KR20040014288A - Method for manufacturing highly- crystallized oxide powder - Google Patents

Method for manufacturing highly- crystallized oxide powder Download PDF

Info

Publication number
KR20040014288A
KR20040014288A KR1020030054252A KR20030054252A KR20040014288A KR 20040014288 A KR20040014288 A KR 20040014288A KR 1020030054252 A KR1020030054252 A KR 1020030054252A KR 20030054252 A KR20030054252 A KR 20030054252A KR 20040014288 A KR20040014288 A KR 20040014288A
Authority
KR
South Korea
Prior art keywords
powder
raw material
oxide
material powder
carrier gas
Prior art date
Application number
KR1020030054252A
Other languages
Korean (ko)
Other versions
KR100571622B1 (en
Inventor
아키모토유지
나카무라마사미
나가시마가즈로
Original Assignee
소에이 가가쿠 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002230595A external-priority patent/JP4360070B2/en
Priority claimed from JP2002249781A external-priority patent/JP4207501B2/en
Application filed by 소에이 가가쿠 고교 가부시키가이샤 filed Critical 소에이 가가쿠 고교 가부시키가이샤
Publication of KR20040014288A publication Critical patent/KR20040014288A/en
Application granted granted Critical
Publication of KR100571622B1 publication Critical patent/KR100571622B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • C01B13/185Preparing mixtures of oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • C01B13/322Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process of elements or compounds in the solid state
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/241Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion containing two or more rare earth metals, e.g. NdPrO3 or LaNdPrO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0532Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing sulfate-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • C01G9/03Processes of production using dry methods, e.g. vapour phase processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/04Compounds with a limited amount of crystallinty, e.g. as indicated by a crystallinity index
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Abstract

PURPOSE: A method for producing high crystallinity multiple oxide powder of high dispersion which has no intrusion of impurities, and has a uniform grain size at a low cost and with simple equipment is provided. CONSTITUTION: The method for producing high crystallinity multiple oxide powder comprises the steps of injecting raw material powder including two or more kinds of metal elements and/or semimetal elements including multiple oxide in individual grains at fixed compositional ratios into a reaction vessel through a nozzle together with a carrier gas; and, in a state where the raw material powder is dispersed into a vapor phase at a concentration of less than or equal to 10 g/L, performing heating at a temperature higher than the decomposition temperature or reaction temperature thereof, and also, at a temperature satisfying (Tm/2) deg.C or higher provided that the melting point of the multiple oxide to be produced is defined as Tm/2 deg.C to produce the multiple oxide powder.

Description

고결정성 산화물분말의 제조방법{METHOD FOR MANUFACTURING HIGHLY- CRYSTALLIZED OXIDE POWDER}Manufacturing method of high crystalline oxide powder {METHOD FOR MANUFACTURING HIGHLY- CRYSTALLIZED OXIDE POWDER}

본 발명은, 결정성이 높은 금속산화물분말, 반금속산화물분말, 또는 2종 이상의 금속원소 및/또는 반금속원소를 포함하는 복산화물분말의 제조방법에 관한 것이다. 특히, 형광체재료, 유전체재료, 자성체재료, 도체재료, 반도체재료, 초전도체재료, 압전체재료, 자기기록재료, 이차전지용 양극재료, 전자파흡수재료, 촉매재료 등의 엘렉트로닉스용 기능성 재료나, 그들의 제조용 원료, 또는 여러 분야에서 사용되는 공업재료로서 유용한, 고순도이고 균일한 입도를 갖는, 고분산성 고결정성 산화물분말의 제조방법에 관한 것이다.The present invention relates to a metal oxide powder having high crystallinity, a semimetal oxide powder, or a method for producing a double oxide powder containing two or more metal elements and / or semimetal elements. In particular, functional materials for electronics such as phosphor materials, dielectric materials, magnetic materials, conductor materials, semiconductor materials, superconductor materials, piezoelectric materials, magnetic recording materials, anode materials for secondary batteries, electromagnetic wave absorbing materials and catalyst materials, and raw materials for their manufacture The present invention relates to a method of producing a highly dispersible high crystalline oxide powder having high purity and uniform particle size, which is useful as an industrial material used in various fields.

기능성재료로서 사용되는 금속산화물, 반금속산화물, 및 2종 이상의 금속원소 및/또는 반금속원소를 포함하는 복산화물의 분말(다른 언급이 없는한, 이하 "산화물분말"이라 한다)은, 그 기능을 충분히 발휘시키기 위해서, 고순도이고, 조성적으로 균일하고, 결정성이 높은 것이 요구된다. 특히, 발광강도 등의 형광특성 향상을 위해서는, 불순물이 적고, 입자의 표면 및 내부에 결함이나 격자변형이 없고, 조성적으로 균질하고, 특히 미량의 활성원소가 균일하게 분포하고 있으며, 바람직하게는 단일결정상으로 이루어진, 고결정성 산화물분말이 요구된다.Powders of complex oxides containing metal oxides, semimetal oxides, and two or more metal elements and / or semimetal elements (hereinafter, referred to as "oxide powder") used as functional materials, function as In order to exert sufficiently, high purity, compositional uniformity and high crystallinity are required. In particular, in order to improve fluorescence properties such as light emission intensity, there are few impurities, there are no defects or lattice deformations on the surface and inside of the particles, they are compositionally homogeneous, and in particular, trace amounts of active elements are uniformly distributed. There is a need for a highly crystalline oxide powder consisting of a single crystalline phase.

또한, 산화물분말을 소결 프로세스에 의해 성형, 열처리하여 소결체로 하는 경우에도, 원료인 산화물분말의 특성제어가 중요하다. 예를 들면, 뛰어난 자기적특성 및 기계적강도를 가진 고성능 산화물코어나 산화물영구자석을 얻기 위해서는, 원료가 되는 산화물분말이, 균일한 입도를 갖고, 등방형상이고, 단결정인 미세입자로 구성되는 것이 요구된다.In addition, even when the oxide powder is molded and heat treated by a sintering process to form a sintered body, it is important to control the characteristics of the oxide powder as a raw material. For example, in order to obtain a high performance oxide core or an oxide permanent magnet having excellent magnetic properties and mechanical strength, it is required that the oxide powder serving as a raw material be composed of fine particles having uniform particle size, isotropic shape and single crystal. do.

또한, 산화물분말을 수지 등의 매트릭스중에 분산시켜 두꺼운 막 페이스트, 잉크, 도료, 시트, 압분체, 그 밖의 복합재료로서 사용하는 경우에는, 산화물 본래의 특성의 향상에 더하여, 분산성, 충전성, 가공성을 좋게 하기 위해서, 입자형상 및 입자지름이 균일하고, 입자가 응집하지 않는 것이 중요하다. 특히, 두꺼운 막 페이스트용으로는, 응집이 없고, 입도분포가 좁은, 평균입자지름이 0.1∼10㎛ 정도의 미세한 단분산분말인 것이 바람직하다.In addition, in the case where the oxide powder is dispersed in a matrix such as a resin and used as a thick film paste, ink, paint, sheet, green compact, or other composite material, in addition to the improvement of the original characteristics of the oxide, dispersibility, packing property, In order to improve workability, it is important that the particle shape and particle diameter are uniform and that the particles do not aggregate. In particular, for thick film pastes, it is preferable that they are fine monodisperse powders having no agglomeration and having a narrow particle size distribution and having an average particle diameter of about 0.1 to 10 m.

종래, 산화물분말은, 고상(solid-phase)반응법, 기상(gas-phase)반응법, 액상(liquid-phase)반응법 및 분무열분해법에 의해 제조되어 왔다.Conventionally, oxide powders have been prepared by solid-phase reaction, gas-phase reaction, liquid-phase reaction and spray pyrolysis.

고상반응법에서는, 옥살산염, 탄산염, 산화물 등의 원료분말을 혼합한 것을 도가니 등의 소성용기에 넣어 고온에서 장시간 가열함으로써 고상반응을 일으키고, 그것을 볼 밀 등으로 분쇄처리한다. 그러나, 이 방법으로 제조된 산화물분말은, 입자형상이 불규칙하고, 입도분포가 큰 응집체로 이루어진다. 또한, 도가니 또는 분쇄공정으로부터의 불순물 혼입이 많다. 또한, 복산화물 제조시에는, 조성의 균질성을 높이기 위해 고온에서 장시간의 처리를 필요로 한다. 그 결과, 효율이 나쁘다. 더욱이, 분쇄처리중에 받은 물리적 충격 및 화학적 반응에 의해 입자표면이 변질하고, 입자표면 및 내부에 결함이 많이 발생한다. 그 결과, 결정성의 저하나, 산화물이 원래 가진 물리적특성의 저하를 초래한다.In the solid phase reaction method, a mixture of raw powders such as oxalate, carbonate and oxide is placed in a baking vessel such as a crucible and heated at a high temperature for a long time to cause a solid phase reaction, which is ground by a ball mill or the like. However, the oxide powder produced by this method is composed of aggregates having irregular particle shapes and large particle size distribution. In addition, many impurities are mixed from the crucible or the grinding process. In addition, in the preparation of the complex oxide, a long time treatment is required at a high temperature in order to increase the homogeneity of the composition. As a result, the efficiency is bad. Moreover, the particle surface is deteriorated by physical impact and chemical reactions received during the grinding process, and many defects are generated on the particle surface and inside. As a result, a decrease in crystallinity and a decrease in physical properties originally possessed by the oxide are caused.

금속 또는 금속화합물의 증기를 기상속에서 반응시키는 기상반응법으로는, 미세한 산화물분말을 제조하는 것이 가능하다. 그러나, 비용이 비쌀 뿐만 아니라, 얻어지는 분말은 응집하기 쉽고, 더구나 입자지름의 제어가 곤란하다.As a gas phase reaction method in which a vapor of a metal or metal compound is reacted in a gaseous phase, it is possible to produce a fine oxide powder. However, not only is it expensive, but the powder obtained is easy to aggregate, and it is difficult to control the particle diameter.

액상반응법의 예로는 액상침전법, 열수법, 무기염이나 알콕시드의 가수분해 등에 의한 것을 들 수 있다. 이들 방법으로 비교적 표면변질이 없고, 결정성이 높은 산화물미분말을 얻는다. 그러나, 응집이 없고, 분산성이 높은 미분말을 생산하는 것이 어렵다. 또한, 고순도의 원료가 필요하고, 반응이나 분리조작에 장시간을 요하는 등 제조비용이 비싸진다.Examples of the liquid phase reaction method include those by liquid phase precipitation, hydrothermal methods, hydrolysis of inorganic salts and alkoxides, and the like. These methods yield oxide fine powders that are relatively free of surface modification and have high crystallinity. However, it is difficult to produce fine powder having no aggregation and high dispersibility. In addition, high-purity raw materials are required, and manufacturing costs are expensive, such as requiring a long time for reaction or separation operation.

분무열분해법은, 금속화합물을 물 또는 유기용매에 용해, 또는 분산시킨 용액을 분무하여 미세한 액체방울을 얻고, 그 액체방울을 금속산화물을 석출시킬 수 있는 조건하에서 가열하여 금속산화물분말을 생성시키는 방법이다. 이 방법으로는, 응집이 없는 미세한 단분산입자를 얻을 수 있고, 불순물의 혼입도 적다. 또한, 원료가 용액이기 때문에, 각 금속성분을 임의의 비율로 균일하게 혼합할 수 있다. 따라서, 이 방법이 복산화물분말의 제조방법으로서 적합하다고 생각된다. 예를 들면, 일본특허공개2001-152146호 공보에는, 이 방법으로 발광특성이 뛰어난 형광체 미분말을 제조하는 것이 기재되어 있다.Spray pyrolysis is a method of spraying a solution obtained by dissolving or dispersing a metal compound in water or an organic solvent to obtain fine droplets, and heating the droplets under the conditions in which metal oxides can be precipitated to produce metal oxide powder. to be. In this method, fine monodisperse particles without aggregation can be obtained, and impurities are also less mixed. Moreover, since a raw material is a solution, each metal component can be mixed uniformly at arbitrary ratios. Therefore, this method is considered to be suitable as a method for producing a complex oxide powder. For example, Japanese Patent Laid-Open No. 2001-152146 discloses producing a fine phosphor powder having excellent light emission characteristics by this method.

그러나, 분무열분해법은 원료인 금속화합물을 액체방울로 하기 위해서, 물이나, 알코올, 아세톤, 에테르 등의 유기용매를 대량으로 사용한다. 따라서, 용매를 증발시키는 데에 막대한 에너지를 요하여, 열분해시의 에너지 손실이 커져 비용이 비싸진다. 더욱이, 용매의 분해때문에, 열분해시의 분위기제어가 어렵다. 또한, 반응용기내에서 액체방울의 합일이나 분열이 일어나는 것에 의해, 생성되는 입자의 입도분포가 커지는 경우가 있다. 이 때문에, 분무속도, 캐리어가스내에서의 액체방울 농도, 반응용기속에서의 체류시간 등, 반응조건의 설정이 어렵고, 생산성도 나쁘다. 더욱이, 이 방법으로는 출발원료가 용액화 또는 현탁액화할 수 있는 것으로 한정된다. 따라서, 원료물질의 조성범위, 농도에 제한이 있어, 제조할 수 있는 산화물분말의 종류가 한정된다.However, the spray pyrolysis method uses a large amount of organic solvents such as water, alcohol, acetone and ether in order to make the metal compound as a liquid droplet into a liquid. Therefore, enormous energy is required to evaporate the solvent, and the energy loss during pyrolysis is large, resulting in high cost. Moreover, due to decomposition of the solvent, it is difficult to control the atmosphere during thermal decomposition. Moreover, the particle size distribution of the produced | generated particle | grains may become large by the coalescence and division | segmentation of a droplet in a reaction container. For this reason, it is difficult to set reaction conditions such as spray rate, droplet concentration in the carrier gas, residence time in the reaction vessel, and poor productivity. Moreover, this method is limited to being capable of solution or suspension of starting materials. Therefore, the composition range and concentration of the raw material are limited, and the kind of oxide powder that can be produced is limited.

본 발명의 목적은, 불순물의 혼입이 없고, 입도가 균일한 고분산성 고결정성 산화물분말을, 저비용이고 또한 간단한 공정으로 제조하는 것에 있다. 특히, 조성의 균질성, 높은 결정성이 강하게 요구되는 형광체 등의 기능성 산화물분말, 또는 기능성 세라믹스나 기능성 복합재료의 원료로서 알맞은 산화물분말의 제조방법을 제공하는 것을 목적으로 한다. 또 다른 목적은, 형광체 페이스트 등의 두꺼운 막 페이스트, 잉크, 페인트 등에 알맞은 형상, 입도를 가지며, 입도가 균일한 고순도, 고분산, 고결정성의 산화물분말을 얻는 것에 있다.An object of the present invention is to produce a highly dispersible high crystalline oxide powder having no impurities mixed therein and having a uniform particle size in a low cost and simple process. In particular, it is an object of the present invention to provide a method for producing a functional oxide powder, such as a phosphor, for which homogeneity and high crystallinity of composition is strongly required, or an oxide powder suitable as a raw material for a functional ceramic or a functional composite material. Still another object is to obtain an oxide powder having a shape and particle size suitable for thick film paste such as phosphor paste, ink, paint, etc., and having a uniform particle size.

본 발명의 요지는, 다음과 같다.The gist of the present invention is as follows.

1. 산화물을 구성하는 금속원소 및 반금속원소로 이루어지는 군에서 선택된적어도 1종 원소를 포함하는 원료분말을, 캐리어가스와 같이 노즐을 통해서 반응용기속에 분출시키고; 해당 원료분말을 10g/L 이하의 농도로 기상(gas phase)중에 분산시킨 상태에서, 그 분해온도 또는 반응온도보다 높고, 또한 생성되는 산화물의 융점을 Tm℃로 하였을 때, (Tm/2)℃ 이상의 온도로 가열하는 것을 특징으로 하는, 고결정성 산화물분말의 제조방법.1. A raw material powder containing at least one element selected from the group consisting of metal elements and semimetal elements constituting the oxide is blown into the reaction vessel through a nozzle such as a carrier gas; When the raw powder is dispersed in the gas phase at a concentration of 10 g / L or less, when the melting point of the oxide that is higher than its decomposition temperature or reaction temperature and the produced oxide is Tm 占 폚 is (Tm / 2) 占 폚. It is heated to the above temperature, The manufacturing method of the high crystalline oxide powder characterized by the above-mentioned.

2. 상기 1항에 있어서, 원료분말을 반응용기속에 분출시킬 때의 조건이, 캐리어가스의 단위시간당의 유량을 V(L/min), 노즐의 개구부의 단면적을 S(㎠)로 하였을 때, V/S > 600인 것을 특징으로 하는 제조방법.2. The condition according to the above 1, wherein when the raw material powder is ejected into the reaction vessel, the flow rate per unit time of the carrier gas is V (L / min) and the cross-sectional area of the opening of the nozzle is S (cm 2). V / S> 600 manufacturing method characterized in that.

3. 상기 1 또는 2항에 있어서, 원료분말을 노즐을 통해서 반응용기속에 분출시키기 전에, 분산기를 사용하여 캐리어가스중에 혼합, 분산시키는 것을 특징으로 하는 제조방법.3. The method according to the above 1 or 2, wherein the raw material powder is mixed and dispersed in the carrier gas using a disperser before the raw material powder is ejected into the reaction vessel through the nozzle.

4. 상기 1 내지 3항중의 어느 한 항에 있어서, 원료분말의 입도가 미리 조정된 것을 특징으로 하는 제조방법.4. The production method according to any one of 1 to 3, wherein the particle size of the raw material powder is adjusted in advance.

5. 상기 1 내지 4항중의 어느 한 항에 있어서, 원료분말이 금속원자 및 반금속원자로 이루어지는 군에서 선택된 적어도 2종 원소를 원료분말 개개의 입자내에 실질적으로 일정한 조성비로 포함하고, 제조된 산화물이 복산화물인 것을 특징으로 하는 제조방법.5. The oxide according to any one of the above items 1 to 4, wherein the raw material powder contains at least two elements selected from the group consisting of metal atoms and semimetal atoms in substantially uniform composition ratios in the individual particles of the raw material powder. Method for producing a complex oxide.

6. 상기 1 내지 5항중 어느 한 항에 있어서, 원료분말을 구성하는 각 입자가, 금속원소 및 반금속원소로 이루어지는 군에서 선택된 적어도 2종원소 또는 금속, 반금속, 및 그 화합물로 이루어지는 군에서 선택된 적어도 2종을 포함하는 복합물을 포함하는 합금으로 이루어지거나, 또는 금속원소 및 반금속원소로 이루어지는 군에서 선택된 적어도 2종원소를 포함하는 단일화합물로 이루어지는 것을 특징으로 하는 제조방법.6. The particle according to any one of 1 to 5, wherein each particle constituting the raw material powder is at least two selected from the group consisting of metal elements and semimetal elements, or in the group consisting of metals, semimetals, and compounds thereof. A method of producing an alloy comprising at least two selected from the group consisting of an alloy comprising a composite comprising at least two selected or metal or semi-metal elements.

7. 산화물을 구성하는 금속원소 및 반금속원소로 이루어지는 군에서 선택된 적어도 2종 원소를 원료분말 개개의 입자내에 실질적으로 일정한 조성비로 포함하는 원료분말을 제조하고;7. To prepare a raw material powder comprising at least two elements selected from the group consisting of metal elements and semimetal elements constituting the oxide in the material powders at substantially constant composition ratios;

상기 원료분말을 포집하고;Collecting the raw powder;

포집한 원료분말을 분산기를 사용하여 캐리어가스중에 분산시키고;The collected raw powder is dispersed in a carrier gas using a disperser;

분산된 원료분말을 포함하는 캐리어가스를 노즐을 통해서 반응용기속에 분출시키고;Spraying a carrier gas containing the dispersed raw powder into the reaction vessel through a nozzle;

해당 원료분말을 10g/L 이하의 농도로 기상(gas phase)중에 분산시킨 상태에서, 그 분해온도 또는 반응온도보다 높고, 또한 생성되는 복산화물의 융점을 Tm℃로 하였을 때, (Tm/2)℃ 이상의 온도로 가열하여 복산화물분말을 제조하는 것을 포함하여 이루어지는, 고결정성 산화물분말의 제조방법.When the raw material powder is dispersed in the gas phase at a concentration of 10 g / L or less, when the melting point of the complex oxide that is higher than its decomposition temperature or reaction temperature and the produced double oxide is (Tm / 2), (Tm / 2) A method for producing a highly crystalline oxide powder, comprising heating to a temperature of at least C to produce a complex oxide powder.

8. 상기 7항에 있어서, 분산된 원료분말을 포함하는 캐리어가스를 반응용기속에 분출시킬 때의 조건이, 캐리어가스의 단위시간당의 유량을 V(L/min), 노즐의 개구부의 단면적을 S(㎠)로 하였을 때, V/S > 600인 것을 특징으로 하는 제조방법.8. The condition for spraying the carrier gas containing the dispersed raw material powder into the reaction vessel according to the above 7, wherein the flow rate per unit time of the carrier gas is V (L / min), and the cross-sectional area of the opening of the nozzle is S. When (cm 2), V / S> 600, characterized in that the manufacturing method.

9. 상기 7 또는 8항에 있어서, 원료분말을 캐리어가스내에 분산시키기 전, 또는 분산시킨 후에, 분쇄기를 사용하여 입도를 미리 조정하는 것을 특징으로 하는 제조방법.9. The production method according to 7 or 8 above, wherein the raw material powder is adjusted beforehand or after dispersing in the carrier gas using a grinder.

10. 상기 7 내지 9항중의 어느 한 항에 있어서, 원료분말을 구성하는 각 입자가, 금속원소 및 반금속원소로 이루어지는 군에서 선택된 적어도 2종원소 또는 금속, 반금속, 및 그 화합물로 이루어지는 군에서 선택된 적어도 2종을 포함하는 복합물을 포함하는 합금으로 이루어지거나, 또는 금속원소 및 반금속원소로 이루어지는 군에서 선택된 적어도 2종원소를 포함하는 단일화합물로 이루어지는 것을 특징으로 하는 제조방법.10. The group according to any one of items 7 to 9, wherein each particle constituting the raw material powder is composed of at least two elements selected from the group consisting of metal elements and semimetal elements, or metals, semimetals, and compounds thereof. A method of producing an alloy comprising at least two elements selected from the group consisting of an alloy comprising a composite comprising at least two selected from or a metal element and a semimetal element.

11. 상기 1 내지 10항중의 어느 한 항의 방법으로 제조된 고결정성 산화물분말.11. A highly crystalline oxide powder prepared by the method of any one of 1 to 10 above.

12. 상기 1 내지 10항중의 어느 한 항의 방법으로 제조된 고결정성 형광체 산화물분말.12. A highly crystalline phosphor oxide powder prepared by the method of any one of 1 to 10 above.

13. 상기 12항의 고결정성 형광체 산화물분말을 포함하는 형광체조성물.13. A phosphor composition comprising the highly crystalline phosphor oxide powder of 12 above.

14. 산화물을 구성하는 금속원소 및 반금속원소로 이루어지는 군에서 선택된 적어도 1종 원소를 포함하는 원료분말을, 캐리어가스와 같이 반응용기속에 공급하고; 해당 원료분말을 10g/L 이하의 농도로 기상(gas phase)중에 분산시킨 상태에서, 그 분해온도 또는 반응온도보다 높고, 또한 생성되는 산화물의 융점에 가깝거나 그 이상의 온도로 가열하는 것을 특징으로 하는, 단일결정상 산화물분말의 제조방법.14. A raw material powder containing at least one element selected from the group consisting of metal elements and semimetal elements constituting an oxide is supplied to a reaction vessel, such as a carrier gas; The raw material powder is dispersed in the gas phase at a concentration of 10 g / L or less, and is heated to a temperature higher than its decomposition temperature or reaction temperature and near or above the melting point of the oxide produced. Method for producing monocrystalline oxide powder.

15. 상기 14항의 방법으로 제조된 단일결정상 산화물분말.15. A monocrystalline oxide powder prepared by the method of item 14 above.

[발명의 실시의 형태][Embodiment of the Invention]

본 발명에 있어서, 산화물분말의 구성성분이 되는 금속원소 및 반금속원소(이하 "금속원소"라고 한다)는 특히 한정되지 않는다. 예를 들면, 알칼리금속, 알칼리토금속, Al, Ga, In, Sn, Tl, Pb 등의 전형금속원소, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Hf, Ta, W, Ag, Au, 플라티늄족 금속 등의 천이금속원소, Y, La, Ce, Gd, Eu, Tb, Sm, Pr, Yb 등의 란탄계 희토류금속원소, P, Si, B, Ge, Sb, Bi 등의 반금속원소 등, 통상 산화물을 만드는 원소가 선택된다.In the present invention, the metal element and semimetal element (hereinafter, referred to as "metal element") serving as components of the oxide powder are not particularly limited. For example, typical metal elements such as alkali metal, alkaline earth metal, Al, Ga, In, Sn, Tl, Pb, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo Transition metal elements such as Hf, Ta, W, Ag, Au, platinum group metals, and lanthanum rare earth metal elements such as Y, La, Ce, Gd, Eu, Tb, Sm, Pr, Yb, P, Si, B Elements such as semimetals such as, Ge, Sb, and Bi are usually selected to form an oxide.

본 발명방법에 의해, 금속산화물분말, 반금속산화물분말, 복산화물분말 등의 여러가지 산화물분말이 제조가능하고, 산화물의 종류는 특히 한정되지 않는다. 예를 들면, Si02, Al203, TiO2, Fe304, Fe203, CoO, Co304, NiO, Cu20, CuO, ZnO, Li2O, BaO, Y203, La2O3, RuO2, Ta205, Ce02, SnO2, In2O3등이 있다. 이하 복산화물은 금속원소 및 반금속원소에서 선택된 적어도 2종 원소와, 산소로 구성되는 것을 말한다. 예를 들면, SrAl2O4:Eu, (Sr,Ca)B4O7:Eu, Y2SiO5:Ce, BaMgAl10017:Eu, BaAl12O19:Mn, Y3Al5O12:Ce, Y3Al5O12:Tb, Zn2Si04:Mn, InBO3:Tb, Y203:Eu, InBO3:Eu, YVO4:Eu, Mg2SiO4:Mn, Zn3(PO4)2:Mn, (Y,Gd)BO3:Eu, (Y,Gd)BO3:Tb, SrTiO3:Eu, ZnO-LiGaO2등의 형광체재료, BaTiO3, SrTiO3, Pb(Mg1/3Nb2/3)O3, PZT, PLZT 등의 유전체재료나 압전체재료, 페라이트 등의 자성체재료, Pb2Ru2O6, ITO 등의 도전체재료, YBa2Cu3Oy등의 초전도체재료, LiMn2O4, Li3V2(PO4)3, Li3Fe2(PO4)3, LiCoO2, LiNiO2, LiMn2O4, LaCoO3, LaMnO3등의 이차전지용 양극재료, La1-xSrx+yCrO3등의 고체전해질형 연료전지의 전극재료, BaTi4O9, Nb6O17, CuAlO2등의 광촉매재료 또는 광기능성재료 등이 있다.According to the method of the present invention, various oxide powders such as metal oxide powder, semimetal oxide powder, and double oxide powder can be produced, and the type of oxide is not particularly limited. For example, Si0 2 , Al 2 0 3 , TiO 2 , Fe 3 0 4 , Fe 2 0 3 , CoO, Co 3 0 4 , NiO, Cu 2 0, CuO, ZnO, Li 2 O, BaO, Y 2 0 3 , La 2 O 3 , RuO 2 , Ta 2 0 5 , Ce0 2 , SnO 2 , In 2 O 3, and the like. Hereafter, the complex oxide refers to at least two elements selected from metal elements and semimetal elements, and oxygen. For example, SrAl 2 O 4 : Eu, (Sr, Ca) B 4 O 7 : Eu, Y 2 SiO 5 : Ce, BaMgAl 10 0 17 : Eu, BaAl 12 O 19 : Mn, Y 3 Al 5 O 12 : Ce, Y 3 Al 5 O 12 : Tb, Zn 2 Si0 4 : Mn, InBO 3 : Tb, Y 2 0 3 : Eu, InBO 3 : Eu, YVO 4 : Eu, Mg 2 SiO 4 : Mn, Zn 3 (PO 4 ) 2 : Mn, (Y, Gd) BO 3 : Eu, (Y, Gd) BO 3 : Tb, SrTiO 3 : Eu, ZnO-LiGaO 2 phosphor materials such as BaTiO 3 , SrTiO 3 , Pb ( Mg 1/3 Nb 2/3 ) Dielectric materials such as O 3 , PZT, PLZT, piezoelectric materials, magnetic materials such as ferrite, conductor materials such as Pb 2 Ru 2 O 6 , ITO, YBa 2 Cu 3 O y, etc. Superconductor materials, such as LiMn 2 O 4 , Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LaCoO 3 , LaMnO 3 Materials, electrode materials for solid electrolyte fuel cells such as La 1-x Sr x + y CrO 3 , photocatalyst materials such as BaTi 4 O 9 , Nb 6 O 17 , CuAlO 2 , or photofunctional materials.

본 발명에 있어서, 원료분말로서, 금속, 반금속, 금속화합물 및 반금속화합물로 이루어진 군에서 선택된 적어도 1종을 함유하는 분말을 준비한다. 금속이나 반금속화합물의 분말로는, 수산화물, 질산염, 황산염, 옥시질산염, 옥시황산염, 할로겐화물, 탄산염, 붕산염, 규산염, 암모늄염, 암모늄착체, 인산염, 카르본산염, 수지산염, 술폰산염, 아세틸아세토네이트, 알콕시드, 아미드화합물, 이미드화합물, 요소화합물 등의 무기화합물 또는 유기화합물의 분말이 사용된다. 붕소, 규소, 인 등의 반금속원소 화합물의 적당한 예로는, 붕산, 인산, 규산 등이 있다.In the present invention, as a raw material powder, a powder containing at least one selected from the group consisting of metals, semimetals, metal compounds and semimetal compounds is prepared. Examples of powders of metals and semimetal compounds include hydroxides, nitrates, sulfates, oxynitrates, oxysulfates, halides, carbonates, borates, silicates, ammonium salts, ammonium complexes, phosphates, carbonates, resinates, sulfonates, acetylaceto Powders of inorganic or organic compounds such as nates, alkoxides, amide compounds, imide compounds and urea compounds are used. Suitable examples of semimetal element compounds such as boron, silicon, and phosphorus include boric acid, phosphoric acid and silicic acid.

특히, 복산화물분말의 제조시, 복수의 금속원소가 개개의 입자내에 실질적으로 일정한 조성비로 포함된 분말을 원료분말로서 사용한다. 그 예로는, 착염분말, 다핵착체분말, 알콕시드착체분말, 합금분말, 글라스분말 등의 적어도 2종의 금속원소를 포함하는 단일화합물의 분말을 들 수 있다. 또한, 금속이나 금속화합물의 착화전에 제조되는 코팅된 착체입자 또는 착체입자로 이루어지는 분말을 사용할 수도 있다. 적어도 2종의 원소를 포함하는 복합분말 또는 화합물분말은 하기 방법으로 얻을 수 있다.In particular, in the preparation of the complex oxide powder, a powder containing a plurality of metal elements in a substantially constant composition ratio in each particle is used as the raw material powder. Examples thereof include a powder of a single compound containing at least two metal elements such as complex salt powder, multinuclear complex powder, alkoxide complex powder, alloy powder and glass powder. It is also possible to use coated complex particles or powders made of complex particles prepared before complexing a metal or metal compound. A composite powder or compound powder containing at least two kinds of elements can be obtained by the following method.

(1) 미리 원료가 되는 금속 또는 금속화합물을 혼합하고, 조성적으로 균일하게 될 때까지 열처리한 후 분쇄하는 고상반응법.(1) Solid phase reaction method which mixes the metal or metal compound used as a raw material previously, heat-processes until it becomes uniform uniformly, and grind | pulverizes.

(2) 복수의 금속알콕시드를 반응시켜 공축합한 후, 이것을 가수분해하고, 선택적으로 열처리하여 복산화물 전구체를 얻는 알콕시드법.(2) An alkoxide method in which a plurality of metal alkoxides are reacted and co-condensed, then hydrolyzed and selectively heat treated to obtain a complex oxide precursor.

(3) 복수의 금속화합물을 포함하는 용액에 각종의 침전제로부터 선택된 침전제를 첨가하여, 각 성분이 균일하게 혼합한 침전을 얻는 공침법. 예를 들면, 금속의 질산염용액에 탄산염이나 옥살산염을 첨가하여 반응시키고, 얻어진 침전을 여과, 건조하여, 탄산염이나 옥살산염의 복합체를 얻는다. 또는, 이것을 가소 (calcining)하여 산화물복합체를 얻는다.(3) A coprecipitation method wherein a precipitant selected from various precipitants is added to a solution containing a plurality of metal compounds to obtain a precipitate in which each component is uniformly mixed. For example, carbonate or oxalate is added to the metal nitrate solution for reaction, and the precipitate obtained is filtered and dried to obtain a complex of carbonate or oxalate. Alternatively, this is calcined to obtain an oxide complex.

(4) 복수의 금속화합물을 포함하는 용액에 요소를 첨가하고, 가열하여 반응시켜, 수산화물, 탄산염 등의 균일한 침전을 얻는, 요소균일침전법. 얻어진 침전물을 더욱 가소하여 산화물복합체를 얻을 수도 있다.(4) The urea homogeneous precipitation method, in which urea is added to a solution containing a plurality of metal compounds and heated to react to obtain uniform precipitation of hydroxides, carbonates and the like. The oxide precipitate may be obtained by further calcining the obtained precipitate.

(5) 복수의 금속화합물과, 구연산 등의 수산화카르본산과, 에틸렌글리콜 등의 폴리올을 혼합한 수용액을 가열하여 반응시켜, 균질한 금속착체의 복합중합체를 형성하는 착체중합법.(5) A complex polymerization method wherein a plurality of metal compounds, an aqueous solution of a mixture of carboxylic acids such as citric acid and a polyol such as ethylene glycol are heated to react to form a complex polymer of homogeneous metal complex.

(6) 복수의 금속화합물을 균일하게 포함하는 용액 또는 현탁액을, 분무건조하거나, 또는 분무열분해함으로써, 각 입자내에 복수의 금속원소를 실질적으로 일정한 비로 포함하는 복합분말을 얻는 분무열분해법.(6) A spray pyrolysis method for obtaining a composite powder containing a plurality of metal elements in a substantially constant ratio by spray drying or spray pyrolyzing a solution or suspension containing a plurality of metal compounds uniformly.

특히, 알콕시드법에 의해 얻어진 복산화물 전구체분말, 공침법이나 요소균일침전법 등의 침전법에 의해 얻어진 복산화물 전구체분말, 착체중합법에 의해 얻어진 금속착체의 복합중합체분말, 분무열분해법에 의해 얻어진 복합분말 등을 원료분말로서 사용하면, 조성적으로 극히 균질한 고결정성 복산화물분말을 용이하게 제조할 수 있기 때문에 바람직하다. 이들 방법으로 조제된 원료분말은, 일단 포집된 후, 캐리어가스와 혼합된다.In particular, the complex oxide precursor powder obtained by the alkoxide method, the complex oxide powder obtained by the precipitation method such as coprecipitation method or urea uniform precipitation method, the composite polymer powder of the metal complex obtained by the complex polymerization method, and the spray pyrolysis method obtained It is preferable to use a composite powder or the like as a raw material powder because it is easy to manufacture a highly crystalline double oxide powder that is extremely homogeneous in composition. The raw material powders prepared by these methods are once collected and then mixed with a carrier gas.

원료분말에 융제(flux)성분을 더욱 도입할 수 있다. 상기 융제는 가스상 반응에 있어서 용매로서 작용하지만, 목표인 산화물과 반응하지 않고, 매우 적은 양을 녹이는 것으로 물질의 이동을 증가시켜, 반응을 증가시킨다. 알칼리금속 염화물, 알칼리토금속 염화물, 붕산, 붕산염 등의 전통적인 융제, 예를 들면, 염화나트륨, 불화바륨 등이 이러한 용도로 사용된다. 이들 화합물은 원료분말의 각 입자내로 도입되거나, 원료분말위에 코팅된다.The flux component may be further introduced into the raw powder. The flux acts as a solvent in the gas phase reaction, but does not react with the target oxide, but increases the transport of the material by dissolving very small amounts, thereby increasing the reaction. Conventional fluxes such as alkali metal chlorides, alkaline earth metal chlorides, boric acid, borate salts such as sodium chloride, barium fluoride and the like are used for this purpose. These compounds are introduced into each particle of the raw powder or coated on the raw powder.

캐리어가스로서는, 통상, 공기, 산소, 수증기 등의 산화성가스나, 질소, 아르곤 등의 불활성가스, 이들 혼합가스 등이 사용된다. 가열처리시의 분위기를 환원성분위기로 할 필요가 있는 경우, 수소, 일산화탄소, 메탄, 암모니아가스 등의 환원성가스나, 가열시에 분해하여 환원성분위기를 만들어내는 알코올류, 카르본산류 등의 유기화합물을 혼합하더라도 좋다. 또한, 열분해시에 일산화탄소나 메탄 등을 생성하여 환원성분위기를 만들어낼 수 있는 금속화합물(예를 들면, 착체중합법으로 얻어지는 금속착체의 복합중합체, 알콕시드, 카르본산염)을 원료로서 사용하면, 외부에서 반응계에 환원성가스를 공급하지 않고 환원성분위기로 하는 것도 가능하다.As a carrier gas, oxidizing gases, such as air, oxygen, and steam, an inert gas, such as nitrogen and argon, these mixed gases etc. are used normally. When it is necessary to make the atmosphere at the time of heat processing as a reducing component, reducing compounds, such as hydrogen, carbon monoxide, methane, and ammonia gas, or organic compounds, such as alcohols and carboxylic acids, which decompose upon heating and produce a reducing component crisis You may mix. In addition, when a metal compound (for example, a composite polymer of a metal complex obtained by a complex polymerization method, an alkoxide, a carboxylate) capable of generating carbon monoxide, methane or the like at the time of pyrolysis, is used as a raw material, It is also possible to provide a reducing component crisis without supplying a reducing gas to the reaction system from the outside.

활성제 이온의 가수(valence)를 엄밀히 제어할 필요가 있는 형광체 산화물분말 또는 콘트롤된 산소결손이 필요한 산화물분말을 제조하는 경우, 종래의 수용액을 사용한 분무열분해법에서는, 물의 분해에 의해 노(furnace) 내부의 분위기가 산화성분위기에 가깝게 된다. 따라서, 환원성가스를 도입하더라도 분위기제어가 어렵다. 예를 들면, 2가의 Eu이온이나 3가의 Ce이온 등을 활성제로 하는SrAl204:Eu2+, BaMgAl10O17:Eu2+, Y2SiO5:Ce3+등의 형광체의 경우, 매우 강한 환원성분위기가 필요하다. 따라서, 분무열분해법으로는 상기 분말의 제조가 곤란하다. 이 때문에, 종래는 생성된 분말을 수소함유가스 분위기에서 더욱 열처리하는 등, 공정이 번잡하게 되어 있었다. 그러나, 본 발명에서는 물 등의 용매를 사용하지 않기 때문에, 쉽게 강환원성 분위기를 만들 수 있다. 본 방법은 이와 같이 산화물의 산화의 정도를 엄밀히 콘트롤하고 싶은 경우에, 특히 적합하다.In the case of producing a phosphor oxide powder that requires strict control of the valence of the activator ions or an oxide powder that requires controlled oxygen deficiency, in a spray pyrolysis method using a conventional aqueous solution, the interior of the furnace is formed by decomposition of water. Atmosphere becomes close to the oxidative atmosphere. Therefore, even if a reducing gas is introduced, it is difficult to control the atmosphere. For example, in the case of phosphors such as SrAl 2 O 4 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , Y 2 SiO 5 : Ce 3+ , etc. which use divalent Eu ions or trivalent Ce ions as activators, Very strong reducing component crisis is needed. Therefore, the production of the powder is difficult by spray pyrolysis. For this reason, the process has become complicated in the past, such as further heat-processing the produced powder in a hydrogen containing gas atmosphere. However, in the present invention, since a solvent such as water is not used, a strong reducing atmosphere can be easily created. This method is particularly suitable in the case where it is desired to strictly control the degree of oxidation of the oxide.

본 발명에 있어서는, 고체의 원료분말을 캐리어가스와 함께 노즐을 통해서 반응용기속에 분출시키고, 기상중에 원료분말입자를 고도로 분산시킨 상태에서 가열처리하는 것이 중요하다. 즉, 반응용기내에서는, 원료분말을 원료입자 및 생성입자가 서로 충돌을 일으키지 않도록, 낮은 농도로 분산시킨 상태에서 가열처리를 해야 한다. 이 때문에, 기상중에서의 농도는 10g/L 이하여야 한다. 이보다 농도가 높으면, 입자끼리의 충돌, 소결이 생겨, 입도가 균일한 산화물분말은 얻어지지 않는다. 분산농도는 10g/L 이하이면 특히 제한은 없고, 사용하는 분산장치나 가열장치에 따라서 적절히 결정된다. 그러나, 너무 저농도가 되면 생산효율이 나빠진다. 따라서, 분산농도는 0.01g/L 이상인 것이 바람직하다.In the present invention, it is important that the solid raw material powder is ejected into the reaction vessel together with the carrier gas through the nozzle, and heat-treated in a state where the raw powder particles are highly dispersed in the gas phase. In other words, in the reaction vessel, the raw powder must be heat-treated in a state where the raw powder is dispersed at a low concentration so that the raw particles and the produced particles do not collide with each other. For this reason, the concentration in gaseous phase should be 10 g / L or less. If the concentration is higher than this, collisions between particles and sintering occur, and an oxide powder having a uniform particle size cannot be obtained. There is no restriction | limiting in particular if dispersion concentration is 10 g / L or less, It determines suitably according to the dispersion apparatus and heating apparatus to be used. However, if the concentration is too low, the production efficiency becomes worse. Therefore, it is preferable that dispersion concentration is 0.01 g / L or more.

개개의 원료분말입자를 보다 확실히 분산한 상태로 반응용기내에 공급하기 위해서는, 원료분말을 노즐을 통해서 반응용기속에 분출시키기 전에, 분산기를 사용하여 캐리어가스중에 혼합, 분산시키는 것이 바람직하다. 분산기로서는, 이젝터형(ejector type), 벤츄리형(Venturi type), 오리피스형(orifice type) 등의 공지의 기류식 분산기나 공지의 기류식 분쇄기가 사용된다.In order to supply the individual raw material powder particles into the reaction vessel in a more reliably dispersed state, it is preferable to mix and disperse the raw material powder in the carrier gas using a disperser before ejecting the raw material powder into the reaction vessel through the nozzle. As a disperser, well-known airflow dispersers, such as an ejector type, a Venturi type, an orifice type, and a well-known airflow grinder are used.

보다 바람직하게는, 캐리어가스의 단위시간당 유량을 V(L/min), 노즐의 개구부의 단면적을 S(㎠)로 하였을 때, V/S > 600이 되도록 하는 조건으로, 원료분말을 고속으로 반응용기속에 분출시킨다. 그 결과, 반응용기내에서의 급격한 기체의 팽창에 의해, 원료분말을 재응집 없이, 기상중에 양호하게 분산시킬 수 있다. 노즐에는 특히 제한은 없고, 단면이 원형, 다각형 또는 슬릿형상인 것, 선단이 줄어들고 있는 것, 도중까지 줄어들다가 개구부에서 넓어지고 있는 것 등, 어떠한 형상인 것을 사용하더라도 좋다.More preferably, when the flow rate per unit time of the carrier gas is V (L / min) and the cross-sectional area of the opening of the nozzle is S (cm 2), the raw material powder is reacted at high speed under the condition that V / S> 600. Eject into a container. As a result, the raw material powder can be satisfactorily dispersed in the gas phase without reaggregation by rapid expansion of the gas in the reaction vessel. There is no restriction | limiting in particular in a nozzle, What kind of shape may be used, such as the cross section being circular, polygonal, or slit-shaped, the tip being shortened, and reducing to the middle and widening in an opening part.

본 방법에서는, 기상중에 고도로 분산시킨 상태에서 가열하기 때문에, 원료분말 1입자당 1입자의 산화물분말이 생성된다고 생각된다. 따라서, 생성되는 산화물분말의 입도는 원료분말의 종류에 따라서 달라지지만, 원료분말의 입도에 거의 비례한다. 따라서, 균일한 입자지름의 산화물분말을 얻기 위해서는, 원료분말의 입도가 균일한 것을 사용한다. 원료분말의 입도분포가 넓은 경우는, 분쇄기나 분급기로 분쇄, 세분(comminuting) 또는 분급하여 미리 입도조정을 해 두는 것이 바람직하다. 분쇄기로서는, 기류식분쇄기, 습식분쇄기, 건식분쇄기 등의 어느 것을 사용하더라도 좋다. 또한, 입도의 조정은, 원료분말을 캐리어가스에 분산시키기 전에 행하여도 좋지만, 기류식분쇄기 등을 사용하여 분산시킨 후에, 혹은 분산과 동시에 할 수도 있다.In this method, since it heats in the state disperse | distributed highly in the gaseous phase, it is thought that 1 particle of oxide powder produces | generates per particle of a raw material powder. Therefore, the particle size of the oxide powder produced varies depending on the type of raw material powder, but is almost in proportion to the particle size of the raw material powder. Therefore, in order to obtain an oxide powder having a uniform particle diameter, one having a uniform particle size of the raw material powder is used. When the particle size distribution of the raw material powder is wide, it is preferable to preliminarily adjust the particle size by grinding, comminuting or classifying with a grinder or classifier. As the pulverizer, any of air flow crusher, wet crusher, and dry crusher may be used. The particle size may be adjusted before the raw material powder is dispersed in the carrier gas, but may also be dispersed at the same time as the dispersion using an air flow crusher or the like.

저농도로 원료분말이 분산된 상태를 유지한 채로 가열처리를 하기 위해서는, 예를 들면, 바깥측에서 가열된 관형상의 반응용기를 사용하여, 원료분말을 반응용기의 한쪽 개구부로부터 노즐을 통해서, 캐리어가스와 함께 일정한 유속으로 분출시켜 반응용기내를 통과시킨다. 가열처리되어 생성된 산화물분말은 다른쪽 개구부에서 회수한다. 반응용기내에서의 분말과 캐리어가스의 혼합물의 통과시간은, 분말이 소정의 온도로 충분히 가열되도록, 사용하는 장치(또는 용기)에 따라 설정된다. 통상은 0.3∼30초 정도이다. 가열은 전기로나 가스로 등에 의해 반응용기의 바깥측에서 행하는 외에, 연소가스를 반응용기내로 공급하여 그 연소염을 사용하여도 좋다.In order to heat-treat while maintaining the state which the raw material powder was disperse | distributed to low density | concentration, For example, using a tubular reaction container heated outside, the raw material powder is conveyed through a nozzle from one opening of the reaction container, Along with the gas is blown at a constant flow rate and passed through the reaction vessel. The oxide powder produced by the heat treatment is recovered at the other opening. The passage time of the mixture of the powder and the carrier gas in the reaction vessel is set according to the apparatus (or vessel) used so that the powder is sufficiently heated to a predetermined temperature. Usually, it is about 0.3 to 30 seconds. The heating may be performed outside of the reaction vessel by an electric furnace or a gas furnace, or the combustion gas may be supplied into the reaction vessel and the combustion salt may be used.

가열은 산화물분말의 생성조건 하에서, 원료분말의 분해온도 또는 반응온도보다 높은 온도에서 행한다. 가열처리는 산화물분말의 융점을 Tm℃로 하였을 때, (Tm/2)℃ 이상으로 하는 것이 필요하다. 가열온도가 (Tm/2)℃보다 낮으면, 목적으로 하는 산화물분말을 얻을 수 없다. 보다 결정성이 높은 산화물분말을 얻기 위해서는, 목적으로 하는 산화물의 소결개시온도 이상의 온도로 가열하는 것이 바람직하다.The heating is performed at a temperature higher than the decomposition temperature or the reaction temperature of the raw material powder under the production conditions of the oxide powder. In the heat treatment, when the melting point of the oxide powder is set to Tm 占 폚, it is necessary to set it to (Tm / 2) 占 폚 or more. If the heating temperature is lower than (Tm / 2) 占 폚, the target oxide powder cannot be obtained. In order to obtain an oxide powder with higher crystallinity, it is preferable to heat at a temperature equal to or higher than the sintering start temperature of the target oxide.

본 발명에서는, 원료분말을 기상중에 저농도로, 또한 노즐로부터의 고속기류에 의해서 고도로 균일하게 분산시킨 상태에서 가열한다. 따라서, 고온에서도 융착, 소결에 의해 입자끼리 응집하지 않고 분산상태를 유지할 수 있고, 열분해와 동시에 1입자내에서 고상(solid-phase)반응이 일어난다고 추정된다. 한정된 영역내에서의 고상반응이기 때문에, 단시간에 결정성장이 촉진되어, 결정성이 높고, 내부결함이 적고, 더구나 응집이 없는 1차입자로 이루어지는 산화물분말을 얻을 수 있다. 또한, 특히 복산화물의 경우, 개개의 원료분말입자내에 구성원소를 실질적으로 일정한 조성비로 포함하고 있기 때문에, 극히 균질한 조성을 갖는 복산화물분말을 얻을 수 있다.In the present invention, the raw material powder is heated at low concentration in the gas phase and highly uniformly dispersed by the high speed air stream from the nozzle. Therefore, it is estimated that even at high temperatures, the dispersed state can be maintained without agglomeration between particles by fusion and sintering, and a solid-phase reaction occurs within one particle at the same time as pyrolysis. Since it is a solid phase reaction in a limited region, crystal growth is accelerated in a short time, and the oxide powder which consists of primary particles with high crystallinity, few internal defects, and no aggregation can be obtained. In addition, especially in the case of the double oxide, since the elemental elements are contained in the individual raw material powder particles at a substantially constant composition ratio, the double oxide powder having an extremely homogeneous composition can be obtained.

또한, 원료분말이 열분해 동안이나 그 후, 질화물, 탄화물 등을 생성하는 경우, 가열은 그 분해조건 하에서 행한다.In addition, when the raw material powder produces nitrides, carbides or the like during or after pyrolysis, heating is performed under the decomposition conditions.

상기 융제(flux)성분을 원료분말에 투입하는 경우, 융제의 반응증진제로서의 효과로 인해, 동일한 가열조건 하에서 고결정의 산화물분말을 얻을 수 있다. 융제성분은 산화물분말을 생성한 후 수세하는 종래의 방법으로 제거된다.When the flux component is added to the raw material powder, a high crystal oxide powder can be obtained under the same heating conditions due to the effect of the flux as a reaction enhancer. The flux component is removed by a conventional method of washing with water after producing an oxide powder.

최적의 가열온도는, 산화물분말의 조성이나 용도, 요구되는 결정성의 정도, 입자형상, 내열성 등의 요구특성에 따라서 다르다. 따라서, 가열온도는 원하는 특성에 따라 적절히 결정한다. 예를 들면, 산화물형광체에서는 1200∼1800℃정도, 내열성이 낮은 전지용 산화물 전극재료에서는 900℃ 이하로 하는 것이 바람직하다.The optimal heating temperature varies depending on the composition and use of the oxide powder, the required crystallinity, the shape of the particles, the heat resistance and the like. Therefore, heating temperature is suitably determined according to a desired characteristic. For example, it is preferable to set it as about 1200-1800 degreeC in an oxide fluorescent substance, and 900 degrees C or less in the battery electrode electrode material with low heat resistance.

상대적으로 낮은 온도에서 가열하는 경우, 생성된 분말의 입자형상은 일반적으로 원료분말의 형상과 같다. 가열온도가 증가하면, 결정의 자기동형 (automorphism)이 뚜렷해진다. 일반적으로, 입자형상이 균일한 고결정성 또는 단결정의 산화물분말을 얻기 위해서는, 목적으로 하는 산화물의 융점근방 또는 그 이상의 온도로 가열하는 것이 바람직하다. 예를 들면, 페라이트의 고결정성 구형상분말을 얻기 위해서는, 적어도 1200℃에서 열분해하는 것이 필요하다.When heated at a relatively low temperature, the particle shape of the resulting powder is generally the same as that of the raw powder. As the heating temperature increases, the automorphism of the crystal becomes apparent. In general, in order to obtain a highly crystalline or single crystal oxide powder having a uniform particle shape, it is preferable to heat it to a temperature near or above the melting point of the target oxide. For example, in order to obtain a highly crystalline spherical powder of ferrite, it is necessary to pyrolyze at least at 1200 ° C.

원하는 바에 따라, 얻어진 산화물분말에 더욱 어닐처리를 실시하여도 좋다. 예를 들어 형광체의 경우, 어닐처리는 400∼1800℃에서 이루어진다. 이 어닐처리에 의해, 결정성이 향상하는 동시에 활성제의 가수(valency)가 제어되어, 발광강도의 향상, 잔광시간이나 발광색조의 콘트롤이 가능해진다. 본 발명에서 얻어진 분말은 입자의 결정성이 높고, 조성의 균질성이 유지된다. 따라서, 고온으로 어닐처리를 하더라도, 소결에 의한 입자의 응집이 일어나기 어렵다.If desired, the obtained oxide powder may be further annealed. For example, in the case of a phosphor, annealing is performed at 400-1800 degreeC. By the annealing treatment, crystallinity is improved and the valence of the active agent is controlled to improve the emission intensity, to control the afterglow time and the emission color tone. The powder obtained in the present invention has high crystallinity of particles and maintains homogeneity of composition. Therefore, even when annealing at high temperature, aggregation of particles by sintering is unlikely to occur.

본 발명방법에서는, 임의의 평균입자지름을 가지며, 더구나 입도분포가 좁은 고결정성 산화물분말을 제조하는 것이 가능하고, 특히, 형광체 페이스트, 형광체 잉크, 형광체 그린시트 등의 형광체 조성물에 사용되는 형광체분말의 제조에 적합하다. 형광체 페이스트 및 형광체 잉크를 제조하기 위해서는, 본 발명방법으로 제조된 고결정성 산화물 형광체분말을, 통상의 방법에 따라서 수지, 용제 등으로 이루어진 유기 용액중에 균일하게 혼합분산시킨다. 형광체 그린시트는, 본 발명방법으로 제조된 고결정성 산화물 형광체분말을 수지 및 용제와 함께 적절히 혼합하여 슬러리를 얻고, 이 슬러리를 닥터블레이드(doctor blade)법 등의 방법으로 신축성 수지막 위에 놓은 후, 건조하여 제조한다. 상기 형광체조성물 또는 두꺼운 막 페이스트에 유리입자 등의 무기결합제, 안료, 그 밖의 첨가제를 함유시켜도 좋다.In the method of the present invention, it is possible to produce a highly crystalline oxide powder having an arbitrary average particle diameter and a narrow particle size distribution. Particularly, the phosphor powder used in phosphor compositions such as phosphor pastes, phosphor inks and phosphor green sheets can be prepared. Suitable for manufacture In order to manufacture the phosphor paste and the phosphor ink, the highly crystalline oxide phosphor powder produced by the method of the present invention is uniformly mixed and dispersed in an organic solution made of a resin, a solvent, or the like according to a conventional method. The phosphor green sheet is obtained by appropriately mixing a high crystalline oxide phosphor powder prepared by the method of the present invention with a resin and a solvent to obtain a slurry, and placing the slurry on the stretchable resin film by a method such as a doctor blade method. To dry. The phosphor composition or thick film paste may contain inorganic binders such as glass particles, pigments and other additives.

[실시예]EXAMPLE

다음에, 실시예 및 비교예에 의해 본 발명을 구체적으로 설명한다.Next, an Example and a comparative example demonstrate this invention concretely.

(Y2O3:Eu3+형광체분말)(Y 2 O 3 : Eu 3+ phosphor powder)

실시예 1Example 1

질산이트륨6수화물 및 질산유로퓸6수화물을, 질산이트륨6수화물에 대하여 질산유로퓸6수화물이 4mo1%이 되도록 각각 칭량하고, 순수한 물에 용해하여, 전체 금속이온 농도가 약 O.1mo1/L인 수용액을 제작하였다. 이 용액에, 상온(normal temperature)에서 탄산암모늄수용액을 첨가하여, 이트륨과 유로퓸을 공침시켰다. 이렇게 생겨난 침전을 여과, 포집하고, 100℃에서 건조한 후, 기류식분쇄기로 분쇄하여, 평균입자지름 약 2㎛의, 입도가 균일한 균질한 조성의 탄산염복합체분말을 얻었다.The yttrium nitrate hexahydrate and the europium nitrate hexahydrate were weighed so that the europium nitrate hexahydrate was 4 mo1% relative to the yttrium nitrate hexahydrate, dissolved in pure water, and an aqueous solution having a total metal ion concentration of about 0.1 mo1 / L was prepared. Produced. To this solution, an aqueous ammonium carbonate solution was added at normal temperature to co-precipitate yttrium and europium. The precipitate thus produced was collected by filtration, dried at 100 ° C., and pulverized with an air flow crusher to obtain a carbonate composite powder having a uniform particle size with an average particle diameter of about 2 μm.

얻어진 분말을, 캐리어가스로서 유량 200L/min의 공기와 함께 5kg/hr의 공급속도로, 개구부의 단면적이 0.13㎠인 노즐을 통해서, 전기로에 의해 1550℃로 가열된 반응관중에 분출시키고, 상기 분말의 분산농도를 유지한 채로 반응관을 통과시켜, 가열을 하였다. 반응관내에서의 기상중의 원료분말 분산농도는 0.4g/L이고, 또 V/S=1500이다. 생성된 백색의 분말을 백필터(bag filter)로 포집하였다.The powder obtained was blown into a reaction tube heated at 1550 ° C. by an electric furnace through a nozzle having a cross-sectional area of 0.13 cm 2 at an opening rate of 5 kg / hr with air having a flow rate of 200 L / min as a carrier gas. The reaction tube was passed through heating while maintaining the dispersion concentration of. The dispersion concentration of the raw material powder in the gas phase in the reaction tube was 0.4 g / L and V / S = 1500. The resulting white powder was collected by a bag filter.

얻어진 분말을 X선회절계로 분석한 바, (Y0.96Eu0.4)2O3으로 나타내는 단일의 결정상으로 이루어지고, 극히 양호한 결정성을 가진 복산화물분말이었다. 또한, 주사형 전자현미경(SEM)으로 관찰한 바, 응집이 없는 구형상에 가까운 형상의 입자로 이루어진, 평균입자지름 1㎛, 최대입자지름 3㎛의 입도분포가 좁은 분말이었다. 더욱, 파장 147nm의 자외선조사하에서의 파장 612nm의 발광스펙트럼을 측정한 바, 발광강도는 종래의 고상반응법으로 얻어진 평균입자지름이 3㎛인 분말의 발광강도의 150%이었다.The powder obtained was analyzed by X-ray diffractometer and found to be a complex oxide powder composed of a single crystal phase represented by (Y 0.96 Eu 0.4 ) 2 O 3 and having extremely good crystallinity. Furthermore, when observed with a scanning electron microscope (SEM), it was a powder with a narrow particle size distribution of 1 micrometer of average particle diameters and 3 micrometers of maximum particle diameters which consist of a spherical particle shape without aggregation. Furthermore, when the emission spectrum of wavelength 612nm was measured under the ultraviolet irradiation of wavelength 147nm, the emission intensity was 150% of the emission intensity of the powder whose average particle diameter obtained by the conventional solid-state reaction method is 3 micrometers.

실시예 2Example 2

실시예 1과 같이 하여 조제한 평균입자지름 약 2㎛의 탄산염복합체분말을,이젝터형 분산기를 사용하여 공기 캐리어가스와 혼합하였다. 얻어진 고체-기체 혼합물을 유량 200L/min로, 개구부의 단면적이 0.13㎠인 노즐을 통해서, 전기로로 1550℃로 가열된 반응관중에 분출시키고, 반응관을 통과시켜 가열하였다. 분말의 공급속도, 반응관내에서의 기상중의 원료분말 분산농도, V/S는 실시예 1과 같이 각각 5kg/hr, 0.4g/L, 1500이다.A carbonate composite powder having an average particle diameter of about 2 µm prepared in the same manner as in Example 1 was mixed with an air carrier gas using an ejector-type disperser. The obtained solid-gas mixture was blown into a reaction tube heated to 1550 ° C. by an electric furnace through a nozzle having a flow rate of 200 L / min and a cross-sectional area of 0.13 cm 2 of the opening, and heated through a reaction tube. The feed rate of the powder, the raw material powder dispersion concentration in the gas phase in the reaction tube, and V / S were 5 kg / hr, 0.4 g / L and 1500, respectively as in Example 1.

얻어진 분말은, X선회절분석에 의해 극히 높은 결정성을 가진 (Y0.96Eu0.4)2O3분말인 것이 확인되었다. SEM 관찰 결과, 응집이 없는 구형상입자로 이루어져 있으며, 평균입자지름 0.8㎛, 최대입자지름 2㎛으로, 분산기를 사용하지 않은 실시예 1의 입자에 비해서 입도가 작고, 입도분포가 좁은 것이었다. 파장 147nm의 자외선조사하에서의 파장 612nm의 발광강도는, 실시예 1과 같은 정도였다.The obtained powder was confirmed to be (Y 0.96 Eu 0.4 ) 2 O 3 powder having extremely high crystallinity by X-ray diffraction analysis. As a result of SEM observation, it was composed of spherical particles without aggregation, and had an average particle diameter of 0.8 µm and a maximum particle diameter of 2 µm, which were smaller in particle size and narrower in particle size distribution than those of the particles of Example 1 without using a disperser. The emission intensity at the wavelength of 612 nm under ultraviolet irradiation at the wavelength of 147 nm was about the same as in Example 1.

실시예 3, 4Examples 3 and 4

전기로의 온도를 각각 1450℃, 1650℃로 하는 것 이외에는 실시예 1과 같이 하여, 복산화물분말을 제조하였다. 얻어진 분말의 특성을 표 1에 나타낸다.A double oxide powder was prepared in the same manner as in Example 1 except that the temperature of the electric furnace was 1450 ° C and 1650 ° C, respectively. The properties of the powder obtained are shown in Table 1.

또한, 표에 나타낸 발광강도는, 파장 147nm의 자외선조사하에서의 파장 612nm의 발광강도로서, 종래의 고상반응법으로 얻어진 평균입자지름 3㎛의 (Y0.96Eu0.4)2O3분말의 발광강도를 100으로 하였을 때의 상대강도이다. 또한, 결정성은 실시예 1의 분말의 X선회절강도를 100으로 하였을 때의 상대강도로 나타내었다.In addition, the emission intensity shown in the table is the emission intensity at wavelength 612 nm under ultraviolet irradiation at wavelength 147 nm, and the emission intensity of (Y 0.96 Eu 0.4 ) 2 O 3 powder having an average particle diameter of 3 μm obtained by the conventional solid state reaction method is 100. Relative strength when In addition, the crystallinity is shown by the relative strength when the X-ray diffraction intensity of the powder of Example 1 is 100.

실시예 5Example 5

원료분말의 공급속도를 1.25kg/hr로 하는 것 이외에는 실시예 1과 같이 하였다. 기상중의 원료분말 분산농도는 0.1g/L이다. 얻어진 분말의 특성을 표 1에 나타낸다.The same procedure as in Example 1 was carried out except that the feed rate of the raw material powder was 1.25 kg / hr. The dispersion concentration of raw material powder in the gas phase is 0.1 g / L. The properties of the powder obtained are shown in Table 1.

실시예 6Example 6

원료분말의 공급속도를 62.5kg/hr로 하고, 원료분말의 평균입자지름이 4㎛인 것 이외에는 실시예 1과 같이 하였다. 기상중의 원료분말 분산농도는 5.0g/L이다. 얻어진 분말의 특성을 표 1에 나타낸다.The feed rate of the raw material powder was 62.5 kg / hr, and the same procedure as in Example 1 was carried out except that the average particle diameter of the raw material powder was 4 µm. The dispersion concentration of the raw material powder in the gas phase is 5.0 g / L. The properties of the powder obtained are shown in Table 1.

실시예 7Example 7

노즐의 개구부의 단면적을 0.03㎠로 하는 것 이외에는 실시예 1과 같이 하여, 복산화물분말을 제조하였다. 얻어진 분말의 특성을 표 1에 나타낸다.A double oxide powder was prepared in the same manner as in Example 1 except that the cross-sectional area of the opening of the nozzle was 0.03 cm 2. The properties of the powder obtained are shown in Table 1.

실시예 8Example 8

노즐의 개구부의 단면적을 0.28㎠로 하는 것 이외에는 실시예 1과 같이 하여, 복산화물분말을 제조하였다. 얻어진 분말의 특성을 표 1에 나타낸다.A composite oxide powder was prepared in the same manner as in Example 1 except that the cross-sectional area of the opening of the nozzle was 0.28 cm 2. The properties of the powder obtained are shown in Table 1.

실시예 9Example 9

노즐의 개구부의 단면적을 O.50㎠로 하는 것 이외에는 실시예 1과 같이 하여, 복산화물분말을 제조하였다. 얻어진 분말의 결정성, 발광특성은 양호했지만, SEM로 관찰한 바, 거대한 부정형입자가 소량이지만 확인되었다.A double oxide powder was produced in the same manner as in Example 1 except that the cross-sectional area of the opening of the nozzle was 0.5 cm 2. Crystallinity and luminescence properties of the obtained powder were good, but when observed by SEM, a large amount of large amorphous particles was confirmed.

실시예 10Example 10

질산이트륨6수화물 및 질산유로퓸6수화물을, 질산이트륨6수화물에 대하여 질산유로퓸6수화물이 4mo1%이 되도록 칭량하고, 순수한 물에 용해하여 전체 금속이온농도 약 O.1mol/L의 수용액을 제작하였다. 이 용액을 초음파분무기로 처리하여 미세한 액체방울을 얻고, 캐리어가스로서 공기를 사용하여 7O0℃에서 분무열분해하였다. 백필터로 포집하여, 평균입자지름 약 2㎛의 Y2O3-EuO 복합분말을 얻었다. 이 Y2O3-EuO 복합분말을 기류식분쇄기로 분쇄하여 평균입자지름을 약 0.5㎛로 한 후, 오리피스형 분산기를 사용하여 공기캐리어와 혼합하였다. 얻어진 고체-기체 혼합물을, 실시예 2와 같이 유량 200L/min로, 개구부의 단면적이 0.13㎠인 노즐을 통해서, 전기로로 1550℃로 가열된 반응관중에 분출시키고, 반응관을 통과시켜 가열하였다. 분말의 공급속도, 반응관내에서의 기상중의 원료분말 분산농도, V/S는 각각 5kg/hr, 0.4g/L, 1500이다.The yttrium nitrate hexahydrate and europium nitrate hexahydrate were weighed so that the europium nitrate hexahydrate was 4 mo1% relative to the yttrium nitrate hexahydrate, and dissolved in pure water to prepare an aqueous solution having a total metal ion concentration of about 0.1 mol / L. The solution was treated with an ultrasonic nebulizer to obtain fine droplets, and spray pyrolysis was carried out at 70 ° C. using air as a carrier gas. Collected with a bag filter, Y 2 O 3 -EuO composite powder having an average particle diameter of about 2㎛. The Y 2 O 3 -EuO composite powder was pulverized with an air flow crusher to obtain an average particle diameter of about 0.5 mu m, and then mixed with an air carrier using an orifice type disperser. The obtained solid-gas mixture was blown into a reaction tube heated at 1550 ° C. by an electric furnace through a nozzle having a cross-sectional area of 0.13 cm 2 at an opening at a flow rate of 200 L / min as in Example 2, and heated through a reaction tube. The feed rate of the powder, the dispersion concentration of the raw material powder in the gas phase in the reaction tube, and the V / S are 5 kg / hr, 0.4 g / L and 1500, respectively.

얻어진 분말은, 극히 높은 결정성을 가진 (Y0.96Eu0.4)2O3의 구형상분말이었다. 분말특성을 표 1에 나타낸다.The obtained powder was a spherical powder of (Y 0.96 Eu 0.4 ) 2 O 3 having extremely high crystallinity. Powder characteristics are shown in Table 1.

비교예 1Comparative Example 1

원료분말의 공급속도를 150kg/hr로 하는 것 이외에는 실시예 1과 같이 하였다. 반응관내에서의 기상중의 분말농도는 12.0g/L이었다. 얻어진 분말을 SEM으로 관찰한 바, 복수의 입자가 융착하여 거대한 부정형입자가 되고 있고, 입도분포가 넓은 것이었다. 분말의 특성을 표 1에 나타낸다.The same procedure as in Example 1 was carried out except that the feed rate of the raw material powder was 150 kg / hr. The powder concentration in the gas phase in the reaction tube was 12.0 g / L. When the obtained powder was observed by SEM, a plurality of particles were fused to form huge amorphous particles, and the particle size distribution was wide. The properties of the powder are shown in Table 1.

비교예 2Comparative Example 2

전기로의 온도를 1100℃로 하는 것 이외에는 실시예 1과 같이 하였다. 이 가열온도는, (Y0.96Eu0.4)2O3의 융점(약 2300℃)의 1/2보다 낮은 온도이다. 얻어진 분말은 사각기둥형 입자이고, 결정성이 낮았다. 발광강도도 낮았다. 분말특성을 표1에 나타낸다.It carried out like Example 1 except having set the temperature of an electric furnace to 1100 degreeC. This heating temperature is a temperature lower than 1/2 of the melting point (about 2300 ° C.) of (Y 0.96 Eu 0.4 ) 2 O 3 . The powder obtained was square columnar particles and had low crystallinity. Luminous intensity was also low. Powder characteristics are shown in Table 1.

기상중원료분말농도(g/L)Meteorological raw material powder concentration (g / L) 노즐개구부의 단면적S(㎠)Nozzle cross section area S (cm2) V/SV / S 가열온도(℃)Heating temperature (℃) 원료분말의 평균입자지름(㎛)Average Particle Diameter of Raw Material Powder (㎛) 생성분말의 특성Characteristics of Produced Powder 평균입자지름(㎛)Average particle diameter (㎛) 최대입자지름(㎛)Particle size (㎛) 발광강도Luminous intensity 결정성Crystallinity 실시예 1Example 1 0.40.4 0.130.13 15001500 15501550 22 1One 33 150150 100100 실시예 3Example 3 0.40.4 0.130.13 15001500 14501450 22 1One 33 100100 9090 실시예 4Example 4 0.40.4 0.130.13 15001500 16501650 22 1One 33 150150 9898 실시예 5Example 5 0.10.1 0.130.13 15001500 15501550 22 0.70.7 1.51.5 150150 100100 실시예 6Example 6 5.05.0 0.130.13 15001500 15501550 44 33 88 150150 9898 실시예 7Example 7 0.40.4 0.030.03 67006700 15501550 22 0.70.7 1.51.5 150150 100100 실시예 8Example 8 0.40.4 0.280.28 710710 15501550 22 1One 44 150150 100100 실시예 9Example 9 0.40.4 0.500.50 400400 15501550 22 1.51.5 88 150150 100100 실시예10Example 10 0.40.4 0.130.13 15001500 15501550 0.50.5 0.50.5 1One 150150 100100 비교예 1Comparative Example 1 12.012.0 0.130.13 15001500 15501550 22 55 3030 130130 9090 비교예 2Comparative Example 2 0.40.4 0.130.13 15001500 11001100 22 1One 33 1010 3030

(BaMgAl10O17:Eu2+형광체)(BaMgAl 10 O 17 : Eu 2+ phosphor)

실시예 11Example 11

질산바륨, 질산유로퓸6수화물, 질산마그네슘6수화물, 및 질산알루미늄9수화물을, Ba:Eu:Mg:Al=0.9:0.1:1:10의 몰비가 되도록 각각 칭량하여 순수한 물에 용해하였다. 구연산을 상기 전체 금속이온의 1.5배의 몰만큼 첨가하여 용해하고, 구연산과 동일한 몰의 에틸렌글리콜을 첨가하였다. 상기 용액을 150℃에서 교반하에 가열하여, 겔형 중합체를 얻었다. 상기 중합체를 400℃에서 가열하여 결합제성분을 제거하고, 기류식분쇄기로 분쇄하여 평균입자지름 약 2㎛의, 입도가 균일한 원료분말을 얻었다.Barium nitrate, europium nitrate hexahydrate, magnesium nitrate hexahydrate, and aluminum nitrate hexahydrate were each weighed in a molar ratio of Ba: Eu: Mg: Al = 0.9: 0.1: 1: 10 and dissolved in pure water. Citric acid was dissolved by adding 1.5 times the mole of the total metal ions, and the same mole of ethylene glycol as citric acid was added. The solution was heated at 150 ° C. under stirring to obtain a gel polymer. The polymer was heated at 400 deg. C to remove the binder component and pulverized with an air flow crusher to obtain a raw material powder having a uniform particle size of about 2 mu m.

얻어진 분말을, 캐리어가스로서 유량 200L/min의 1% 수소함유 질소를 수반시키고, 개구부의 단면적이 0.13㎠인 노즐을 통해서 5kg/hr의 공급속도로, 전기로로 1600℃로 가열된 반응관중에 분출시키고, 분말의 분산농도를 유지한 채로 반응관을 통과시켜 가열하였다. 반응관내에서의 기상중의 원료분말 분산농도는 0.4g/L이고, V/S=1500이다. 생성된 분말은 백필터로 포집하였다.The powder thus obtained was blown into a reaction tube heated at 1600 ° C. in an electric furnace at a feed rate of 5 kg / hr through a nozzle having a flow rate of 200 L / min and 1% hydrogen-containing nitrogen at a cross-sectional area of 0.13 cm 2 as a carrier gas. The mixture was heated and passed through a reaction tube while maintaining the dispersion concentration of the powder. The dispersion concentration of raw material powder in the gas phase in the reaction tube was 0.4 g / L and V / S = 1500. The resulting powder was collected by a bag filter.

얻어진 분말을 X선회절계로 분석한 바, Ba0.9Eu0.1MgAl10O17의 회절선만 확인되었다. SEM에 의한 관찰로는, 평균입자지름 1㎛정도, 최대입자지름 4㎛ 정도의 입도가 균일한 판형상 입자였다. 또한, 파장 147nm의 자외선조사하에서의 파장 450nm의 발광스펙트럼을 측정한 결과, 발광강도는 종래의 고상반응법으로 얻어진 평균입자지름 4㎛의 분말의 발광강도와 같았다.When the obtained powder was analyzed by X-ray diffractometer, only diffraction lines of Ba 0.9 Eu 0.1 MgAl 10 O 17 were confirmed. In observation by SEM, the particle size of about 1 micrometer of average particle diameters, and about 4 micrometers of maximum particle diameters was uniform, and was plate-shaped particle | grains. In addition, when the emission spectrum of wavelength 450nm was measured under the ultraviolet irradiation of wavelength 147nm, the emission intensity was the same as the emission intensity of the powder of average particle diameter 4micrometer obtained by the conventional solid-state reaction method.

(BaFe12O19페라이트)(BaFe 12 O 19 Ferrite)

실시예 12Example 12

질산바륨 및 질산철9수화물을 몰비로 1:12가 되도록 칭량하고, 순수한 물에 용해하여 전체 금속이온 농도가 약 0.2mol/L의 용액을 조제하였다. 이 용액을 80℃로 가열하고, 교반하면서 2mol/L 농도의 요소를 가하여, 요소의 가수분해반응에 의한 균일침전반응을 시작하였다. 용액의 pH가 8이 된 시점에서 냉각하여 반응을 종료시켰다. 생성된 침전을 여과하고, 100℃에서 건조후, 600℃에서 가소하였다. 이어서 기류식분쇄기로 분쇄하여, 평균입자지름 약 2㎛의, 입도가 균일한 원료분말을 얻었다.Barium nitrate and ferric nitrate hydrate were weighed to a molar ratio of 1:12 and dissolved in pure water to prepare a solution having a total metal ion concentration of about 0.2 mol / L. The solution was heated to 80 ° C., and 2 mol / L concentration of urea was added while stirring to initiate a homogeneous precipitation reaction by hydrolysis of urea. The reaction was terminated by cooling when the pH of the solution reached 8. The resulting precipitate was filtered off, dried at 100 ° C. and calcined at 600 ° C. Subsequently, the resultant was pulverized with an air flow grinder to obtain a raw material powder having a uniform particle size of about 2 µm.

이 원료분말을, 캐리어가스로서 유량 200L/min의 공기를 수반시키고, 개구부의 단면적이 0.13㎠인 노즐을 통해서 5kg/hr의 공급속도로, 전기로로 1300℃로 가열된 반응관중에 분출시키고, 분말의 분산농도를 유지한 채로 반응관을 통과시켜, 가열하였다. 반응관내에서의 기상중의 원료분말 분산농도는 O.4g/L이고, 또한 V/S=1500이다. 생성된 분말은 백필터로 포집하였다. 얻어진 분말은, 평균입자지름 1㎛정도, 최대입자지름 3㎛ 정도의 입도분포가 좁은 판형상 입자인 것이 SEM으로 확인되었다. X선회절계에 의한 분석에서는 BaFe12O19의 날카로운 회절선만이 확인되었다.The raw material powder was blown into a reaction tube heated at 1300 DEG C with an electric furnace at a feed rate of 5 kg / hr through a nozzle having a flow rate of 200 L / min as a carrier gas, through a nozzle having a cross-sectional area of 0.13 cm 2. The reaction tube was passed through and heated while maintaining the dispersion concentration of. The dispersion concentration of the raw material powder in the gas phase in the reaction tube was 0.4 g / L and V / S = 1500. The resulting powder was collected by a bag filter. It was confirmed by SEM that the obtained powder was a plate-shaped particle with a narrow particle size distribution having an average particle diameter of about 1 μm and a maximum particle diameter of about 3 μm. In the analysis by X-ray diffractometer, only a sharp diffraction line of BaFe 12 O 19 was found.

(BaTiO3유전체)(BaTiO 3 Dielectric)

실시예 13Example 13

등몰의 염화바륨수화물과 염화티타늄을 순수한 물에 용해하고, 전체 금속이온 농도가 0.1mol/L인 용액을 조제하였다. 이 용액을 0.5mol/L 옥살산수용액에 적하하여, 옥살산티타닐바륨의 침전을 생성시켰다. 침전을 여과, 수세하고, 500℃에서 가소한 후, 0.3mm 지름의 지르코니아볼을 사용하여 비즈밀로 습식분쇄하고, 건조하여 원료분말을 얻었다. 이 원료분말을, 유량 200L/min의 공기를 사용하여 기류식분쇄기로 세분, 분산시키고, 바로 개구부의 단면적 0.13㎠의 노즐을 통해서 5kg/hr의 공급속도로, 전기로로 1100℃로 가열된 반응관중에 분출시켰다. 반응관내에서의 기상중의 원료분말 분산농도는 0.4g/L, V/S=1500이다. 분말의 분산농도를 유지한 채로, 원료분말을 반응관을 통과시켜 가열하였다. 생성된 분말을 백필터로 포집하였다. 얻어진 분말은, 평균입자지름 약 0.2㎛, 최대입자지름 0.4㎛의응집이 없는 입자인 것이 SEM에서 확인되었다. X선회절계에서의 분석으로는, 정방정 BaTiO3의 날카로운 회절선만이 확인되었다.Equimolar barium chloride hydrate and titanium chloride were dissolved in pure water to prepare a solution having a total metal ion concentration of 0.1 mol / L. This solution was added dropwise to an aqueous 0.5 mol / L oxalic acid solution to generate a precipitate of titanyl barium oxalate. The precipitate was filtered, washed with water, calcined at 500 ° C, wet milled with a bead mill using a 0.3 mm diameter zirconia ball, and dried to obtain a raw material powder. The raw material powder was subdivided and dispersed by air flow crusher using air having a flow rate of 200 L / min and immediately heated at 1100 ° C. by an electric furnace at a feed rate of 5 kg / hr through a nozzle having a cross-sectional area of 0.13 cm 2. Was ejected to. The dispersion concentration of raw material powder in the gas phase in the reaction tube was 0.4 g / L and V / S = 1500. The raw material powder was heated through a reaction tube while maintaining the dispersion concentration of the powder. The resulting powder was collected with a bag filter. It was confirmed by SEM that the obtained powder was a particle | grains without aggregation of an average particle diameter of about 0.2 micrometer, and a maximum particle diameter of 0.4 micrometer. Analysis by X-ray diffraction system revealed only sharp diffraction lines of tetragonal BaTiO 3 .

(ZnO 분말)(ZnO powder)

실시예 14Example 14

시판의 고순도 산화아연분말(zinc white)을, 기류식분쇄기로 분쇄하여, 평균입자지름 약 2㎛의, 입도가 균일한 분말을 얻었다. 이 분말을, 캐리어가스로서 유량 200L/min의 공기를 수반시켜, 5kg/km의 공급속도로, 개구부의 단면적 0.13㎠의 노즐을 통해서, 전기로로 1200℃로 가열된 반응관중에 분출시키고, 분말의 분산농도를 유지한 채로 반응관을 통과시켜, 가열하였다. 반응관내에서의 기상중의 원료분말 분산농도는 0.4g/L이고, V/S=1500이다. 생성한 백색분말을 백필터로 포집하였다.A commercially available high purity zinc oxide powder was ground with an air flow crusher to obtain a powder having a uniform particle size with an average particle diameter of about 2 µm. The powder was blown into a reaction tube heated at 1200 ° C in an electric furnace through a nozzle having a cross-sectional area of 0.13 cm 2 at an opening rate of 5 kg / km, with air having a flow rate of 200 L / min as a carrier gas. The reaction tube was heated while maintaining the dispersion concentration. The dispersion concentration of raw material powder in the gas phase in the reaction tube was 0.4 g / L and V / S = 1500. The produced white powder was collected by a bag filter.

얻어진 분말을 X선회절계로 분석한 바, ZnO의 단일결정상으로 되어 있으며, 극히 높은 결정성을 가진 산화물분말이었다. 주사형 전자현미경(SEM)으로 관찰한 바, 응집이 없고, 거의 구형상이고, 평균입자지름 2㎛, 최대입자지름 5㎛의 입도분포가 좁은 분말인 것이 확인되었다.The obtained powder was analyzed by X-ray diffractometer, and found to be a single crystal phase of ZnO, which was an oxide powder having extremely high crystallinity. When observed with a scanning electron microscope (SEM), it was confirmed that the powder had no aggregation, was almost spherical, and had a narrow particle size distribution having an average particle diameter of 2 µm and a maximum particle diameter of 5 µm.

실시예 15∼18Examples 15-18

기상중의 원료분말 분산농도, 노즐의 개구부의 단면적, 전기로의 온도를 각각 표 2에 나타내는 바와 같이 하는 것 이외에는 실시예 14와 같이 하여 산화물분말을 제조하였다. 얻어진 분말의 특성을 표 2에 나타낸다. 결정성은, 실시예 14의 분말의 X선회절강도를 100으로 하였을 때의 상대강도이다.An oxide powder was produced in the same manner as in Example 14 except that the raw material powder dispersion concentration in the gas phase, the cross-sectional area of the opening of the nozzle, and the temperature of the electric furnace were shown in Table 2, respectively. The properties of the obtained powder are shown in Table 2. Crystallinity is the relative strength when the X-ray diffraction intensity of the powder of Example 14 is 100.

비교예 3Comparative Example 3

원료분말의 공급속도를 150kg/hr로 하는 것 이외에는 실시예 14와 마찬가지로 하였다. 반응관내에서의 기상중의 분말농도는 12.0g/L이었다. 얻어진 분말을 SEM으로 관찰한 결과, 복수의 입자가 융착하여 거대한 부정형입자가 되었으며, 입도분포가 넓은 것이었다. 분말의 특성을 표 2에 나타낸다.The same procedure as in Example 14 was carried out except that the feed rate of the raw material powder was 150 kg / hr. The powder concentration in the gas phase in the reaction tube was 12.0 g / L. As a result of observing the obtained powder by SEM, a plurality of particles were fused to form huge amorphous particles, and the particle size distribution was wide. The properties of the powder are shown in Table 2.

비교예 4Comparative Example 4

전기로의 온도를 800℃로 하는 것 이외에는 실시예 14와 같이 하였다. 이 가열온도는, 산화아연의 융점인 약 2000℃(가압하)의 1/2보다 낮은 온도이다. 얻어진 분말은 부정형으로, 결정성이 낮은 것이었다. 분말특성을 표 2에 나타낸다.It carried out like Example 14 except having set the temperature of an electric furnace to 800 degreeC. This heating temperature is a temperature lower than 1/2 of about 2000 degreeC (under pressure) which is a melting point of zinc oxide. The obtained powder was amorphous and had low crystallinity. Powder characteristics are shown in Table 2.

산화물의 종류Type of oxide 원료분말의 기상중농도(g/L)Meteorological concentration of raw material powder (g / L) 노즐개구부의 단면적S(㎠)Nozzle cross section area S (cm2) V/SV / S 가열온도(℃)Heating temperature (℃) 생성분말의 특성Characteristics of Produced Powder 평균입자지름(㎛)Average particle diameter (㎛) 최대입자지름(㎛)Particle size (㎛) 결정성Crystallinity 실시예 14Example 14 ZnOZnO 0.40.4 0.130.13 15001500 12001200 22 55 100100 실시예 15Example 15 ZnOZnO 0.10.1 0.130.13 15001500 12001200 1.51.5 33 100100 실시예 16Example 16 ZnOZnO 5.05.0 0.130.13 15001500 12001200 33 88 100100 실시예 17Example 17 ZnOZnO 0.40.4 0.030.03 67006700 12001200 1.51.5 44 100100 실시예 18Example 18 ZnOZnO 0.40.4 0.280.28 710710 12001200 22 66 100100 실시예 19Example 19 ZnOZnO 0.40.4 0.500.50 400400 12001200 33 1212 100100 비교예 3Comparative Example 3 ZnOZnO 12.012.0 0.130.13 15001500 12001200 88 4040 9090 비교예 4Comparative Example 4 ZnOZnO 0.40.4 0.130.13 15001500 800800 22 66 7070

실시예 19Example 19

시판의 탄산아연분말을 기류식분쇄기로 분쇄하여, 평균입자지름이 약 0.2㎛인 원료분말을 얻었다. 이 분말을, 1.25kg/hr의 공급속도로, 이젝터형 분산기를 사용하여 공기 캐리어가스와 혼합하고, 얻어진 고체-기체 혼합물을, 유량 200L/min로, 개구부의 단면적 0.13㎠의 노즐을 통해서, 전기로로 1200℃로 가열된 반응관중에 분출시키고, 반응관을 통과시켜 가열하였다. 반응관내에서의 기상중의 원료분말 분산농도는 0.1g/L이고, V/S=1500이다. 생성된 백색의 분말을 백필터로 포집하였다.Commercially available zinc carbonate powder was pulverized with an air flow crusher to obtain a raw powder having an average particle diameter of about 0.2 탆. The powder was mixed with the air carrier gas using an ejector-type disperser at a feed rate of 1.25 kg / hr, and the obtained solid-gas mixture was flown through an nozzle at a flow rate of 200 L / min through a nozzle having a cross-sectional area of 0.13 cm 2 of the opening. Was blown into a reaction tube heated to 1200 ° C., and heated through a reaction tube. The dispersion concentration of the raw material powder in the gas phase in the reaction tube was 0.1 g / L and V / S = 1500. The resulting white powder was collected with a bag filter.

얻어진 분말은, X선회절분석에 의해 결정성이 좋은 ZnO 분말인 것이 확인되었다. SEM관찰의 결과, 응집이 없는 구형상 입자로 이루어져 있고, 평균입자지름이 0.2㎛, 최대입자지름이 0.8㎛이었다.The obtained powder was confirmed to be ZnO powder having good crystallinity by X-ray diffraction analysis. As a result of SEM observation, it consisted of spherical particle | grains without aggregation, and the average particle diameter was 0.2 micrometer and the maximum particle diameter was 0.8 micrometer.

(CeO2분말)(CeO 2 powder)

실시예 20Example 20

염화세륨의 수용액에 옥살산암모늄 수용액을 교반하면서 첨가하고, 침전된 옥살산세륨을 여과, 건조하여 옥살산세륨분말을 조제하였다. 이 분말을 기류식분쇄기로 분쇄하여, 평균입자지름 약 1㎛의 원료분말을 얻었다. 이 분말을, 캐리어가스로서 유량 200L/min의 공기를 수반시켜, 5kg/hr의 공급속도로, 개구부의 단면적이 0.13㎠인 노즐을 통해서, 전기로로 1500℃로 가열된 반응관중에 분출시키고, 분말의 분산농도를 유지한 채로 반응관을 통과시켜 가열하였다. 산화세륨의 융점은 약 1950℃이다. 반응관내에서의 기상중의 원료분말 분산농도는 0.4g/L이고, V/S=1500이다. 생성된 담황색의 분말을 백필터로 포집하였다.An aqueous solution of ammonium oxalate was added to the aqueous solution of cerium chloride while stirring, and the precipitated cerium oxalate was filtered and dried to prepare a cerium oxalate powder. The powder was pulverized with an air flow crusher to obtain a raw material powder having an average particle diameter of about 1 탆. The powder was blown into a reaction tube heated at 1500 ° C. by an electric furnace through a nozzle having a cross-sectional area of 0.13 cm 2 at an opening rate of 5 kg / hr, accompanied by air having a flow rate of 200 L / min as a carrier gas. The reaction tube was heated while maintaining a dispersion concentration of. The melting point of cerium oxide is about 1950 ° C. The dispersion concentration of raw material powder in the gas phase in the reaction tube was 0.4 g / L and V / S = 1500. The resulting pale yellow powder was collected by a bag filter.

얻어진 분말은, X선회절분석에 의해 결정성이 좋은 Ce02분말인 것이 확인되었다. SEM관찰의 결과, 응집이 없는 구형상 입자로 이루어져 있으며, 평균입자지름이 0.8㎛, 최대입자지름이 2㎛이었다.The obtained powder was confirmed to be Ce0 2 powder having good crystallinity by X-ray diffraction analysis. As a result of SEM observation, it consisted of spherical particle | grains without aggregation, and the average particle diameter was 0.8 micrometer and the maximum particle diameter was 2 micrometer.

(TiO2분말)(TiO 2 Powder)

실시예 21Example 21

황산티타닐의 가수분해에 의해 제조된 함수산화티타늄을, 유량 200L/min의 공기를 사용하여 기류식분쇄기로 분쇄, 분산시키고, 바로 개구부의 단면적 0.13㎠의 노즐을 통해서, 전기로로 1400℃로 가열된 반응관중에 분출시키고, 분말의 분산농도를 유지한 채로 반응관을 통과시켜 가열하였다. 산화티타늄의 융점은 약 1850℃이다. 반응관내에서의 기상중의 원료분말 분산농도는 0.4g/L이고, V/S=1500이다. 생성된 백색의 분말을 백필터로 포집하였다.The hydrous titanium oxide produced by hydrolysis of titanium sulfate was pulverized and dispersed by an air-flow pulverizer using air at a flow rate of 200 L / min, and immediately heated to 1400 ° C. by an electric furnace through a nozzle having a cross-sectional area of 0.13 cm 2 in the opening. The resultant was blown into a reaction tube, and then heated through a reaction tube while maintaining the dispersion concentration of the powder. The melting point of titanium oxide is about 1850 占 폚. The dispersion concentration of raw material powder in the gas phase in the reaction tube was 0.4 g / L and V / S = 1500. The resulting white powder was collected with a bag filter.

얻어진 분말은, X선회절분석에 의해 결정성이 좋은 루틸형 TiO2분말인 것이 확인되었다. SEM관찰의 결과, 응집이 없는 구상입자로 이루어져 있고, 평균입자지름이 2㎛, 최대입자지름이 5㎛이었다.The obtained powder was confirmed to be rutile TiO 2 powder having good crystallinity by X-ray diffraction analysis. As a result of SEM observation, it consisted of spherical particle | grains without aggregation, the average particle diameter was 2 micrometers, and the maximum particle diameter was 5 micrometers.

(산화코발트분말)(Cobalt Oxide Powder)

실시예 22Example 22

시판의 염기성 탄산코발트를 기류식분쇄기로 분쇄하여, 평균입자지름 1㎛의 원료분말을 얻었다. 이 분말을 5kg/hr의 공급속도로 이젝터형 분산기를 사용하여 공기 캐리어와 혼합하고, 얻어진 고체-기체 혼합물을, 유량 200L/min으로, 개구부의 단면적이 0.13㎠인 노즐을 통해서, 전기로로 1500℃로 가열된 반응관중에 분출시키고, 분말의 분산농도를 유지한 채로 반응관을 통과시켜 가열하였다. 산화코발트의 융점은 약 1935℃이다. 반응관내에서의 기상중의 원료분말 분산농도는 0.4g/L이고, V/S=1500이다. 생성된 흑회색의 분말을 백필터로 포집하였다.Commercial basic cobalt carbonate was pulverized with an air flow crusher to obtain a raw material powder having an average particle diameter of 1 탆. This powder was mixed with an air carrier using an ejector-type disperser at a feed rate of 5 kg / hr, and the obtained solid-gas mixture was 1500 ° C. in an electric furnace through a nozzle having a flow rate of 200 L / min and a cross section of an opening of 0.13 cm 2. The resultant was blown into a reaction tube heated by heating, and heated through a reaction tube while maintaining a powder dispersion concentration. The melting point of cobalt oxide is about 1935 ° C. The dispersion concentration of raw material powder in the gas phase in the reaction tube was 0.4 g / L and V / S = 1500. The resulting black gray powder was collected by a bag filter.

얻어진 분말은, X선회절분석에 의해 CoO와 Co304가 혼재한 결정성이 좋은 분말인 것이 확인되었다. SEM관찰의 결과, 응집이 없는 구형상 입자로 이루어지고, 평균입자지름이 0.7㎛, 최대입자지름이 1.5㎛이었다.The obtained powder was confirmed to be a good crystallinity in which CoO and Co 3 O 4 were mixed by X-ray diffraction analysis. As a result of SEM observation, it consisted of spherical particle | grains without aggregation, and the average particle diameter was 0.7 micrometer, and the maximum particle diameter was 1.5 micrometer.

본 발명에 의하면, 조성이 균일하고, 고결정성, 고분산성이고, 균일한 입자형상의 응집이 없는 1차입자로 이루어진 산화물분말이 용이하게 얻어진다. 또한, 순도에 영향을 미치는 첨가제나 용매를 사용하지 않기 때문에, 불순물이 적은 고순도의 분말을 얻을 수 있다. 또한, 분쇄처리를 필요로 하지 않기 때문에, 입자표면 및 내부에 결함이나 변형이 적다.According to the present invention, an oxide powder composed of primary particles having a uniform composition, high crystallinity, high dispersibility, and no uniform particle-shaped aggregation can be easily obtained. In addition, since no additives or solvents affecting the purity are used, high-purity powders containing few impurities can be obtained. In addition, since no pulverization treatment is required, there are few defects or deformations on the particle surface and inside.

더욱 본 방법에서는, 원료분말의 입도 및 분산조건을 콘트롤함으로써, O.1㎛ 이하인 것으로부터 20㎛ 정도의 것까지, 임의의 평균입자지름을 가진, 입자지름이 균일한 산화물분말을 얻을 수 있다. 이 방법은 두꺼운 막 페이스트재료로 사용되는 입도분포가 좁은 미분말을 제조하는 데 특히 적합하다. 또한, 상기 분말은 각종 기능성재료나 그 원료로서, 또한 소결원료나 복합재료로도 적합하다.Further, in the present method, by controlling the particle size and dispersion conditions of the raw material powder, an oxide powder having a uniform particle diameter with an arbitrary average particle diameter can be obtained, from 0.1 μm or less to about 20 μm. This method is particularly suitable for producing fine powder having a narrow particle size distribution which is used as a thick film paste material. In addition, the powder is suitable as various functional materials or raw materials thereof, and also as a sintered raw material or a composite material.

또한, 원료를 용액이나 현탁액 상태로 하지 않기 때문에, 통상의 분무열분해법과 비교해서 용매의 증발에 의한 에너지 손실이 적고, 저비용으로 용이하게 제조할 수 있다. 더구나 액체방울의 합일의 문제가 없고, 분무열분해법과 비교해서 비교적 고농도로 기상중에 분산시킬 수 있기 때문에, 효율이 높다. 또한, 원료를 용액화 또는 현탁액화할 필요가 없기 때문에, 원료의 선택범위가 넓다. 따라서, 많은 종류의 산화물분말의 제조가 가능하다.In addition, since the raw material is not in the form of a solution or a suspension, energy loss due to evaporation of the solvent is small compared with a conventional spray pyrolysis method, and can be easily manufactured at low cost. Moreover, since there is no problem of unity of droplets and it can disperse | distribute in a gaseous phase with comparatively high concentration compared with the spray pyrolysis method, efficiency is high. In addition, since the raw material does not need to be liquefied or suspended, the selection range of the raw material is wide. Therefore, many kinds of oxide powders can be produced.

또한, 본 방법은 용매로부터의 산화성가스의 발생이 없다. 따라서, 저산소 분압하에서 합성할 필요가 있는 복산화물분말의 제조에도 적합하다. 더구나, 원료화합물의 적절한 선택에 의해 분해시에 계내를 환원분위기로 할 수 있다. 이 경우, 환원성가스를 외부에서 공급할 필요가 없고, 산화가 억제된다. 따라서, 반응조건의 설정이 간단하다.In addition, the method is free of oxidizing gas from the solvent. Therefore, it is also suitable for the preparation of complex oxide powder which needs to be synthesized under low oxygen partial pressure. Furthermore, by appropriate selection of raw material compounds, the system can be made into a reducing atmosphere during decomposition. In this case, it is not necessary to supply the reducing gas from the outside, and oxidation is suppressed. Therefore, setting of reaction conditions is simple.

특히, 본 방법으로 제조된 산화물형광체는, 조성적으로 균질하며, 미량의 활성제 이온이 균일하게 분산하고 있어, 표면 및 내부에 결함이나 격자변형이 없는 고결정성이다. 이러한 분말은 발광강도 등의 형광체특성이 극히 우수하다. 더구나, 입자형상 및 입자지름이 균일한 미세 단분산입자이기 때문에, 분산성이 뛰어난 형광체 페이스트를 제조할 수 있고, 이 페이스트를 도포하였을 때의 분말충전밀도가 높고, 박막화가 가능하다.In particular, the oxide phosphor prepared by the present method is compositionally homogeneous, and a small amount of activator ions are uniformly dispersed, and is highly crystalline without defects or lattice deformation on the surface and inside. Such powders are extremely excellent in phosphor characteristics such as luminous intensity. Furthermore, since the particles are fine monodispersed particles having a uniform particle shape and particle diameter, a phosphor paste having excellent dispersibility can be produced, and the powder filling density at the time of applying the paste is high, and the thin film can be formed.

Claims (18)

산화물을 구성하는 금속원소 및 반금속원소로 이루어지는 군에서 선택된 적어도 1종 원소를 포함하는 원료분말을, 캐리어가스와 같이 노즐을 통해서 반응용기속에 분출시키고; 해당 원료분말을 10g/L 이하의 농도로 기상(gas phase)중에 분산시킨 상태에서, 그 분해온도 또는 반응온도보다 높고, 또한 생성되는 산화물의 융점을 Tm℃로 하였을 때, (Tm/2)℃ 이상의 온도로 가열하는 것을 특징으로 하는, 고결정성 산화물분말의 제조방법.A raw material powder containing at least one element selected from the group consisting of metal elements and semimetal elements constituting the oxide is blown into the reaction vessel through a nozzle such as a carrier gas; When the raw powder is dispersed in the gas phase at a concentration of 10 g / L or less, when the melting point of the oxide that is higher than its decomposition temperature or reaction temperature and the produced oxide is Tm 占 폚 is (Tm / 2) 占 폚. It is heated to the above temperature, The manufacturing method of the high crystalline oxide powder characterized by the above-mentioned. 제 1 항에 있어서, 상기 원료분말을 반응용기속에 분출시킬 때의 조건이, 캐리어가스의 단위시간당의 유량을 V(L/min), 노즐의 개구부의 단면적을 S(㎠)로 하였을 때, V/S > 600인 것을 특징으로 하는 제조방법.2. A condition according to claim 1, wherein the conditions for ejecting the raw material powder into the reaction vessel include V (L / min) for the flow rate per unit time of the carrier gas and S (cm 2) for the cross-sectional area of the opening of the nozzle. / S> 600 manufacturing method characterized in that. 제 1 항에 있어서, 상기 원료분말을 노즐을 통해서 반응용기속에 분출시키기 전에, 분산기를 사용하여 캐리어가스중에 혼합, 분산시키는 것을 특징으로 하는 제조방법.The method according to claim 1, wherein the raw material powder is mixed and dispersed in a carrier gas using a disperser before the raw material powder is ejected into the reaction vessel through a nozzle. 제 1 항에 있어서, 상기 원료분말의 입도가 미리 조정된 것을 특징으로 하는 제조방법.The production method according to claim 1, wherein the particle size of the raw material powder is adjusted in advance. 제 1 항에 있어서, 상기 원료분말이 금속원자 및 반금속원자로 이루어지는 군에서 선택된 적어도 2종 원소를 원료분말 개개의 입자내에 실질적으로 일정한 조성비로 포함하고, 제조된 산화물이 복산화물인 것을 특징으로 하는 제조방법.The method of claim 1, wherein the raw material powder comprises at least two elements selected from the group consisting of metal atoms and semi-metal atoms in a substantially constant composition ratio in each particle of the raw material powder, wherein the oxide produced is a complex oxide. Manufacturing method. 제 5 항에 있어서, 상기 원료분말을 구성하는 각 입자가, 금속원소 및 반금속원소로 이루어지는 군에서 선택된 적어도 2종 원소 또는 금속, 반금속, 및 그 화합물로 이루어지는 군에서 선택된 적어도 2종을 포함하는 복합물을 포함하는 합금으로 이루어지거나, 또는 금속원소 및 반금속원소로 이루어지는 군에서 선택된 적어도 2종 원소를 포함하는 단일화합물로 이루어지는 것을 특징으로 하는 제조방법.6. The particle of claim 5, wherein each particle constituting the raw material powder contains at least two elements selected from the group consisting of metal elements and semimetal elements, or at least two kinds selected from the group consisting of metals, semimetals, and compounds thereof. Or a single compound comprising at least two elements selected from the group consisting of a metal element and a semimetal element. 산화물을 구성하는 금속원소 및 반금속원소로 이루어지는 군에서 선택된 적어도 2종 원소를 원료분말 개개의 입자내에 실질적으로 일정한 조성비로 포함하는 원료분말을 제조하고;Preparing a raw material powder comprising at least two elements selected from the group consisting of metal elements and semimetal elements constituting an oxide in the raw material powders at substantially constant composition ratios; 상기 원료분말을 포집하고;Collecting the raw powder; 포집한 원료분말을 분산기를 사용하여 캐리어가스중에 분산시키고;The collected raw powder is dispersed in a carrier gas using a disperser; 분산된 원료분말을 포함하는 캐리어가스를 노즐을 통해서 반응용기속에 분출시키고;Spraying a carrier gas containing the dispersed raw powder into the reaction vessel through a nozzle; 해당 원료분말을 10g/L 이하의 농도로 기상(gas phase)중에 분산시킨 상태에서, 그 분해온도 또는 반응온도보다 높고, 또한 생성되는 복산화물의 융점을 Tm℃로 하였을 때, (Tm/2)℃ 이상의 온도로 가열하여 복산화물분말을 제조하는 것을 포함하여 이루어지는, 고결정성 산화물분말의 제조방법.When the raw material powder is dispersed in the gas phase at a concentration of 10 g / L or less, when the melting point of the complex oxide that is higher than its decomposition temperature or reaction temperature and the produced double oxide is (Tm / 2), (Tm / 2) A method for producing a highly crystalline oxide powder, comprising heating to a temperature of at least C to produce a complex oxide powder. 제 7 항에 있어서, 상기 분산된 원료분말을 포함하는 캐리어가스를 반응용기속에 분출시킬 때의 조건이, 캐리어가스의 단위시간당의 유량을 V(L/min), 노즐의 개구부의 단면적을 S(㎠)로 하였을 때, V/S > 600인 것을 특징으로 하는 제조방법.8. The condition of ejecting the carrier gas containing the dispersed raw material powder into the reaction vessel according to claim 7, wherein the flow rate per unit time of the carrier gas is V (L / min) and the cross-sectional area of the opening of the nozzle is S ( Cm 2), the manufacturing method characterized in that V / S> 600. 제 7 항에 있어서, 상기 원료분말을 캐리어가스내에 분산시키기 전, 또는 분산시킨 후에, 분쇄기를 사용하여 입도를 미리 조정하는 것을 특징으로 하는 제조방법.8. The manufacturing method according to claim 7, wherein the raw material powder is preliminarily adjusted before or after the dispersion in the carrier gas by using a grinder. 제 7 항에 있어서, 상기 원료분말을 구성하는 각 입자가, 금속원소 및 반금속원소로 이루어지는 군에서 선택된 적어도 2종 원소 또는 금속, 반금속, 및 그 화합물로 이루어지는 군에서 선택된 적어도 2종을 포함하는 복합물을 포함하는 합금으로 이루어지거나, 또는 금속원소 및 반금속원소로 이루어지는 군에서 선택된 적어도 2종 원소를 포함하는 단일화합물로 이루어지는 것을 특징으로 하는 제조방법.8. The method of claim 7, wherein each particle constituting the raw material powder comprises at least two elements selected from the group consisting of metal elements and semimetal elements, or at least two kinds selected from the group consisting of metals, semimetals, and compounds thereof. Or a single compound comprising at least two elements selected from the group consisting of a metal element and a semimetal element. 제 1 항의 방법으로 제조된 고결정성 산화물분말.A highly crystalline oxide powder prepared by the method of claim 1. 제 7 항의 방법으로 제조된 고결정성 산화물분말.A highly crystalline oxide powder prepared by the method of claim 7. 제 1 항의 방법으로 제조된 고결정성 형광체 산화물분말.A highly crystalline phosphor oxide powder prepared by the method of claim 1. 제 7 항의 방법으로 제조된 고결정성 형광체 산화물분말.A highly crystalline phosphor oxide powder prepared by the method of claim 7. 제 13 항의 고결정성 형광체 산화물분말을 포함하는 형광체조성물.A phosphor composition comprising the highly crystalline phosphor oxide powder of claim 13. 제 14 항의 고결정성 형광체 산화물분말을 포함하는 형광체조성물.A phosphor composition comprising the highly crystalline phosphor oxide powder of claim 14. 산화물을 구성하는 금속원소 및 반금속원소로 이루어지는 군에서 선택된 적어도 1종 원소를 포함하는 원료분말을, 캐리어가스와 같이 반응용기속에 공급하고; 해당 원료분말을 10g/L 이하의 농도로 기상(gas phase)중에 분산시킨 상태에서, 그 분해온도 또는 반응온도보다 높고, 또한 생성되는 산화물의 융점에 가깝거나 그 이상의 온도로 가열하는 것을 특징으로 하는, 단일결정상 산화물분말의 제조방법.Supplying a raw material powder containing at least one element selected from the group consisting of metal elements and semimetal elements constituting an oxide to the reaction vessel, such as a carrier gas; The raw material powder is dispersed in the gas phase at a concentration of 10 g / L or less, and is heated to a temperature higher than its decomposition temperature or reaction temperature and near or above the melting point of the oxide produced. Method for producing monocrystalline oxide powder. 제 17 항의 방법으로 제조된 단일결정상 산화물분말.Monocrystalline oxide powder prepared by the method of claim 17.
KR1020030054252A 2002-08-07 2003-08-06 Method for manufacturing highly- crystallized oxide powder KR100571622B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002230595A JP4360070B2 (en) 2002-08-07 2002-08-07 Method for producing highly crystalline double oxide powder
JPJP-P-2002-00230595 2002-08-07
JPJP-P-2002-00249781 2002-08-28
JP2002249781A JP4207501B2 (en) 2002-08-28 2002-08-28 Method for producing highly crystalline oxide powder

Publications (2)

Publication Number Publication Date
KR20040014288A true KR20040014288A (en) 2004-02-14
KR100571622B1 KR100571622B1 (en) 2006-04-17

Family

ID=31190369

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030054252A KR100571622B1 (en) 2002-08-07 2003-08-06 Method for manufacturing highly- crystallized oxide powder

Country Status (10)

Country Link
US (1) US7094289B2 (en)
EP (1) EP1391423B1 (en)
KR (1) KR100571622B1 (en)
CN (1) CN100548873C (en)
AT (1) ATE318791T1 (en)
CA (1) CA2436391C (en)
DE (1) DE60303717T2 (en)
MY (1) MY138755A (en)
SG (1) SG111132A1 (en)
TW (1) TWI245742B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI291936B (en) * 2001-05-31 2008-01-01 Tdk Corp
US20030235961A1 (en) * 2002-04-17 2003-12-25 Applied Materials, Inc. Cyclical sequential deposition of multicomponent films
JP3812523B2 (en) * 2002-09-10 2006-08-23 昭栄化学工業株式会社 Method for producing metal powder
US7318897B2 (en) * 2003-08-14 2008-01-15 Ferro Corporation Method of removing spectator ions from aqueous suspension of solid particles
US7767753B2 (en) * 2004-06-21 2010-08-03 Sekisui Chemical Co., Ltd. Binder resin composition, paste and green sheet
EP1613136A1 (en) * 2004-07-02 2006-01-04 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Method for applying material onto a substrate using a droplet printing technique
TWI398496B (en) * 2005-03-31 2013-06-11 Sekisui Chemical Co Ltd A binder resin composition, and an inorganic fine particle dispersion paste composition
FR2892113B1 (en) * 2005-10-13 2007-12-14 Rhodia Recherches & Tech RARE SUBMICRONIC ROUND BORATE, PROCESS FOR PREPARING THE SAME AND USE THEREOF AS LUMINOPHORE
US20070196268A1 (en) * 2006-02-22 2007-08-23 Smith John R Thermal activation of photocatalytic generation of hydrogen
CN101426883B (en) * 2006-04-19 2013-01-02 西巴控股有限公司 Inorganic optical brightener
SG136886A1 (en) * 2006-04-28 2007-11-29 Asahi Glass Co Ltd Method for producing glass substrate for magnetic disk, and magnetic disk
KR101390731B1 (en) * 2006-05-19 2014-04-30 미쓰비시 가가꾸 가부시키가이샤 Nitrogen-containing alloy and method for producing phosphor by using the same
KR101385869B1 (en) * 2007-03-30 2014-04-17 도다 고교 가부시끼가이샤 Ferrite Particle Powder for Bond Magnet, Resin Composition for Bond Magnet and Molded Articles using the Same
EP2294002A4 (en) * 2008-06-25 2012-12-26 Hydrogen Generation Inc Improved process for producing hydrogen
TWI385679B (en) * 2008-08-29 2013-02-11 Cheng Uei Prec Ind Co Ltd Manufacturing method of magnetic material
DE102011082687A1 (en) * 2011-09-14 2013-03-14 Siemens Aktiengesellschaft Process for reprocessing rare earth oxysulphides
EP2983178B1 (en) 2013-04-03 2019-06-19 Toda Kogyo Corp. Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using same
EP3057110B1 (en) 2013-10-02 2020-07-15 Toda Kogyo Corp. Resin composition for bonded magnet, and molded article using the resin composition
CN105460978A (en) * 2015-11-24 2016-04-06 河南师范大学 Large-scale preparation method of carbon-doped ferrite porous microspheres
EP4033276B1 (en) * 2017-10-19 2023-05-31 Panasonic Intellectual Property Management Co., Ltd. Wavelength converter
CN109208069A (en) * 2018-07-18 2019-01-15 华南师范大学 A method of induction bismuth ferrite thin film phase transformation
CN112694779B (en) * 2020-12-01 2022-09-30 中钞印制技术研究院有限公司 Magnetic offset printing ink and preparation method
CN115894023A (en) * 2022-09-17 2023-04-04 浙江大学温州研究院 Lamellar Cu @ La assembled from nanoparticles 1/2 Sr 1/2 CoO 3 Preparation method of conductive ceramic powder

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137918B2 (en) * 1974-07-10 1976-10-19
BE1001832A4 (en) 1987-03-26 1990-03-20 Solvay Method for producing a powder mixed metal oxide and mixed metal oxide powder.
US5152974A (en) 1987-03-26 1992-10-06 Solvay S.A. Process for the manufacture of a powder of mixed metal oxides, and mixed metal oxide powders
JPH0627004B2 (en) * 1987-05-26 1994-04-13 三菱マテリアル株式会社 Method for producing scandium oxide having a dodecahedron crystal form
JPH05310425A (en) 1992-05-12 1993-11-22 Kao Corp Production of metal oxide fine particle
JP3242468B2 (en) * 1992-11-09 2001-12-25 三井金属鉱業株式会社 Method for producing conductive acicular zinc oxide
US5851428A (en) 1996-03-15 1998-12-22 Kabushiki Kaisha Toshiba Phosphor and manufacturing method thereof
US6193908B1 (en) * 1997-02-24 2001-02-27 Superior Micropowders Llc Electroluminescent phosphor powders, methods for making phosphor powders and devices incorporating same
JP4082904B2 (en) 1999-08-25 2008-04-30 昭和電工株式会社 High white zinc oxide fine particles and method for producing the same
DE10001968B4 (en) 1999-10-15 2004-02-12 Applikations- Und Technikzentrum Für Energieverfahrens-, Umwelt- Und Strömungstechnik (Atz-Evus) Process for making a powder
JP2001152146A (en) 1999-12-01 2001-06-05 Mitsubishi Chemicals Corp Preparation process of fluorescent body
JP3423303B2 (en) * 2001-05-31 2003-07-07 ティーディーケイ株式会社 Method for producing single crystal ceramic powder
TWI291936B (en) * 2001-05-31 2008-01-01 Tdk Corp
JP4186529B2 (en) * 2002-07-09 2008-11-26 昭栄化学工業株式会社 Method for producing highly crystalline double oxide powder

Also Published As

Publication number Publication date
DE60303717T2 (en) 2006-11-09
ATE318791T1 (en) 2006-03-15
CA2436391C (en) 2007-02-13
KR100571622B1 (en) 2006-04-17
EP1391423A1 (en) 2004-02-25
CN1483663A (en) 2004-03-24
EP1391423B1 (en) 2006-03-01
TWI245742B (en) 2005-12-21
MY138755A (en) 2009-07-31
CA2436391A1 (en) 2004-02-07
DE60303717D1 (en) 2006-04-27
CN100548873C (en) 2009-10-14
US20040028592A1 (en) 2004-02-12
US7094289B2 (en) 2006-08-22
TW200406358A (en) 2004-05-01
SG111132A1 (en) 2005-05-30

Similar Documents

Publication Publication Date Title
KR100571622B1 (en) Method for manufacturing highly- crystallized oxide powder
CN108137325B (en) Method for preparing zirconium phosphotungstate
JP3738454B2 (en) Composite metal oxide powder and method for producing the same
EP1382570B1 (en) Method for manufacturing highly-crystallized double oxide powder
KR100584822B1 (en) Method for manufacturing single crystal ceramics powder, single crystal ceramics powder, composite materials, and electronic parts
KR20210039462A (en) Method for producing tritium pyrophosphate and method for producing tritium pyrophosphate carbon composite
JP4360070B2 (en) Method for producing highly crystalline double oxide powder
JP4207501B2 (en) Method for producing highly crystalline oxide powder
JP2004315344A (en) Method for manufacturing single crystal ceramic particle
KR20150044710A (en) Manufacturing method of composite particles and composite particels manufactured thereby
CN112424116B (en) Method for producing lithium cobalt phosphate and method for producing lithium cobalt phosphate carbon composite
JP2007290885A (en) Method for producing inorganic particle
JP3981513B2 (en) Method for producing metal oxide
KR100527060B1 (en) Preparation of Single and Multi-Component Oxide by Pyrophoric Synthesis Method
JP4212032B2 (en) Composite materials and electronic components
CN117645538A (en) Method for preparing alkali-catalyzed superfine barium titanyl oxalate and method for preparing barium titanate
JPH11314905A (en) Production of multiple metal oxide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130207

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140317

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150105

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151204

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee