄소)을 생성하게 된다.However, in the conventional MOCVD method, oxygen (O 2) was used as a reaction gas, and oxygen, as a reaction gas, has a low reactivity (oxidation force), thereby forming a large amount of oxygen vacancy in the thin film deposited on the wafer, and further, an organic metal precursor. Is thermally unstable and readily decomposes at low temperatures when it comes into contact with the reaction gas, producing by-products (especially carbon).

이렇게 박막 내에 형성되는 산소공핍 및 탄소들은 누설전류의 요인으로 작용하여 소자의 신뢰성을 크게 감소시키는바 이러한 문제점들을 개선하기 위해 오존(O3) 어닐(anneal) 또는 산소(O2) 플라즈마 등과 같은 부가적인 처리를 하거나 또는 축열식소각로(regenerative thermal oxidizer)에서 고온 열처리 등을 수행하는 방식이 제안되었다.Oxygen depletion and carbons formed in the thin film act as a factor of leakage current and greatly reduce the reliability of the device. In order to solve these problems, additional oxygen such as ozone (O 3 ) anneal or oxygen (O 2) plasma, etc. Processes or high temperature heat treatment in regenerative thermal oxidizers have been proposed.

그러나 MIM(metal insulator metal)구조 하에서는 고온 열처리 공정자체를 적용할 수 없으며, MIS(metal insulator semiconductor)구조 하에서는 고온 열처리공정을 적용할 수는 있으나 그에 따라 정전용량값이 감소하는 부작용이 발생하는 등 MOCVD 방식에서 발생 가능한 산소공핍 및 탄소부산물에 따른 누설전류를 방지할 수 있는 근본적 해결방법으로는 사용할 수 없는 단점이 있었다.However, the high temperature heat treatment process itself cannot be applied under the MIM (metal insulator metal) structure, and the high temperature heat treatment process can be applied under the MIS (metal insulator semiconductor) structure. There was a disadvantage that can not be used as a fundamental solution to prevent leakage current due to oxygen depletion and carbon by-products that can occur in the method.

반응물질이 pulse 형태로 공급되는 원자층증착방법(atomic layer deposition, 이하 ALD라 칭한다) 방식에서는 일부 반응가스로서 산소대신에 보다 산화력이 뛰어난 오존을 사용하여 웨이퍼상에 Ta2O5를 증착하는 방식을 채용하고는 있으나, ALD방식은 워낙 생산성이 낮아서 실제 반도체 산업현장에 직접 적용되는 것은 곤란한 것도 작금의 현실이다.In atomic layer deposition (ALD) method in which the reactant is supplied in pulse form, Ta 2 O 5 is deposited on the wafer using ozone, which is more oxidizing than oxygen, as part of the reaction gas. Although the ALD method is so low in productivity, it is difficult to apply it directly to the actual semiconductor industry.

본 발명은 상기와 같은 문제점을 극복하기 위해 안출된 것으로서, 본 발명은 종래 MOCVD 방식에서 반응가스로서 산소를 사용함에 따라 증착되는 웨이퍼상에 잔존하여 누설전류의 요인으로 작용하는 산소공핍 및 탄소부산물의 발생을 방지할 수 있는 탄탈 산화막의 금속유기화학적 증착방법을 제공함을 그 목적으로 한다.The present invention has been made to overcome the above problems, the present invention is the oxygen depletion and carbon by-products that remain on the wafer deposited by using oxygen as the reaction gas in the conventional MOCVD method as a factor of leakage current It is an object of the present invention to provide a metal organic chemical vapor deposition method of tantalum oxide film which can be prevented from occurring.

또한, 본 발명은 종래 MOCVD 방식을 이용함에도 웨이퍼의 증착속도를 증가시킬 수 있도록 함으로서 보다 생산성이 증대될 수 있는 탄탈 산화막의 금속유기화학적 증착방법을 제공함에 다른 목적이 있다.In addition, the present invention has another object to provide a metal organic chemical vapor deposition method of the tantalum oxide film which can be more productive by increasing the deposition rate of the wafer even using the conventional MOCVD method.

본 발명은 상기와 같은 목적을 달성하기 위해, 유기탄탈을 산화시켜 반도체 웨이퍼에 탄탈산화막을 형성하는 금속유기화학적 증착방법으로서, Ta(OC2H5)5를 오존과 반응시켜 상기 탄탈 산화막을 반도체 웨이퍼에 증착시키는 금속유기화학적 증착방법을 제공한다.The present invention is a metal organic chemical vapor deposition method of oxidizing organic tantalum to form a tantalum oxide film on a semiconductor wafer in order to achieve the above object, Ta (OC 2 H 5 ) 5 reacts with ozone to convert the tantalum oxide film into a semiconductor Provided is a metal organic chemical vapor deposition method for depositing on a wafer.

상기 오존과 반응하는 유기탄탈은 Ta(C2H5O)4((OCH2CH2N(CH3))인 것을 포함하는 것을 특징으로 한다.The organic tantalum reacting with the ozone is characterized in that it comprises Ta (C 2 H 5 O) 4 ((OCH 2 CH 2 N (CH 3 )).

상기 오존과 반응하는 유기탄탈은 Ta(CH3)3CN((N(C2H5)2)3인 것을 더욱 포함하는 것을 특징으로 한다.The organic tantalum reacting with the ozone is further characterized as comprising Ta (CH 3 ) 3 CN ((N (C 2 H 5 ) 2 ) 3 .

이하 본 발명의 바람직한 실시예를 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail.

본 발명에 의하면 챔버 내부의 히터블록 상단에 증착하고자 하는 웨이퍼를 안착시킨 상태에서 유기금속 전구체로서 PET를, 그리고 반응가스로서 오존을 유입시키게 되는데, 이를 종래 금속유기화학적 증착방법에서 반응가스로서 오존를 사용하는 경우와 비교해보면 다음과 같다.According to the present invention, PET is used as an organometallic precursor and ozone is introduced as a reaction gas in a state in which a wafer to be deposited is placed on the heater block inside the chamber. In the conventional metal organic chemical vapor deposition method, ozone is used as a reaction gas. Compared with the following case.

본 발명에 의한 금속유기화학적 증착방법은Metal organic chemical vapor deposition method according to the present invention

Ta(OC2H5)5+ O3→ Ta2O5+ 부산물(by product)이며,Ta (OC 2 H 5 ) 5 + O 3 → Ta 2 O 5 + by product,

종래 금속유기화학적 증착방법은Conventional metal organic chemical vapor deposition method

Ta(OC2H5)5+ O2→ Ta2O5+ 부산물(by product)이다.Ta (OC 2 H 5 ) 5 + O 2 → Ta 2 O 5 + by product.

즉, 양자 모두 웨이퍼상에는 유기금속 전구체인 PET와 반응하여 산화 탄탈막인 Ta2O5가 형성되는 것은 동일하나, 종래 반응가스로서 산소를 사용하는 경우에는 전술한 것과 같이 웨이퍼상에 산소공핍이 잔존하게 되나 본 발명과 같이 반응가스로서 오존을 사용하는 경우에는 오존의 높은 산화력에 의해 산소공핍은 거의 방지될 수 있으며, 더욱이 탄소부산물 역시도 저감시키게 되는 것이다.In other words, Ta 2 O 5 , which is a tantalum oxide film, is formed on the wafer by reacting with PET, which is an organometallic precursor, but oxygen depletion remains on the wafer as described above when oxygen is used as a conventional reaction gas. However, when ozone is used as the reaction gas as in the present invention, oxygen depletion can be almost prevented by the high oxidizing power of ozone, and further, carbon by-products are also reduced.

이는 웨이퍼상에 잔존하는 산소공핍 및 탄소부산물이 누설전류의 주요 원인이 된다는 것을 감안한다면 반응가스로서 오존의 사용은 이러한 누설전류의 발생 가능성을 사전에 방지할 수 있게 해주는 것이다.Considering that oxygen depletion and carbon by-products remaining on the wafer are the main causes of leakage current, the use of ozone as a reaction gas can prevent the occurrence of such leakage current in advance.

또한, 반응가스로서의 오존의 사용은 PET 뿐 아니라, Ta을 함유하는 다른 유기탄탈에도 동일하게 적용될 수 있으며 그에 따른 반응식은 다음과 같다.In addition, the use of ozone as the reaction gas can be equally applied to other organo tantalum containing Ta as well as the reaction reaction scheme is as follows.

Ta(C2H5O)4((OCH2CH2N(CH3)) + O3→ Ta2O5+ 부산물(by product)Ta (C 2 H 5 O) 4 ((OCH 2 CH 2 N (CH 3 )) + O 3 → Ta 2 O 5 + by product

Ta(CH3)3CN((N(C2H5)2)3+ O3→ Ta2O5+ 부산물(by product)Ta (CH 3 ) 3 CN ((N (C 2 H 5 ) 2 ) 3 + O 3 → Ta 2 O 5 + by product

따라서 본 발명에 따른 금속유기화학적 증착방법의 소스물질에는 기존의 PET와, Ta(C2H5O)4((OCH2CH2N(CH3))(TATDMAE) 및 Ta(CH3)3CN((N(C2H5)2)3(TBTDET) 등과 같은 유기탄탈도 포함된다.Therefore, the source material of the metal organic chemical vapor deposition method according to the present invention is a conventional PET, Ta (C 2 H 5 O) 4 ((OCH 2 CH 2 N (CH 3 )) (TATDMAE) and Ta (CH 3 ) 3 Organotantalums such as CN ((N (C 2 H 5 ) 2 ) 3 (TBTDET)) and the like are also included.

상기에서는 본 발명의 바람직한 실시예에 한정하여 설명하였지만 본 발명은 이에 한정되지 않고 그 기술적 사상의 범주에 드는 다양한 수정 또는 변경이 가능함은 물론이다.In the above description, the present invention is limited to the preferred embodiment, but the present invention is not limited thereto, and various modifications or changes that fall within the scope of the technical idea are of course possible.

본 발명에 의하면, 산화력이 뛰어난 오존을 반응가스로서 사용함으로서 웨이퍼상에 산소공핍 및 탄소부산물의 발생을 방지하여 종래 금속유기화학적 증착방법에서 문제점으로 지적되어온 누설전류를 획기적으로 감소시킬 수 있게 해주는 효과를 가진다.According to the present invention, by using ozone having excellent oxidizing power as a reaction gas, it is possible to prevent the generation of oxygen depletion and carbon by-products on the wafer, thereby significantly reducing the leakage current which has been pointed out as a problem in the conventional metal organic chemical vapor deposition method. Has

또한, 본 발명은 종래 금속유기화학적 증착방법에 그대로 적용 가능하여 생산성의 한계를 가지고 있던 원자층증착방법(ALD)을 대체할 수 있는 방법을 제공할 수 있게 해준다.In addition, the present invention can be applied to the conventional metal organic chemical vapor deposition method as it is to provide a method that can replace the atomic layer deposition method (ALD) had a limit of productivity.

더욱이 본 발명에서 반응가스로 사용되는 오존의 뛰어난 산화력은 웨이퍼상에 산화탄탈막의 증착속도를 증가시키는 효과를 가지고 있어 생산성 증대효과도 기대할 수 있게 해준다.In addition, the excellent oxidizing power of ozone used as the reaction gas in the present invention has the effect of increasing the deposition rate of the tantalum oxide film on the wafer can be expected to increase the productivity.

Claims (3)

유기탄탈을 산화시켜 반도체 웨이퍼에 탄탈산화막을 형성하는 금속유기화학적 증착방법으로서,A metal organic chemical vapor deposition method for oxidizing an organic tantalum to form a tantalum oxide film on a semiconductor wafer, Ta(OC2H5)5를 오존(O3)과 반응시켜 상기 탄탈 산화막을 반도체 웨이퍼에 증착시키는 금속유기화학적 증착방법.A metal organic chemical vapor deposition method for depositing the tantalum oxide film on a semiconductor wafer by reacting Ta (OC 2 H 5 ) 5 with ozone (O 3 ). 제1항에 있어서,The method of claim 1, 상기 오존과 반응하는 유기탄탈은 Ta(C2H5O)4((OCH2CH2N(CH3))인 것을 포함하는 탄탈 산화막을 반도체 웨이퍼에 증착시키는 금속유기화학적 증착방법.The organic tantalum reacting with the ozone is a metal organic chemical vapor deposition method for depositing a tantalum oxide film on a semiconductor wafer comprising a Ta (C 2 H 5 O) 4 ((OCH 2 CH 2 N (CH 3 )). 제1항에 있어서,The method of claim 1, 상기 오존과 반응하는 유기탄탈은 Ta(CH3)3CN((N(C2H5)2)3인 것을 더욱 포함하는 탄탈 산화막을 반도체 웨이퍼에 증착시키는 금속유기화학적 증착방법.The organic tantalum reacting with the ozone is a metal organic chemical vapor deposition method for depositing a tantalum oxide film on a semiconductor wafer further comprises a Ta (CH 3 ) 3 CN ((N (C 2 H 5 ) 2 ) 3 .
KR1020020059761A 2002-10-01 2002-10-01 Method of metal organic chemical vapor deposition for film of tantalum oxide using by ozone KR20040032198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020059761A KR20040032198A (en) 2002-10-01 2002-10-01 Method of metal organic chemical vapor deposition for film of tantalum oxide using by ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020059761A KR20040032198A (en) 2002-10-01 2002-10-01 Method of metal organic chemical vapor deposition for film of tantalum oxide using by ozone

Publications (1)

Publication Number Publication Date
KR20040032198A true KR20040032198A (en) 2004-04-17

Family

ID=37332126

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020059761A KR20040032198A (en) 2002-10-01 2002-10-01 Method of metal organic chemical vapor deposition for film of tantalum oxide using by ozone

Country Status (1)

Country Link
KR (1) KR20040032198A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283022A (en) * 1989-01-25 1990-11-20 Hitachi Ltd Manufacture of semiconductor device
JPH04145623A (en) * 1990-10-08 1992-05-19 Handotai Process Kenkyusho:Kk Manufacture of semiconductor device
KR20010092714A (en) * 2000-03-22 2001-10-26 히가시 데쓰로 Mocvd method of tantalum oxide film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283022A (en) * 1989-01-25 1990-11-20 Hitachi Ltd Manufacture of semiconductor device
JPH04145623A (en) * 1990-10-08 1992-05-19 Handotai Process Kenkyusho:Kk Manufacture of semiconductor device
KR20010092714A (en) * 2000-03-22 2001-10-26 히가시 데쓰로 Mocvd method of tantalum oxide film

Similar Documents

Publication Publication Date Title
US7211506B2 (en) Methods of forming cobalt layers for semiconductor devices
KR100385947B1 (en) Method of forming thin film by atomic layer deposition
KR100472730B1 (en) Method for fabricating metal electrode with Atomic Layer Deposition in semiconductor device
KR102298038B1 (en) Methods of depositing a metal alloy film
KR100406534B1 (en) Method for fabricating ruthenium thin film
JP3687651B2 (en) Thin film formation method
US20180142345A1 (en) Low temperature molybdenum film deposition utilizing boron nucleation layers
TW201323647A (en) Atomic layer deposition of films using precursors containing hafnium or zirconium
KR20010063478A (en) Method of forming an aluminum oxide film in a semiconductor device
US20180261503A1 (en) Low temperature molybdenum film deposition utilizing boron nucleation layers
US9382270B2 (en) Substituted silacyclopropane precursors and their use for the deposition of silicon-containing films
WO2008078296A1 (en) Method for the deposition of a ruthenium containing film with aryl and diene containing complexes
KR100485386B1 (en) Composition for depositing a metal layer, and Method for forming a metal layer using the same
US9328415B2 (en) Methods for the deposition of manganese-containing films using diazabutadiene-based precursors
KR20000007465A (en) Method of forming upper electrode of capacitor for semiconductor by atomic layer deposition
KR100383772B1 (en) Method for forming a bottom electrode of capacitor in a semiconductor device
KR20040032198A (en) Method of metal organic chemical vapor deposition for film of tantalum oxide using by ozone
KR100442963B1 (en) Method of manufacturing metal layer having high degree of purity
US9236467B2 (en) Atomic layer deposition of hafnium or zirconium alloy films
JP2008231473A (en) Film forming method and film forming material
KR100414871B1 (en) Method for forming group ⅸ metal layer using atomic layer deposition
KR100383771B1 (en) Method of manufacturing a capacitor in semiconductor device
KR100525102B1 (en) Method for depositing silicon nitride layer in semiconductor device
KR20090111258A (en) Method for forming noble metal lyaer using ozone reactance gas
KR100780605B1 (en) Semiconductor device with tantalum zirconium oxide and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application