KR20040019737A - Method for controling the current of conduction reflow in the plating process - Google Patents

Method for controling the current of conduction reflow in the plating process Download PDF

Info

Publication number
KR20040019737A
KR20040019737A KR1020020051448A KR20020051448A KR20040019737A KR 20040019737 A KR20040019737 A KR 20040019737A KR 1020020051448 A KR1020020051448 A KR 1020020051448A KR 20020051448 A KR20020051448 A KR 20020051448A KR 20040019737 A KR20040019737 A KR 20040019737A
Authority
KR
South Korea
Prior art keywords
strip
current
reflow
temperature
coil
Prior art date
Application number
KR1020020051448A
Other languages
Korean (ko)
Other versions
KR100949723B1 (en
Inventor
이창한
Original Assignee
재단법인 포항산업과학연구원
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원, 주식회사 포스코 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020020051448A priority Critical patent/KR100949723B1/en
Publication of KR20040019737A publication Critical patent/KR20040019737A/en
Application granted granted Critical
Publication of KR100949723B1 publication Critical patent/KR100949723B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE: A method for controlling conduction reflow current in electroplating process is provided which suppresses fluctuation of target temperature and prevents excess or shortage of alloy quantity and surface defects generated in the target temperature fluctuating range by varying strip resistance, required heat capacity and input current. CONSTITUTION: In a control method for preventing temperature fluctuation in case that a welding part between adjacent coils having different material specifications passes through conductor rollers in reflow process of the continuous electroplating process, the method for controlling conduction reflow current in the electroplating process is characterized in that the conduction reflow current is controlled by judging a distance between welding points from an input side conductor roller according to welding point tracking and operating strip resistance, required heat capacity (Q) and input current (I) by the following numerical formula: Q=v·A(C1+C2·TAVG)·ΔT (watts), where v is line speed (m/min), TAVG is an average temperature between temperature at the front of the input side roller and target temperature, ΔT is temperature increment, C1 and C2 are coefficients, A is cross sectional area of strip, I is shown below, ρ is specific resistivity of strip, L is a distance between the input side roller and quenching tank, Abefore is a strip cross sectional area of preceding coil, and Aafter is a strip cross sectional area of following coil.

Description

전기도금공정에서 통전 리플로우 전류제어방법{METHOD FOR CONTROLING THE CURRENT OF CONDUCTION REFLOW IN THE PLATING PROCESS}TECHNICAL FOR CONTROLING THE CURRENT OF CONDUCTION REFLOW IN THE PLATING PROCESS}

본 발명은 철강제조의 도금공정 중의 하나인 전기도금공정에서의 통전 리플로우의 전류제어방법에 관한 것으로서, 보다 상세하게는 전기도금공정에서 선행코일과 후행코일이 임의의 속도로 이송되고 있을 때 용접점을 트래킹하고, 각 코일의 승온에 필요한 열량을 계산한 다음, 스트립의 저항을 천이구간에 맞도록 거리의 함수로 계산하여 투입전류를 산정함으로써, 선후행 코일의 자유로운 편성에도 리플로우 목표온도의 변동을 억제하도록 전류량을 변화시키는 전기도금공정에서의 통전 리플로우의 전류제어방법에 관한 것이다.The present invention relates to a current control method of energized reflow in an electroplating process, which is one of the plating processes of steel manufacturing, and more particularly, welding when the preceding coil and the following coil are transferred at an arbitrary speed in the electroplating process. By tracking the points, calculating the amount of heat required to raise the temperature of each coil, and then calculating the input current by calculating the resistance of the strip as a function of distance to fit the transition interval, the free reflow target temperature The present invention relates to a current control method of energized reflow in an electroplating process in which a current amount is changed to suppress variation.

일반적으로, 도 1에 도시된 바와 같이, 전기주석도금 공정을 거친 소재는 합금층을 형성하고 용접성과 내식성 및 광택성 등을 높이기 위해 리플로우 멜팅(Reflow Melting)과정을 거치는데, 통전롤러(1,2) 간의 스트립(3)에 전류를 흘려 통전가열의 형태로 주석의 용융점이상으로 가열시킨 후 급속냉각시킴으로서 가능하다.In general, as shown in Figure 1, the material subjected to the electroplating process undergoes a reflow melting process to form an alloy layer and to improve weldability, corrosion resistance and gloss, etc. It is possible by heating the above melting point of tin in the form of energizing heating by flowing an electric current through the strip 3 between and, followed by rapid cooling.

연연속공정형태의 도금라인은 코일형태의 소재를 처리하며 다양한 소재규격의 코일을 용접하여 제공함으로써 도금공정에서 연속처리가 가능하게 된다. 리플로우 공정에서 두 개의 통전롤러(1,2)에 스트립(3)을 이송하고 통전롤러(1,2)에 전류를 투입하여 가열시키는데, 이 때 투입되는 전류의 양은 처리 대상인 소재의 크기, 즉 단면적과 이송속도에 따라 결정된다.Plating line of continuous process type processes the material of coil type, and it is possible to continuously process in the plating process by providing coils of various material standards. In the reflow process, the strips 3 are transferred to two energizing rollers 1 and 2 and a current is supplied to the energizing rollers 1 and 2, whereby the amount of current applied is the size of the material to be treated, It depends on the cross sectional area and feedrate

통상 통전롤러(1,2) 간 수십m의 스트립(3)이 놓이게 되며, 코일 단면적이 바뀔 때 즉, 선행소재와 후행소재간 크기가 달라지는 경우 두 개의 통전 롤러 간에 선후행 소재의 용접점이 놓이게 되는 경우통전가열에 소요되는 전류의 제어에 난점이 생기게 된다.Usually, several tens of meters of strips 3 are placed between the energizing rollers 1 and 2, and when the coil cross-sectional area is changed, that is, the size of the preceding material and the following material is changed, the welding point of the leading material is placed between the two conducting rollers. In this case, there is a difficulty in controlling the current required for energizing heating.

종래기술에서의 통전 리플로우의 제어에 의한 코일간 전류제어방식 중 일예를 도 3에 나타내었다.An example of the coil-to-coil current control method by controlling the energization reflow in the prior art is shown in FIG. 3.

즉, 후물재-박물재순 코일의 리플로우 제어시 투입열량변화(11)와 박물재-후물재순 코일의 리플로우 제어시 투입열량변화(12)를 나타낸 것으로서, 입측 통전롤러(1DCR)과 출측 통전롤러(2CDR)사이에서 목표온도(T0)까지 도달하기 위하여 필요한 선행코일의 소요열량(Qbefore)과 후행코일의 소요열량(Qafter)이 차이 나는 경우 제어 변경시점은 1CDR 또는 2CDR에서 이산적으로 발생하게 되며 이때 통전롤러(1,2)간에 코일용접점이 통과하는 동안은 목표온도에 도달하지 못하는 현상이 발생하게 되는데 이는 표면 품질 불량 또는 합금량 미달 등의 문제점을 초래하는 원인이 된다.That is, the input calorie change (11) during the reflow control of the thick material-mold material coil and the input calorie change (12) during the reflow control of the metal material-mold material coil are shown. When the required calorie (Q before ) of the leading coil (Q before ) and the trailing coil (Q after ) required to reach the target temperature (T 0 ) between the rollers (2CDR), the control change point is discrete at 1CDR or 2CDR. In this case, a phenomenon in which the target temperature is not reached while the coil welding point passes between the energizing rollers 1 and 2 is caused, which causes problems such as poor surface quality or insufficient alloying amount.

이를 보완하기 위한 방법으로, 도 4에 도시된 제어방법이 있는데, 이는 입측 통전롤러(1)와 출측 통전롤러(2)에서 용접점을 트래킹하고, 투입전류와 스트립(3)에 걸린 특정전압으로부터 스트립의 임피던스(Impedance) 변화를 연속적으로 계산하고 해당 구간 내에서 스트립 임피던스가 일정범위를 넘어서는 시점을 코일 변경시점으로 판단하여 후행소재에 필요한 전류로 변경하는 방식이나, 이 방식은 일정구간동안의 과전류 또는 전류부족현상이 발생하여 표면품질 불량을 초래하게 된다.As a method for compensating for this, there is a control method shown in FIG. 4, which tracks a welding point at the entry and exit rollers 1 and 2, and from the input current and a specific voltage applied to the strip 3. It is a method of continuously calculating the change in impedance of the strip and changing the current when the strip impedance exceeds a certain range within the interval as the coil change point to the current required for the following material. Alternatively, current shortage may occur, resulting in poor surface quality.

그러므로 연속 공정에서의 리플로우 과정에서 선행코일과 후행코일이 동시에 공존하는 천이구간에서의 정확한 임피던스 예측과 이에 따른 적절한 전류투입으로 목표온도의 변동을 억제하는 것이 필요하다Therefore, it is necessary to suppress the fluctuation of the target temperature by accurately predicting the impedance in the transition section where the leading coil and the trailing coil coexist in the reflow process in the continuous process and the appropriate current input accordingly.

따라서, 본 발명에서는 선행코일과 후행코일이 임의의 속도로 이송되고 있을 때 용접점을 트래킹(Tracking)하고, 각 코일의 승온에 필요한 열량을 계산하고, 스트립(Strip)의 저항을 천이구간에 맞도록 거리의 함수로 계산하여 투입전류를 산정함으로써, 선후행 코일의 자유로운 편성에도 리플로우 목표온도의 변동을 억제하도록 전류량을 변화하는 전기도금공정에서 통전 리플로우 전류제어방법을 제공하는데 그 목적이 있다.Therefore, in the present invention, when the preceding coil and the following coil are being conveyed at an arbitrary speed, the welding point is tracked, the amount of heat required to raise the temperature of each coil is calculated, and the resistance of the strip is matched to the transition period. The purpose of this invention is to provide an energized reflow current control method in an electroplating process in which the amount of current is changed to suppress fluctuations in the reflow target temperature even in the free knitting of the preceding and following coils by calculating the input current as a function of the distance. .

도 1은 본 발명의 대상공정인 리플로우 설비의 개략도;1 is a schematic diagram of a reflow facility which is the subject process of the present invention;

도 2는 본 발명의 대상공정인 리플로우 설비에 의한 스트립의 통전롤에서부터의 거리별 승온패턴도;Figure 2 is a heating pattern of the distance from the rolling roll of the strip by the reflow facility that is the target process of the present invention;

도 3은 종래기술에서의 통전 리플로우의 제어에 의한 코일간 전류제어방식을 도시한 패턴도(1);Fig. 3 is a pattern diagram (1) showing an inter-coil current control method by controlling energization reflow in the prior art;

도 4는 종래기술에서의 통전 리플로우의 제어에 의한 코일간 전류제어방식을 도시한 패턴도(2);Fig. 4 is a pattern diagram (2) showing a coil-to-coil current control method by controlling energization reflow in the prior art;

도 5는 본 발명에 따른 코일간 리플로우 전류제어방식을 설명하는 그래프이다.5 is a graph illustrating a coil-to-coil reflow current control method according to the present invention.

♣도면의 주요부분에 대한 부호의 설명♣♣ Explanation of symbols for main part of drawing ♣

1: 입측 통전롤러2:출측 통전롤러1: Entry energizing roller 2: Exit energizing roller

11:후물재-박물재순 코일의 리플로우 제어시 투입열량변화11: Change of input calories during reflow control of thick material-mold revolving coil

12:박물재-후물재순 코일의 리플로우 제어시 투입열량변화12: Changes in input calories during reflow control of the museum material-recycle coil

Qbefore:선행소재소요열량Qafter:후행소재 소요열량Q before : Leading material calories Q after : Leading material calories

Qx:현재의 거리(x)에서의 소요열량Q x : Required heat at the current distance (x)

Ix:현재의 거리(x)에서의 투입전류I x : Input current at current distance (x)

T0:급냉탱크 입수온도T 0 : Quick cooling tank inlet temperature

상기한 목적을 달성하기 위하여, 본 발명은 연속 전기주석도금 공정의 리플로우 공정에 있어서 소재 규격이 다른 인접 용접부가 통전롤러를 통과하는 경우 온도변동을 방지하는 제어방법에 있어서, 용접점 트래킹에 입측 롤러로부터의 용접점 거리를 판단하고, 다음의 수식에 의해 스트립 저항과 소요열량(Q) 및 투입전류량(I)을 연산하여 제어하는 것을 특징으로 하는 전기도금공정에서 통전 리플로우 전류제어방법을 제공한다.In order to achieve the above object, the present invention provides a control method for preventing temperature fluctuations when adjacent welds having different material specifications pass through an energizing roller in a reflowing process of a continuous electroplating process. A method for controlling energized reflow current in an electroplating process, comprising determining a distance of a welding point from a roller and calculating and controlling strip resistance, required heat amount (Q), and input current amount (I) by the following equation. do.

(watts) (watts)

v: 라인속도(mpm)v: line speed (mpm)

TAVG: 입측롤러전온도와 목표온도간 평균온도T AVG : Average temperature between front side roller and target temperature

ΔT: 승온 온도,ΔT: elevated temperature,

C1,C2: 계수C1, C2: coefficient

A: 스트립 단면적A: strip cross section

ρ: 스트립 비저항율ρ: strip resistivity

L: 입측롤러에서 급냉탱크까지의 거리L: Distance from the entry roller to the quench tank

Abefore: 선행코일의 스트립 단면적A before : Strip cross section of the preceding coil

Aafter: 후행코일의 스트립 단면적A after : Strip cross section of trailing coil

이하, 상기와 같은 본 발명에 대한 소재변경시 전류량변경에 의한 도금공정에서의 리플로우 전류제어방법의 기술적 사상에 따른 실시예를 첨부된 도면을 참조하여 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings an embodiment according to the technical idea of the reflow current control method in the plating process by the current amount change when changing the material for the present invention as follows.

본 발명의 대상 공정인 전기주석도금의 리플로우 설비구성은 도 1에 나타낸 형태가 통상적이다. 입측 통전롤러(1)과 출측 통전롤러(2)사이에 머플형가열로(Muffle Furnace; 4)가 있어서 스트립의 온도를 보존하는 역할을 하며, 급냉탱크(Quenching Tank; 5)가 있어서 도금된 주석의 용융된 상태에서 급냉될 수 있도록 한다.The configuration of the reflow facility of the electro tin plating, which is the target process of the present invention, is generally shown in FIG. A muffle furnace (4) is provided between the entry and exit rollers (1) and the exit and exit rollers (2) to preserve the temperature of the strip, and has a quenching tank (5) to plate the tin. To be quenched in the molten state.

그리고 교류전원을 투입하는 통전롤러의 경우, 통전롤러(1,2) 사이에 전류가 집중될 수 있도록 통전롤러(1,2) 외부에 쵸크 코어코일(Choke Core Coil; 6a,6b)을 구비하게 된다.In the case of an energizing roller for supplying AC power, the choke core coils 6a and 6b are provided outside the energizing rollers 1 and 2 so as to concentrate current between the energizing rollers 1 and 2. do.

인입된 스트립(3)은 입측 통전롤러(1)에서부터 가열되기 시작하여 급냉탱크(5)에 입수직전에 목표온도(T0)까지 도달하도록 소재정보와 스트립 이송속도에 맞추어 적정한 전류가 투입되도록 하는데, 투입량 산정은 다음의 소요열량식으로부터 구할 수 있다Introduced strip (3) is started to heat from the current-carrying roller (1) to ensure that the appropriate current is injected in accordance with the material information and strip feed rate to reach the target temperature (T0) just before the water in the quench tank (5), Input calculations can be obtained from the following required calorie equations:

(watts) (watts)

v: 라인속도(mpm)v: line speed (mpm)

TAVG: 입측 롤러전온도와 목표온도간 평균온도T AVG : Average temperature between the front side roller entrance temperature and the target temperature

ΔT: 승온 온도,ΔT: elevated temperature,

C1,C2: 계수C1, C2: coefficient

A: 스트립 단면적A: strip cross section

동일 소재에 대해서는 스트립의 이송속도만이 소요 열량 및 투입 전력을 변동시키는 요소가 되는데, 만일 소재의 사이즈가 변동하는 경우에는 소요열량을 변동적으로 연산해야 하며, 이러한 제어방식을 도 5에서 도시하고 있다.For the same material, only the feed rate of the strip is a factor that changes the required calories and input power. If the size of the material changes, the required calories must be calculated variably. have.

즉, 선행코일과 후행코일의 사이즈가 다를 경우, 코일간 연결부인 용접점이 통전롤러(1,2)를 통과할 때 스트립(3)에 의한 전기저항은 일정하지 않게 되고 선형적으로 변동하게 된다.That is, when the size of the preceding coil and the following coil is different, the electrical resistance by the strip 3 becomes non-uniform and varies linearly when the welding point, which is the connection between the coils, passes through the energizing rollers 1 and 2.

이 때 용접점 트래킹을 통해 입측 롤러에서부터의 용접점의 위치(x)를 연산하고, 선행코일에 대한 소요열량(Qbefore)와 후행코일에 대한 소요열량(Qafter)로부터 천이구간 내에 용접점이 있는 경우 필요한 소요열량(Qx)를 구한다음 통전롤러사이에 놓인 스트립의 전기저항을 구하고 투입할 전류량(I)을 다음 식으로부터 구한다.At this time, the welding point tracking calculates the position (x) of the welding point from the entry roller, and there is a welding point in the transition section from the required heat amount (Q before ) for the preceding coil and the required heat amount (Q after ) for the trailing coil. In this case, calculate the required heat quantity (Q x ), and find the electrical resistance of the strip between the rollers and calculate the amount of current (I) to be input from the following equation.

ρ: 스트립 비저항율ρ: strip resistivity

L: 입측롤러에서 급냉탱크까지의 거리L: Distance from the entry roller to the quench tank

Abefore: 선행코일의 스트립 단면적A before : Strip cross section of the preceding coil

Aafter: 후행코일의 스트립 단면적A after : Strip cross section of trailing coil

용접점이 통전롤러 사이를 완전히 빠져나갈 때까지의 리플로우에 투입하는 변동하는 전기저항에 맞추어 전류를 가변함으로써 급냉탱크(Quenching Tank; 5)에 입수하기 직전 목표온도(T0)가 소재 규격이 다른 인접 코일이 천이구간을 지날 때에도 일정하게 유지될 수 있다The target temperature (T 0 ) just before getting into the quenching tank (5) differs in material specifications by varying the current according to the fluctuating electrical resistance input to the reflow until the welding point completely passes between the energizing rollers. It can be kept constant even when adjacent coils cross the transition section

이상에서 살펴 본 바와 같이, 본 발명에 따르면, 단면적이 다른 인접 코일간 용접부가 통전롤러 사이를 통과할 때 용접점 트래킹에 의한 스트립 저항과 소요열량 및 투입전류량을 가변시킴으로써 목표온도의 변동을 억제하고 이 구간 내에서의 발생 가능한 합금량 과다 또는 부족, 그리고 표면품질결함 등을 방지할 수 있는 효과가 있다.As described above, according to the present invention, the variation of the target temperature is suppressed by varying the strip resistance, the required heat amount and the input current amount by the welding point tracking when the welding part between adjacent coils having different cross-sectional areas passes between the energizing rollers. There is an effect that can prevent excessive or insufficient amount of alloy, and surface quality defects that can occur in this section.

Claims (1)

연속 전기도금 공정의 리플로우 공정에 있어서 소재 규격이 다른 인접 용접부가 통전롤러(1,2)를 통과하는 경우 온도변동을 방지하는 제어방법에 있어서,In a control method of preventing temperature fluctuations when adjacent welds having different material specifications pass through the energizing rollers (1, 2) in a reflow process of a continuous electroplating process, 용접점 트래킹에 따라 입측 통전롤러(1)로부터의 용접점 거리를 판단하고, 다음의 수식에 의해 스트립 저항과 소요열량(Q) 및 투입전류량(I)을 연산하여 제어하는 것을 특징으로 하는 전기도금공정에서 통전 리플로우 전류제어방법.Electroplating, characterized in that the welding point distance from the entry energizing roller (1) according to the welding point tracking, and calculates and controls the strip resistance, required heat (Q) and input current (I) by the following equation. Method of controlling energized reflow current in the process. (watts) (watts) v: 라인속도(mpm)v: line speed (mpm) TAVG: 입측롤러전온도와 목표온도간 평균온도T AVG : Average temperature between front side roller and target temperature ΔT: 승온 온도,ΔT: elevated temperature, C1,C2: 계수C1, C2: coefficient A: 스트립 단면적A: strip cross section ρ: 스트립 비저항율ρ: strip resistivity L: 입측롤러에서 급냉탱크까지의 거리L: Distance from the entry roller to the quench tank Abefore: 선행코일의 스트립 단면적A before : Strip cross section of the preceding coil Aafter: 후행코일의 스트립 단면적A after : Strip cross section of trailing coil
KR1020020051448A 2002-08-29 2002-08-29 Method for controling the current of conduction reflow in the plating process KR100949723B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020051448A KR100949723B1 (en) 2002-08-29 2002-08-29 Method for controling the current of conduction reflow in the plating process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020051448A KR100949723B1 (en) 2002-08-29 2002-08-29 Method for controling the current of conduction reflow in the plating process

Publications (2)

Publication Number Publication Date
KR20040019737A true KR20040019737A (en) 2004-03-06
KR100949723B1 KR100949723B1 (en) 2010-03-25

Family

ID=37324496

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020051448A KR100949723B1 (en) 2002-08-29 2002-08-29 Method for controling the current of conduction reflow in the plating process

Country Status (1)

Country Link
KR (1) KR100949723B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928979B1 (en) * 2002-12-23 2009-11-26 주식회사 포스코 Combination Reflow Control Method of Tin Plating Process
CN104419974B (en) * 2013-08-19 2017-06-16 柳广德 Electric slurry polishing can be carried out continuously for bundled stainless steel wire and reduce the installation method of surface roughness

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641795A (en) * 1992-07-22 1994-02-15 Nkk Corp Plating current controlling method
KR100278622B1 (en) * 1993-09-28 2001-02-01 윤종용 High power semiconductor laser and manufacturing method
KR100236177B1 (en) * 1995-12-29 1999-12-15 이구택 Current flowing device and method for carosel type electro-plating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928979B1 (en) * 2002-12-23 2009-11-26 주식회사 포스코 Combination Reflow Control Method of Tin Plating Process
CN104419974B (en) * 2013-08-19 2017-06-16 柳广德 Electric slurry polishing can be carried out continuously for bundled stainless steel wire and reduce the installation method of surface roughness

Also Published As

Publication number Publication date
KR100949723B1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
RU2709494C1 (en) Compact homogenization line by continuous annealing
US6180933B1 (en) Furnace with multiple electric induction heating sections particularly for use in galvanizing line
US20170002438A1 (en) Continuous processing line for processing a non-magnetic metal strip including a galvannealing section and method for induction heating of said strip in said galvannealing section
KR100949723B1 (en) Method for controling the current of conduction reflow in the plating process
KR101252640B1 (en) Induction heating apparatus and method
KR100928979B1 (en) Combination Reflow Control Method of Tin Plating Process
CN104066859B (en) The method of the metallic coating on refining steel band
KR20190054960A (en) Induction Heated Roll Apparatus
KR101070268B1 (en) Control method for combination reflow brightening of tin plating process
JPH02254146A (en) Induction heating device, induction heating-type alloying furnace, and alloying method
CN117120639A (en) Continuous annealing apparatus, continuous annealing method, method for producing cold-rolled steel sheet, and method for producing plated steel sheet
JP4630130B2 (en) Electrical heating method for steel strip
KR101051325B1 (en) Reflow equipment and method for tin plating process treatment of metal plate
KR101086317B1 (en) Deivce for compensating the strip temperature of the conduction reflow brightening of tin plating process
JP4630134B2 (en) Electrical heating method for steel strip
JP2005248208A (en) Method for controlling sheet temperature of galvannealed steel sheet during induction heating it
Waggott et al. Transverse flux induction heating of aluminiumalloy strip
JP2004197210A (en) Method and apparatus for manufacturing tin-electroplated sheet
JP5067428B2 (en) Method for producing electrotinned steel sheet
JPH06228790A (en) Method for reflowing thin coating surface density tin electroplated steel strip
JP2576328B2 (en) Reflow control method for continuous tin plating equipment
KR20020041078A (en) Apparatus for equalizing the temperature along the width of ga strip
KR20020040945A (en) Electric power control method of an induction heating furnace for controlling alloy of zinc coated steel
JPH04235268A (en) Production of alloying galvannealed steel sheet
JPH08246122A (en) Control method of induction heating alloying furnace

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130319

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140318

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160318

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170320

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180208

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190311

Year of fee payment: 10