TWI385679B - Manufacturing method of magnetic material - Google Patents

Manufacturing method of magnetic material Download PDF

Info

Publication number
TWI385679B
TWI385679B TW97133109A TW97133109A TWI385679B TW I385679 B TWI385679 B TW I385679B TW 97133109 A TW97133109 A TW 97133109A TW 97133109 A TW97133109 A TW 97133109A TW I385679 B TWI385679 B TW I385679B
Authority
TW
Taiwan
Prior art keywords
nitrate
magnetic material
producing
solution
material according
Prior art date
Application number
TW97133109A
Other languages
Chinese (zh)
Other versions
TW201009856A (en
Inventor
Chih Hao Huang
Original Assignee
Cheng Uei Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheng Uei Prec Ind Co Ltd filed Critical Cheng Uei Prec Ind Co Ltd
Priority to TW97133109A priority Critical patent/TWI385679B/en
Publication of TW201009856A publication Critical patent/TW201009856A/en
Application granted granted Critical
Publication of TWI385679B publication Critical patent/TWI385679B/en

Links

Description

磁性材料的製造方法 Method for manufacturing magnetic material

本發明涉及一種磁性材料的製造方法,特別是涉及一種液相下磁性材料的製造方法。 The present invention relates to a method of producing a magnetic material, and more particularly to a method of producing a magnetic material in a liquid phase.

一般磁性材料的製造方法可分為固相法、氣相法和液相法。固相法製程較簡單,但是需要在高於600攝氏度的溫度下進行反應,而且得到的磁性材料較容易聚集成塊而不易分散。氣相法亦即化學氣相沈積法,該方法需要在高於200攝氏度的溫度下進行反應,其反應條件較為嚴苛,加工窗口小,不易量產。液相法則必須將所得到的初始產物在高於攝氏400度的溫度下進行高溫燒結,才能得到純度較高的磁性材料。 Generally, a method for producing a magnetic material can be classified into a solid phase method, a gas phase method, and a liquid phase method. The solid phase process is simpler, but requires a reaction at a temperature higher than 600 degrees Celsius, and the obtained magnetic material is more easily aggregated and not easily dispersed. The gas phase method, that is, the chemical vapor deposition method, requires a reaction at a temperature higher than 200 degrees Celsius, the reaction conditions are harsh, the processing window is small, and mass production is not easy. The liquid phase method must sinter the obtained initial product at a temperature higher than 400 ° C to obtain a magnetic material of higher purity.

本發明之目的在於針對上述習知技術之不足,提供一種可在較低溫度下進行,製得的磁性材料純度較高且容易分散,容易量產,可降低製造成本的液相下的磁性材料的製造方法。 The object of the present invention is to provide a magnetic material in a liquid phase which can be produced at a relatively low temperature and which is high in purity and easy to disperse, is easy to mass-produce, and can reduce manufacturing cost, in view of the deficiencies of the above-mentioned conventional techniques. Manufacturing method.

為達成上述發明目的,本發明所提供磁性材料的製造方法包括如下步驟:(1)將九水硝酸鐵與其他硝酸金屬化合物溶解於醇類溶劑中;(2)將上述溶液加熱至攝氏60~100度;(3)向上述溶液中加入螫合劑,攪拌均勻,繼續保持攝氏60~100度的加熱溫度,使溶液中的成分發生反應並揮發掉溶液中的醇類溶劑,從而得到棕褐色的固體粉末;(4)將上述固體粉末用烘箱加熱,使固體 粉末中的殘留溶劑揮發,從而得到膨鬆粉末狀的磁性材料。 In order to achieve the above object, the method for producing a magnetic material provided by the present invention comprises the steps of: (1) dissolving iron nitrate nonahydrate and other metal nitrate compounds in an alcohol solvent; (2) heating the solution to 60 ° C. 100 degrees; (3) adding a chelating agent to the above solution, stirring evenly, and maintaining the heating temperature of 60-100 degrees Celsius, reacting the components in the solution and volatilizing the alcohol solvent in the solution, thereby obtaining a tan Solid powder; (4) heating the above solid powder in an oven to make a solid The residual solvent in the powder is volatilized to obtain a bulky powdery magnetic material.

如上所述,本發明磁性材料的製造方法可以在較低溫度下進行,從而可有效節省能源,降低製造成本,本方法反應條件要求低,容易量產,製得的磁性材料純度較高且容易分散。 As described above, the method for producing the magnetic material of the present invention can be carried out at a relatively low temperature, thereby effectively saving energy and reducing the manufacturing cost. The reaction conditions of the method are low, and mass production is easy, and the obtained magnetic material is high in purity and easy. dispersion.

本發明之技術內容、構造特徵及其所達成之目的與功效,以下詳予說明。 The technical content, structural features and the objects and effects achieved by the present invention are described in detail below.

本發明磁性材料的製造方法,包括步驟:(1)將九水硝酸鐵與其他硝酸金屬化合物溶解於醇類溶劑中,得到硝酸化合物溶液;(2)將上述溶液加熱至攝氏60~100度;(3)向上述溶液中加入螫合劑,攪拌均勻,繼續保持攝氏60~100度的加熱溫度,使溶液中的成分發生反應並揮發掉溶液中的醇類溶劑,從而得到棕褐色的固體粉末;(4)將上述固體粉末用烘箱加熱,固體粉末中的殘留溶劑揮發,從而得到膨鬆粉末狀的磁性材料。 The method for producing a magnetic material according to the present invention comprises the steps of: (1) dissolving iron nitrate nonahydrate and other metal nitrate compounds in an alcohol solvent to obtain a nitrate compound solution; (2) heating the solution to 60 to 100 degrees Celsius; (3) adding a chelating agent to the above solution, stirring uniformly, and maintaining the heating temperature of 60 to 100 degrees Celsius, reacting the components in the solution and volatilizing the alcohol solvent in the solution, thereby obtaining a brown solid powder; (4) The solid powder is heated in an oven, and the residual solvent in the solid powder is volatilized to obtain a bulky powdery magnetic material.

在所述步驟(2)中將溶液加熱前,可以先向溶液中加入通式為RnSiX4-n的矽氧偶合劑,其中,R表示一種有機官能基,X表示水解性官能基,n表示0~2的整數,其中當n=2時,R表示的物質既可以相同也可以不同;具體說,該矽氧偶合劑可以為四乙氧基矽烷、四甲氧基矽烷、三乙氧甲基矽烷和三乙氧乙基矽烷中的一種或多種。所述步驟(3)在向溶液中加入螫合劑前,可以先加入適量水。 Before the solution is heated in the step (2), an oxirane coupling agent of the formula R n SiX 4-n may be added to the solution, wherein R represents an organic functional group, and X represents a hydrolyzable functional group. n represents an integer of 0 to 2, wherein when n=2, the substance represented by R may be the same or different; specifically, the anthracene coupling agent may be tetraethoxydecane, tetramethoxynonane, or triethylbenzene. One or more of oxymethyl decane and triethoxyethyl decane. The step (3) may be carried out by adding an appropriate amount of water before adding the chelating agent to the solution.

上述磁性材料的製造方法中:所述其他硝酸金屬化 合物可以為六水硝酸鎳[Ni(NO3)2‧6H2O]、六水硝酸鋅[Zn(NO3)2‧6H2O]、五水硝酸鉍[Bi(NO3)3‧5H2O]、六水硝酸鈷[Co(NO3)3‧6H2O]、六水硝酸錳[Mn(NO3)2‧6H2O]、六水硝酸鎂[Mg(NO3)2‧6H2O]、九水硝酸鐵Fe(NO3)3‧9H2O和硝酸鋇[Ba(NO3)2]中的一種或多種。所述醇類溶劑可以為乙醇和丙醇中的一種或兩種。所述九水硝酸鐵的質量與其他硝酸金屬化合物的總質量的比例以5:1~2為宜,九水硝酸鐵與其他硝酸金屬化合物的總質量與醇類溶劑的質量的比例以1:1~1.5為宜,九水硝酸鐵與其他硝酸金屬化合物的總質量與螫合劑的質量比例以10:0.5~2為宜;所述九水硝酸鐵與其他硝酸金屬化合物的總質量與矽氧偶合劑的質量比例以10:0.5~2為宜。所述步驟(2)中,加熱時最好採用緩慢加熱的方式,步驟(4)中的加熱溫度以攝氏100~110度為宜。 In the method for producing a magnetic material, the other metal nitrate compound may be nickel nitrate hexahydrate [Ni(NO 3 ) 2 ‧6H 2 O], zinc nitrate hexahydrate [Zn(NO 3 ) 2 ‧6H 2 O], Lanthanum nitrate pentahydrate [Bi(NO 3 ) 3 ‧5H 2 O], cobalt nitrate hexahydrate [Co(NO 3 ) 3 ‧6H 2 O], manganese nitrate hexahydrate [Mn(NO 3 ) 2 ‧6H 2 O] One or more of magnesium nitrate hexahydrate [Mg(NO 3 ) 2 ‧6H 2 O], iron nitrate nonahydrate Fe(NO 3 ) 3 ‧9H 2 O and lanthanum nitrate [Ba(NO 3 ) 2 ]. The alcohol solvent may be one or both of ethanol and propanol. The ratio of the mass of the ferric nitrate nonahydrate to the total mass of the other metal nitrate compounds is preferably 5:1 to 2, and the ratio of the total mass of the ferric nitrate and other metal nitrate compounds to the mass of the alcohol solvent is 1: 1~1.5 is suitable, the total mass of ferric nitrate and other nitrate metal compounds and the mass ratio of the chelating agent are preferably 10:0.5~2; the total mass of the ferric nitrate and other nitrate metal compounds and helium oxygen The mass ratio of the coupling agent is preferably 10:0.5~2. In the step (2), the heating is preferably carried out in a slow heating manner, and the heating temperature in the step (4) is preferably in the range of 100 to 110 degrees Celsius.

對上述磁性材料的製造方法,以下以一具體實施例進行說明。 The method for producing the above magnetic material will be described below with reference to a specific embodiment.

請參閱第一圖,首先取250克六水硝酸鎳(Ni(NO3)2‧6H2O)、256克六水硝酸鋅(Zn(NO3)2‧6H2O)和1389克九水硝酸鐵(Fe(NO3)3‧9H2O),加入2500毫升乙醇溶劑中,充分攪拌均勻至完全溶解;再向溶液中加入100克四乙氧基矽烷、50克四甲氧基矽烷和50克三乙氧甲基矽烷;緩慢升溫至攝氏80度;再加入50克水,隨後加入200克螫合劑(citric acid),充分攪拌均勻,此時溶液會劇烈冒泡,乙醇溶劑逐漸蒸發,從而得到棕褐色的固體粉末;將固體粉末採用烘箱在攝氏105度的溫度下加熱12小時,以徹底除去乙醇溶劑,最終可得到膨鬆 粉末狀的鐵氧磁性材料。 Please refer to the first figure, first take 250 grams of nickel nitrate hexahydrate (Ni(NO 3 ) 2 ‧6H 2 O), 256 grams of zinc nitrate hexahydrate (Zn(NO 3 ) 2 ‧6H 2 O) and 1389 grams of nine water Iron nitrate (Fe(NO 3 ) 3 ‧9H 2 O), added to 2500 ml of ethanol solvent, stirred well until completely dissolved; then 100 g of tetraethoxy decane, 50 g of tetramethoxy decane and 50 g were added to the solution. 50 g of triethoxymethyl decane; slowly warmed to 80 ° C; add 50 g of water, then add 200 g of citric acid, stir well, then the solution will bubble vigorously, the ethanol solvent gradually evaporates. Thus, a brown solid powder was obtained; the solid powder was heated in an oven at a temperature of 105 ° C for 12 hours to completely remove the ethanol solvent, and finally a fermented ferrite material was obtained.

上述本發明磁性材料的製造方法中,由於溶液中的化學成分在反應過程中會大量放熱,能夠提供足夠的能量,所以不需要經過進一步的高溫燒結,便可得到鐵氧磁性材料。反應中加入矽氧偶合劑,可使鐵氧磁性材料外層形成氧化矽保護層,從而形成鐵氧磁性材料/氧化矽之核/殼複合狀態的鐵氧磁性材料,藉此可以增加磁性材料的穩定性。 In the above method for producing a magnetic material of the present invention, since the chemical component in the solution generates a large amount of heat during the reaction, sufficient energy can be supplied, so that the ferrite magnetic material can be obtained without further high-temperature sintering. The addition of a cerium oxygen coupling agent in the reaction can form a protective layer of cerium oxide on the outer layer of the ferromagnetic material, thereby forming a ferrite material of a ferrite magnetic material/cerium oxide core/shell composite state, thereby increasing the stability of the magnetic material. Sex.

如上所述,本發明磁性材料的製造方法可以在較低溫度下進行,從而可有效節省能源,降低製造成本,本方法反應條件要求低,容易量產,製得的磁性材料純度較高且容易分散。 As described above, the method for producing the magnetic material of the present invention can be carried out at a relatively low temperature, thereby effectively saving energy and reducing the manufacturing cost. The reaction conditions of the method are low, and mass production is easy, and the obtained magnetic material is high in purity and easy. dispersion.

第一圖為本發明磁性材料的製造方法一種實施例的流程圖。 The first figure is a flow chart of an embodiment of a method of manufacturing a magnetic material of the present invention.

Claims (8)

一種磁性材料的製造方法,包括如下步驟:(1)將九水硝酸鐵與其他硝酸金屬化合物溶解於醇類溶劑中;(2)將上述溶液加熱至攝氏60~100度;(3)向上述溶液中加入螫合劑,攪拌均勻,繼續保持攝氏60~100度的加熱溫度,使溶液中的成分發生反應並揮發掉溶液中的醇類溶劑,從而得到棕褐色的固體粉末;(4)將上述固體粉末用烘箱加熱,使固體粉末中的殘留溶劑揮發,從而得到膨鬆粉末狀的磁性材料;其特徵在於:所述步驟(2)在將溶液加熱前,先向溶液中加入通式為RnSiX4-n的矽氧偶合劑,其中,R表示一種有機官能基,X表示水解性官能基,n表示0~2的整數,其中當n=2時,R表示的物質既可以相同也可以不同。 A method for producing a magnetic material, comprising the steps of: (1) dissolving iron nitrate nonahydrate and other metal nitrate compounds in an alcohol solvent; (2) heating the solution to 60 to 100 degrees Celsius; (3) to the above Adding a chelating agent to the solution, stirring uniformly, and maintaining the heating temperature of 60-100 degrees Celsius, reacting the components in the solution and volatilizing the alcohol solvent in the solution to obtain a brown solid powder; (4) The solid powder is heated in an oven to volatilize the residual solvent in the solid powder to obtain a bulky powdery magnetic material. The step (2) is: adding a formula R to the solution before heating the solution. n SiX 4-n an oxygen coupling agent, wherein R represents an organic functional group, X represents a hydrolyzable functional group, and n represents an integer of 0 to 2, wherein when n = 2, the substance represented by R may be the same Can be different. 如申請專利範圍第1項所述之磁性材料的製造方法,其中所述其他硝酸金屬化合物為六水硝酸鎳、六水硝酸鋅、五水硝酸鉍、六水硝酸鈷、六水硝酸錳、六水硝酸鎂和硝酸鋇中的一種或多種。 The method for producing a magnetic material according to claim 1, wherein the other metal nitrate compound is nickel nitrate hexahydrate, zinc nitrate hexahydrate, lanthanum nitrate pentahydrate, cobalt nitrate hexahydrate, manganese nitrate hexahydrate, and hexahydrate. One or more of water magnesium nitrate and cerium nitrate. 如申請專利範圍第1項所述之磁性材料的製造方法,其中所述九水硝酸鐵的質量與其他硝酸金屬化合物的總質量的比例為5:1~2;九水硝酸鐵與其他硝酸金屬化合物的總質量與醇類溶劑的質量的比例為1:1~1.5;九水硝酸鐵與其他硝酸金屬化合物的總質量與螫合劑的質量比例為10 :0.5~2。 The method for producing a magnetic material according to claim 1, wherein the ratio of the mass of the ferric nitrate nonahydrate to the total mass of the other metal nitrate compound is 5:1 to 2; the ferric nitrate and other nitrate metal The ratio of the total mass of the compound to the mass of the alcohol solvent is 1:1 to 1.5; the total mass of the ferric nitrate and other metal nitrate compounds and the mass ratio of the chelating agent are 10 :0.5~2. 如申請專利範圍第1項所述之磁性材料的製造方法,其中所述矽氧偶合劑為四乙氧基矽烷、四甲氧基矽烷、三乙氧甲基矽烷和三乙氧乙基矽烷中的一種或多種。 The method for producing a magnetic material according to claim 1, wherein the oxime coupling agent is tetraethoxy decane, tetramethoxy decane, triethoxymethyl decane, and triethoxyethyl decane. One or more. 如申請專利範圍第1項所述之磁性材料的製造方法,其中所述九水硝酸鐵與其他硝酸金屬化合物的總質量與矽氧偶合劑的質量比例為10:0.5~2。 The method for producing a magnetic material according to claim 1, wherein the mass ratio of the total mass of the iron nitrate nonahydrate to the other metal nitrate compound to the oxime coupling agent is 10:0.5-2. 如申請專利範圍第1項所述之磁性材料的製造方法,其中所述步驟(3)在向溶液中加入螫合劑前,先加入50克的水。 The method for producing a magnetic material according to claim 1, wherein the step (3) is carried out by adding 50 g of water before adding the chelating agent to the solution. 如申請專利範圍第1項所述之磁性材料的製造方法,其中所述步驟(4)中的加熱溫度為攝氏100~110度。 The method for producing a magnetic material according to claim 1, wherein the heating temperature in the step (4) is 100 to 110 degrees Celsius. 如申請專利範圍第1項所述之磁性材料的製造方法,其中所述醇類溶劑為乙醇和丙醇中的一種或兩種。 The method for producing a magnetic material according to claim 1, wherein the alcohol solvent is one or both of ethanol and propanol.
TW97133109A 2008-08-29 2008-08-29 Manufacturing method of magnetic material TWI385679B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97133109A TWI385679B (en) 2008-08-29 2008-08-29 Manufacturing method of magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97133109A TWI385679B (en) 2008-08-29 2008-08-29 Manufacturing method of magnetic material

Publications (2)

Publication Number Publication Date
TW201009856A TW201009856A (en) 2010-03-01
TWI385679B true TWI385679B (en) 2013-02-11

Family

ID=44828005

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97133109A TWI385679B (en) 2008-08-29 2008-08-29 Manufacturing method of magnetic material

Country Status (1)

Country Link
TW (1) TWI385679B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI245742B (en) * 2002-08-07 2005-12-21 Shoei Chemical Ind Co Method for manufacturing highly-crystallized oxide powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI245742B (en) * 2002-08-07 2005-12-21 Shoei Chemical Ind Co Method for manufacturing highly-crystallized oxide powder

Also Published As

Publication number Publication date
TW201009856A (en) 2010-03-01

Similar Documents

Publication Publication Date Title
US20140104023A1 (en) Composite soft magnetic powder, composite soft magnetic powder core, and preparation method therefor
CN103341346B (en) The preparation method of a kind of manganese ferrite nanoparticle and graphene complex
Xu et al. γ-Fe2O3 and Fe3O4 magnetic hierarchically nanostructured hollow microspheres: Preparation, formation mechanism, magnetic property, and application in water treatment
CN104495950A (en) Preparation method of carbon encapsulated magnetic C/Fe3O4 nano composite material and application thereof
CN105271431B (en) Method for preparing ferriferrous oxide magnetic material and composite material thereof
CN105234427A (en) Platinum alloy nano core-shell cube and preparation method thereof
CN103204490B (en) Preparation method of iron trioxide/carbon yolk-eggshell nano-composite structure
CN103680797A (en) Method for preparing magnetic nano-particles decorated through fluorine-containing silane surface active agents
CN103466719B (en) Preparation method of nanocomposite with controllable iron-loading state in ordered mesoporous carbon substrate
CN103632793A (en) Preparation method for carbon-coated Ni-Zn-Fe magnetic nanometer material taking chitosan as carbon source
CN108971509B (en) Preparation method of iron-nickel alloy nano material with controllable particle size
TWI385679B (en) Manufacturing method of magnetic material
CN105001678B (en) A kind of nanometer Zinc oxide powder material
CN109215913B (en) Method for preparing carbon-coated iron nitride and composite magnetic nano material thereof
Nakaya et al. Preparation of wüstite nanoparticles by a solventless synthetic procedure
CN102659087A (en) A method for preparing titanium nitride by utilizing in-situ carbothermal reduction-nitridation
Randhawa et al. Preparation of nickel ferrite from thermolysis of nickel tris (malonato) ferrate (III) heptahydrate precursor
CN109732099B (en) Preparation method of antioxidant micron copper
CN104209513A (en) Superparamagnetic nanometer composite material and preparation method for same
CN108435179B (en) Preparation method of double-activity monatomic ammonia synthesis catalyst
CN102360670B (en) Composite material with ferrite magnetic layer and amorphous soft magnetic core as well as preparation method thereof
CN108247040A (en) Nano-oxide catalyst coats the in-situ synthesis of hydrogen storing alloy composite material
CN111292910B (en) Rapid preparation method of Co/SmCo composite magnetic material with special structure
Che et al. Wheel-like Gd 42 polynuclear complexes with significant magnetocaloric effect
CN103420387B (en) Tubular clay mineral-magnetic metal nano composite and preparation method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees