KR20040002809A - Method for preparation of coating solution for electrolysis and a metal oxide electrode by using it - Google Patents

Method for preparation of coating solution for electrolysis and a metal oxide electrode by using it Download PDF

Info

Publication number
KR20040002809A
KR20040002809A KR1020030049842A KR20030049842A KR20040002809A KR 20040002809 A KR20040002809 A KR 20040002809A KR 1020030049842 A KR1020030049842 A KR 1020030049842A KR 20030049842 A KR20030049842 A KR 20030049842A KR 20040002809 A KR20040002809 A KR 20040002809A
Authority
KR
South Korea
Prior art keywords
titanium
coating solution
electrode
coating
acid
Prior art date
Application number
KR1020030049842A
Other languages
Korean (ko)
Inventor
여태환
고희찬
황규연
Original Assignee
주식회사 펜솔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 펜솔 filed Critical 주식회사 펜솔
Priority to KR1020030049842A priority Critical patent/KR20040002809A/en
Publication of KR20040002809A publication Critical patent/KR20040002809A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE: A coating solution for electrolysis electrode is provided which is prepared by adding pure water and acid to the mixture after mixing a matrix of metal alkoxide with one or two chlorides of precious metals including Ru, Ir, Sn, Pt and Pb, and a manufacturing method of metal oxide electrode coated using the same is provided. CONSTITUTION: The method comprises the steps of preparing a coating solution by adding pure water and acid to the mixture after mixing a transition metal alkoxide with one or two chlorides of precious metals including Ru, Ir, Sn, Pt and Pb; dipping a titanium supporter into the coating solution or spraying the coating solution onto the titanium supporter so that the titanium supporter is coated with the coating solution; drying the coating solution coated titanium supporter; and firing the titanium supporter coated and dried in the above steps at a temperature of 300 deg.C or more, wherein alkoxide of metals including Ti and Zr is additionally added to the coating solution in the coating solution preparation process.

Description

전기 분해 전극용 코팅 용액 및 이를 이용하여 코팅된 금속 산화물 전극의 제조 방법{Method for preparation of coating solution for electrolysis and a metal oxide electrode by using it}Coating solution for electrolysis electrode and method for producing coated metal oxide electrode using same

본 발명은 전기 분해 전극용 코팅 용액 및 이를 이용하여 코팅된 금속 산화물 전극의 제조 방법에 관한 것으로, 더욱 상세하게는 티타늄 지지체에 티타늄 또는 지르코늄 등의 금속 알콕사이드를 모체로 Ru, Ir, Sn, Pt 및 Pb를 포함하는 귀금속류의 염화물 1종 또는 2종을 혼합한 후 초순수와 산을 가하여 제조된 전기 분해 전극용 코팅 용액과 이에 침액 코팅하여 제조되는 금속 산화물 전극의 제조 방법에 관한 것이다.The present invention relates to a coating solution for an electrolytic electrode and a method for producing a metal oxide electrode coated using the same, and more specifically, to a titanium support, based on a metal alkoxide such as titanium or zirconium, Ru, Ir, Sn, Pt and The present invention relates to a electrolytic electrode coating solution prepared by mixing one or two chlorides of a noble metal including Pb, and then adding ultrapure water and an acid, and to a method of manufacturing a metal oxide electrode prepared by immersion coating thereof.

전기분해를 위한 전극의 제조방법으로는 열분해법, 아아크 용융법, 플라즈마 용융법, 전기도금법 등이 있으며 이들 방법중 하나 또는 두가지 이상의 방법에 의해 전극을 제작한다. 그중 가장 일반적이고 경제적인 방법이 열분해법이며, 이에 관한 특허는 알칼리 수용액의 전기분해에의 응용을 중심으로 많은 발표가 있었다.Methods of manufacturing electrodes for electrolysis include pyrolysis, arc melting, plasma melting, electroplating, and the like. Electrodes are manufactured by one or two or more of these methods. Among them, the most common and economical method is pyrolysis, and many patents have been published centering on the application of alkaline aqueous solution to electrolysis.

일본 특허공고 평성 제03-131385호에는 티타늄을 전극 도재로 사용하여 그 위에 카본나이트라이드(carbonitride)를 아아크 융용법 또는 플라즈마 융용법에 의해 피복하는 기술이 제시되어 있다. 그러나 상기 방법은 피복 물질의 손실이 많고 대형 전극에는 피복물질을 균일하게 피복시킬 수 없으며 또한 피복 과정이 복잡하기 때문에 전극을 제조하기 어려운 단점이 있었다.Japanese Patent Application Laid-Open No. 03-131385 discloses a technique in which titanium is used as an electrode ceramic material and carbon nitride is coated thereon by arc melting or plasma melting. However, the above method has a disadvantage in that it is difficult to manufacture the electrode because a large amount of coating material is lost, the large electrode cannot be coated uniformly, and the coating process is complicated.

대한민국 특허 공고 제 79-3290호와 제 91-2102호에 염소와 가성소다 제조용 전극을 제작하는 방법에 관한 내용이 기술되어있다. 그러나, 상기 방법에 의해 제조된 전극은 염소 과전압은 낮지만 산소 과전압이 높아 에너지를 다량으로 소비하며, 극렬한 반응에서 사용되므로 코팅면의 탈각 및 활성점의 유실로 낮은 활성도와 짧은 수명이 문제점으로 지적되어왔다.Korean Patent Publication Nos. 79-3290 and 91-2102 describe a method of manufacturing an electrode for producing chlorine and caustic soda. However, the electrode manufactured by the above method consumes a large amount of energy due to low chlorine overvoltage but high oxygen overvoltage, and is used in extreme reactions. Has been pointed out.

이에, 대한민국 특허 공개 제 1998-9525호에서는 상기 문제점을 해결하기 위하여 티타늄으로 이루어진 전도성 모체를 Ru, Sn, Ir, Pt 및 Pb로 구성된 귀금속류의 염화물 1종 또는 2종을 염산용매에 녹인 다음 분산용매에 혼합하여 얻은 피복용액에 담지시킨 후 건조시킴으로써 전극의 염소 과전압과 산소 과전압을 효과적으로낮출 수 있고 수명이 긴 전기분해용 전극을 제조하는 방법을 제안하고 있다.Accordingly, in Korean Patent Publication No. 1998-9525, in order to solve the above problems, one or two chlorides of precious metals composed of Ru, Sn, Ir, Pt, and Pb are dissolved in a hydrochloric acid solvent, and then a dispersion solvent is dissolved. The present invention proposes a method for producing an electrode for electrolysis, which has a long lifetime, which can be effectively lowered by chlorine overvoltage and oxygen overvoltage of an electrode by being dipped in a coating solution obtained by mixing in an organic solvent.

그러나, 상기 방법은 피복 용액이 안정하지 않아 이를 장기간 보관하기 어렵고 코팅시 코팅막이 균일하고 깨끗하게 형성되기 어려울뿐만 아니라 코팅막이 쉽게 벗겨지고 닳게 되는 단점이 있다.However, the above method has a disadvantage in that the coating solution is not stable, so it is difficult to store it for a long time, and the coating film is difficult to form uniformly and cleanly during coating, and the coating film is easily peeled off and worn out.

이에 본 발명자들은 상기 단점을 고려하여 전극의 염소 과전압과 산소 과전압을 효과적으로 낮출 수 있고 안정한 피복 용액을 제공하며 코팅 후 코팅막이 균일하고 쉽게 벗겨지거나 닳지 않는 코팅 용액 및 이를 이용한 전극을 제공하고자 한다.In view of the above disadvantages, the present inventors can effectively lower the chlorine overvoltage and oxygen overvoltage of the electrode, provide a stable coating solution, and provide a coating solution in which the coating film is uniform and not easily peeled off or worn after coating, and an electrode using the same.

따라서, 본 발명의 목적은 금속 알콕사이드와 귀금속류의 염화물 1종 또는 2종을 혼합하여 졸-겔 용액을 제조하는 공정을 통하여 상온에서 침전 없이 안정한 전극 코팅을 위한 용액을 제조하고 이를 이용하여 코팅함으로써 염소 과전압과 산소 과전압을 효과적으로 낮출 수 있으며 수명이 긴 전기 분해용 전극을 제공하는데 있다.Accordingly, an object of the present invention is to prepare a sol-gel solution by mixing a metal alkoxide and one or two chlorides of noble metals to prepare a sol-gel solution. The present invention provides an electrode for electrolysis, which can effectively reduce overvoltage and oxygen overvoltage, and has a long lifespan.

본 발명의 상기 목적은 Ti, Zr 등의 알콕사이드와 Ru, Ir 등의 염화물로 구성된 1성분 또는 2성분 복합 또는 다성분 화합물을 알코올에 희석한 후 초순수와 산을 첨가하여 가수분해반응과 중축합반응을 거쳐 코팅 용액을 제조하여 상기 코팅 용액에 전처리된 전도성 지지체를 침액하여 코팅함으로써 전기 분해용 전극을 제조하여 본 발명을 완성하였다.The above object of the present invention is to dilute the one-component or two-component complex or multicomponent compound consisting of alkoxides such as Ti, Zr and chlorides such as Ru and Ir in alcohol, and then add ultrapure water and acid to hydrolysis and polycondensation reactions. By preparing a coating solution through the coating solution by dipping the conductive support pre-treated in the coating solution to produce an electrode for electrolysis to complete the present invention.

이하 본 발명의 구성을 설명한다.Hereinafter, the configuration of the present invention.

도 1은 졸-겔 공정에 의한 코팅 용액 제조 공정 및 금속 산화물 제조 공정도이다.1 is a process for producing a coating solution and a metal oxide by a sol-gel process.

도 2는 침액 방법에 의한 금속 산화물 코팅 공정 장치도이다.2 is an apparatus diagram of a metal oxide coating process by a immersion method.

도 3은 전처리된 전극 지지체의 표면 상태이다.3 is a surface state of a pretreated electrode support.

도 4는 전처리된 전극 지지체에 코팅 및 소성 후의 전극의 표면상태이다.4 is a surface state of an electrode after coating and firing on a pretreated electrode support.

본 발명은The present invention

1) 이상적인 코팅 용액을 제조하기 위하여 전이금속(Ti, Zr) 알콕 사이드와 Ru, Ir, Sn, Pt 및 Pb로 구성된 귀금속류의 염화물 1종 또는 2종을 혼합한 후 초순수와 산을 첨가하여 가수분해와 중축합 반응을 통하여 침전이 없는 안정한 졸-겔상의 코팅용액을 제조하는 단계;1) To prepare an ideal coating solution, a mixture of transition metals (Ti, Zr) alkoxides and one or two chlorides of noble metals consisting of Ru, Ir, Sn, Pt and Pb is mixed and then hydrolyzed by adding ultrapure water and acid. Preparing a stable sol-gel coating solution without precipitation through a polycondensation reaction;

2) 티타늄 지지체를 상기 졸-겔상의 코팅용액에 침액 또는 분사에 의해 코팅하는 단계;2) coating the titanium support by dipping or spraying the coating solution on the sol-gel;

3) 상기 코팅된 티타늄 지지체를 코팅 표면에 균열 없이 건조하는 단계; 및3) drying the coated titanium support without cracking the coating surface; And

4) 코팅층에 산화물을 형성하기 위하여 상기 코팅 및 건조된 티타늄 지지체를 소성하는 단계로 구성된다.4) firing the coated and dried titanium support to form an oxide in the coating layer.

기존의 전극 코팅 용액 제조 방법은 원하는 조성의 금속염을 용매에 용해하여 전극 지지체에 코팅한 다음, 열분해하여 피막을 제조하였지만 극렬한 반응에서 산소 과전압이 높고 촉매막이 탈각하기 쉬운 단점을 가지고 있다. 졸-겔 공정에 의하여 바람직한 조성에 의한 침전이 없는 안정한 용액을 제조하여 전극을 코팅하면 코팅층이 그물망 구조를 형성하여 부착도와 내마모성이 뛰어난 전극을 제조할 수 있다.Conventional electrode coating solution manufacturing method dissolves a metal salt of a desired composition in a solvent and coated on the electrode support, and then pyrolyzed to prepare a coating, but in the extreme reaction has a high oxygen overvoltage and the catalyst membrane is easy to deflect. When the electrode is coated by preparing a stable solution without precipitation due to the preferred composition by the sol-gel process, the coating layer forms a network structure, thereby producing an electrode having excellent adhesion and wear resistance.

이를 위하여 본 발명에서는 Ti, Zr 등의 금속 알콕사이드와 Ru, Ir, Sn, Pt및 Pb 등의 1종 또는 2종의 염화물이나 복합 화합물을 가한 후, 초순수와 산을 첨가하여 가수분해와 중축합 반응을 통하여 안정한 졸-겔 용액을 제공한다.To this end, in the present invention, metal alkoxides such as Ti and Zr, and one or two chlorides or complex compounds such as Ru, Ir, Sn, Pt, and Pb are added, followed by addition of ultrapure water and acid to hydrolysis and polycondensation reactions. To provide a stable sol-gel solution.

본 발명의 목적을 달성하기 위한 전기 분해용 전극 제조 방법은 하기 단계를 포함한다.Electrolytic electrode production method for achieving the object of the present invention comprises the following steps.

1) 이상적인 코팅 용액을 제조하기 위하여 천이금속(Ti, Zr) 알콕 사이드와 Ru, Ir, Sn, Pt 및 Pb 등의 1종 또는 2종의 염화물이나 복합 화합물을 가한 후 초순수와 산을 첨가하여 가수분해와 중축합 반응을 통하여 침전이 없는 안정한 졸-겔상의 코팅용액을 제조하는 단계;1) To prepare an ideal coating solution, one or two chlorides or complex compounds such as transition metal (Ti, Zr) alkoxide and Ru, Ir, Sn, Pt and Pb are added, followed by addition of ultrapure water and acid Preparing a stable sol-gel coating solution without precipitation through decomposition and polycondensation reaction;

2) 티타늄 지지체를 상기 졸-겔상의 코팅용액에 침액 또는 분사에 의해 코팅하는 단계;2) coating the titanium support by dipping or spraying the coating solution on the sol-gel;

3) 코팅 표면에 균열 없이 건조하는 단계;3) drying without cracks on the coating surface;

4) 코팅층에 산화물을 형성하기 위한 소성 단계.4) firing step for forming oxide in the coating layer.

이하 본 발명의 전기 분해용 전극 제조를 위한 코팅 용액과 그 전극 제조 방법을 조금 더 상세히 설명하면 다음과 같다.Hereinafter, the coating solution for preparing the electrode for electrolysis of the present invention and the electrode manufacturing method thereof will be described in more detail.

본 발명의 전기 분해용 전극 제조 공정은 코팅용 졸-겔 용액 제조 공정과 전극 코팅 공정으로 나누어진다.The electrolytic electrode manufacturing process of the present invention is divided into a coating sol-gel solution manufacturing process and an electrode coating process.

산소 과전압과 염소 과전압을 낮추며 이상적인 코팅 용액을 제조하기 위하여 Ti, Zr의 알콕사이드 1종을 알코올에 몰 비율로 50∼100배 희석한 후 Ru, Ir, Sn, Pt 및 Pb 등의 염화물로 구성된 1성분 또는 2성분 복합 또는 다성분 화합물의 알코올 희석 용액을 적가하여 혼합한 뒤 초순수와 산을 첨가하여 가수분해반응과 중축합반응을 거쳐 코팅용 졸-겔 용액을 제조한다. 여기에서 Ru, Ir, Sn, Pt 및 Pb 등의 염화물로 구성된 1성분 또는 2성분 복합 또는 다성분 화합물의 알코올 희석 용액도 알코올에 Ru, Ir, Sn, Pt 및 Pb 등의 염화물로 구성된 1성분 또는 2성분 복합 또는 다성분 화합물을 몰 비율로 50∼100배 희석한 용액이다.One component consisting of chlorides such as Ru, Ir, Sn, Pt and Pb after diluting one kind of alkoxide of Ti and Zr in alcohol to 50 to 100 times in order to prepare an ideal coating solution while reducing oxygen overvoltage and chlorine overvoltage Alternatively, a dilution solution of a bicomponent compound or a multicomponent compound is added dropwise to the mixture, followed by addition of ultrapure water and acid to prepare a sol-gel solution for coating through a hydrolysis reaction and a polycondensation reaction. Here, the alcohol dilution solution of a one-component or two-component complex or multicomponent compound composed of chlorides such as Ru, Ir, Sn, Pt, and Pb may also be used as a single component composed of chlorides such as Ru, Ir, Sn, Pt, and Pb in alcohol. It is the solution which diluted 50-100 times of mole ratio compound or multicomponent compound in molar ratio.

본 발명에서 상기 Ru, Ir, Sn, Pt 및 Pb로 구성된 귀금속류의 염화물 1종 또는 2종과 Ti 및 Zr으로 구성된 금속의 알콕사이드 1종의 몰비율은 0.4:0.6인 것이 바람직하다.In the present invention, the molar ratio of one or two chlorides of the noble metals composed of Ru, Ir, Sn, Pt and Pb and one alkoxide of a metal composed of Ti and Zr is preferably 0.4: 0.6.

본 발명에서 상기 졸-겔 용액은 2∼4시간 숙성시키는 것이 바람직하다.In the present invention, the sol-gel solution is preferably aged for 2 to 4 hours.

상기 용액에 전처리된 전도성 지지체를 침액하여 인출속도를 1-15cm/min으로 코팅한다. 인출속도가 상기 범위를 벗어나서 너무 빠르면 두께가 얇아지고 표면상태가 거칠어지고 상기 범위를 벗어나서 너무 느리면 제조 속도가 느려 제조 효율이 떨어진다.The conductive support pretreated in the solution is immersed to coat the withdrawal rate at 1-15 cm / min. If the withdrawal speed is too fast out of the above range, the thickness becomes thin and the surface condition becomes rough, and if out of the above range is too slow, the manufacturing speed is low and manufacturing efficiency is low.

건조 공정은 코팅층의 수분과 유기물을 제거하고 최종 코팅층의 물리적 상태에 영향을 주는 단계로 50-350℃의 온도로 건조하였다.The drying process removes moisture and organics from the coating layer and affects the physical state of the final coating layer and dried at a temperature of 50-350 ° C.

소성 공정은 잔류 유기물을 완전히 제거하고 금속 알콕사이드 및 염화물을 금속 산화물로 결정화하는 단계로 400-800℃의 온도로 소성하여 전극을 제조한다.The firing process completely removes the residual organics and crystallizes the metal alkoxide and chloride with the metal oxide, which is then fired to a temperature of 400-800 ° C. to prepare the electrode.

본 발명에서 상기 건조 및 소성은 1회 내지 20회 반복하며, 마지막 소성은 1시간 내지 5시간 동안 수행하는 것이 바람직하다.In the present invention, the drying and firing is repeated once to 20 times, the last firing is preferably performed for 1 to 5 hours.

본 발명에서 상기 금속 알콕사이드는 티타늄 이소프로폭사이드, 티타늄 에톡사이드, 티타늄 n-프로폭사이드, 티타늄 부톡사이드, 지르코늄 n-프로폭사이드, 지르코늄 이소프로폭사이드, 지르코늄 부톡사이드 및 지르코늄 에톡사이드로 구성되는 군 중에서 선택되는 어느 하나 이상이 바람직하다.In the present invention, the metal alkoxide is composed of titanium isopropoxide, titanium ethoxide, titanium n-propoxide, titanium butoxide, zirconium n-propoxide, zirconium isopropoxide, zirconium butoxide and zirconium ethoxide. At least one selected from the group consisting of is preferable.

본 발명에서, 상기 산은 염산, 질산, 초산 및 황산으로 이루어진 군 중에서 선택되는 어느 하나 이상이 바람직하다.In the present invention, the acid is preferably any one or more selected from the group consisting of hydrochloric acid, nitric acid, acetic acid and sulfuric acid.

이하 본 발명을 다음과 같은 실시예 및 실험예에 의하여 더욱 상세하게 설명하고자 한다. 단, 다음의 실시예 및 실험예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이 것들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following Examples and Experimental Examples. However, the following Examples and Experimental Examples are only for illustrating the present invention, the scope of the present invention is not limited to these.

실시예 1: RuOExample 1: RuO 22 -TiO-TiO 22 가 코팅된 티타늄 전극Coated titanium electrode

a. 코팅 용액 제조a. Coating solution manufacturing

출발물질로 루테늄 클로라이드와 티타늄 이소프로폭사이드를 몰비율 0.4:0.6으로 한다. 먼저 알코올에 티타늄 이소프로폭사이드를 몰 비율로 50∼100배 희석한 후 알코올에 용해한 루테늄 클로라이드를 첨가한다. 여기에 알코올로 희석한 초순수와 염산을 가하여 가수분해 반응과 중축합 반응을 시킨다. 이 졸 용액을 2-4시간 숙성시킨다.The starting material is ruthenium chloride and titanium isopropoxide in a molar ratio of 0.4: 0.6. First, dilute titanium isopropoxide in an alcohol molar ratio 50 to 100 times, and then add ruthenium chloride dissolved in alcohol. Ultrapure water diluted with alcohol and hydrochloric acid are added thereto to undergo a hydrolysis reaction and a polycondensation reaction. This sol solution is aged for 2-4 hours.

b. 코팅, 건조, 소성단계 즉 전극 제조 단계b. Coating, drying, firing step, i.e. electrode manufacturing step

전처리된 티타늄 지지체를 제조된 졸 용액에 5cm/min의 속도로 침액 하여 코팅한다. 전극을 열풍기를 이용하여 50-100℃의 온도로 건조한 후, 450-600℃에서 10분간 소성한다. 이와 같이 10회 반복 코팅, 건조 소성한 후 마지막으로 2시간 동안 450-600℃에서 소성한다.The pretreated titanium support is coated by dipping into the prepared sol solution at a rate of 5 cm / min. The electrode is dried at a temperature of 50-100 ° C. using a hot air fan, and then fired at 450-600 ° C. for 10 minutes. As described above, the coating was repeatedly baked 10 times, dried and calcined at 450-600 ° C. for 2 hours.

c. 전기화학적 분석c. Electrochemical analysis

제조된 전극을 정극으로 백금과 로늄 합금 전극을 부극으로 사용하였으며, 포화 칼로멜 전극을 기준전극으로 사용하고, 전해질로는 1M 황산을 사용하여 전기화학적 분석을 실시하였다. 과전압과 전류 밀도를 알아보기 위하여 타펠스 플롯(Tafel's plot)을 실시하였으며, 실험조건은 전위범위를 0에서 1.4V, 스캔 속도(scan rate)는 1mV/s로 하였다. 또한, 같은 전류밀도에서 전극의 분극 정도를 알아보기 위하여 타펠스 플롯(Tafel's plot)과 동일한 조건에서 부극성 곡선에 대한 분석을 실시하였다.The prepared electrode was used as a cathode and platinum and rhonium alloy electrode as a negative electrode, and a saturated calomel electrode was used as a reference electrode, and electrochemical analysis was performed using 1 M sulfuric acid as an electrolyte. A Tafel's plot was performed to determine the overvoltage and current density. The experimental conditions were the potential range from 0 to 1.4V and the scan rate to 1mV / s. In addition, in order to determine the degree of polarization of the electrode at the same current density, an analysis of the negative polarity curve was performed under the same conditions as the Tafel's plot.

d. 성능 측정결과d. Performance measurement result

RuO2와 TiO2의 몰비율이 0.4대 0.6일때 기존의 열분해법으로 제조된 100%RuO2전극보다 높은 교환 전류밀도와 낮은 과전압을 보인다.When the molar ratio of RuO 2 and TiO 2 is 0.4 to 0.6, it shows higher exchange current density and lower overvoltage than 100% RuO 2 electrode manufactured by conventional pyrolysis method.

실시예 2: RuOExample 2: RuO 22 -ZrO-ZrO 22 가 코팅된 티타늄 전극Coated titanium electrode

a. 코팅 용액 제조a. Coating solution manufacturing

루테늄 클로라이드와 지르코늄 노르말프로폭사이드를 몰비율 0.4:0.6으로 준비한다. 먼저 알코올에 지르코늄 노르말프로폭사이드를 희석한 후, 알코올에 용해한 루테늄 클로라이드를 앞의 지르코늄 희석 용액에 적가한다. 여기에 알코올에 희석한 초순수와 질산을 가하여 가수분해 반응과 중축합반응을 시킨다. 이 졸을 2-4시간 성숙시킨다.Ruthenium chloride and zirconium normal propoxide are prepared in a molar ratio of 0.4: 0.6. First, after diluting zirconium normal propoxide in alcohol, ruthenium chloride dissolved in alcohol is added dropwise to the previous zirconium dilution solution. Ultrapure water diluted with alcohol and nitric acid are added thereto to undergo a hydrolysis reaction and a polycondensation reaction. This sol matures for 2-4 hours.

b. 코팅, 건조, 소성단계b. Coating, drying and firing steps

전처리된 티타늄 지지체를 제조된 졸 용액에 침액 코팅한다. 코팅속도는 5cm/min 이었다. 전극을 50-100℃의 열풍기에서 건조한 후, 450-600℃에서 10분간 소성한다. 이와 같이 10회 반복 코팅, 건조 소성 후 마지막으로 2시간 동안 450-600℃에서 소성한다.The pretreated titanium support is dip coated on the prepared sol solution. The coating speed was 5 cm / min. The electrode is dried in a hot air fan at 50-100 ° C., and then fired at 450-600 ° C. for 10 minutes. Thus repeated coating 10 times, dry firing and finally fired at 450-600 ℃ for 2 hours.

c. 전기화학적 분석c. Electrochemical analysis

실시예1과 동일하게 진행하였다.It proceeded in the same manner as in Example 1.

d. 성능측정결과d. Performance measurement result

RuO2와 ZrO2의 몰비율이 0.4대 0.6일때 기존의 100%RuO2와 비교하여 높은 교환 전류밀도와 낮은 과전압을 보인다.When the molar ratio of RuO 2 and ZrO 2 is 0.4 to 0.6, it shows higher exchange current density and lower overvoltage compared to the existing 100% RuO 2 .

실험변환상수(α)와 교환전류밀도(i0)Experimental conversion constant (α) and exchange current density (i 0 ) αα i 0 (mA/cm2) i 0 (mA / cm 2 ) 비교예 100%RuO2 Comparative Example 100% RuO 2 0.8340.834 0.0500.050 실시예 40%RuO2/60%TiO2 Example 40% RuO 2 /60% TiO 2 0.8510.851 0.0980.098 실시예 40%RuO2/60%ZrO2 Example 40% RuO 2 /60% ZrO 2 0.8120.812 0.0440.044

과전압(η)Overvoltage (η) η (1mA/cm2)η (1mA / cm 2 ) η (10mA/cm2)η (10mA / cm 2 ) η (100mA/cm2)η (100mA / cm 2 ) 비교예 100%RuO2 Comparative Example 100% RuO 2 0.2310.231 0.2760.276 0.3290.329 실시예 40%RuO2/60%TiO2 Example 40% RuO 2 /60% TiO 2 0.2010.201 0.2520.252 0.3030.303 실시예 40%RuO2/60%ZrO2 Example 40% RuO 2 /60% ZrO 2 0.2340.234 0.2490.249 0.2550.255

이상 상기에서 살펴본 바와 같이 본 발명에 의해 제조된 전극은 높은 전류 밀도와 낮은 산소 과전압으로 전력비를 절감할 수 있고, 코팅막이 그물망 구조로 부착도가 개선되어 내마모성과 내식성이 뛰어나고 수명이 길어지는 뛰어난 효과가 있으므로 전기전자산업상 매우 유용한 것이다.As described above, the electrode manufactured according to the present invention can reduce the power ratio by high current density and low oxygen overvoltage, and the coating film has a mesh structure to improve adhesion, thereby providing excellent wear resistance, corrosion resistance, and long life. This is very useful in the electrical and electronics industry.

Claims (9)

Ru, Ir, Sn, Pt 및 Pb로 구성된 귀금속류의 염화물 1종 또는 2종을 혼합한 후, 초순수와 산을 가하여 코팅 용액을 제조하는 단계;Mixing one or two chlorides of noble metals consisting of Ru, Ir, Sn, Pt, and Pb, and then adding ultrapure water and an acid to prepare a coating solution; 상기 코팅 용액에 티타늄 지지체를 침액 또는 분사시켜 코팅하는 단계;Coating the titanium solution by dipping or spraying the titanium support; 상기 코팅된 티타늄 지지체를 건조시키는 단계; 및Drying the coated titanium support; And 상기 단계에서 코팅 및 건조된 티타늄 지지체를 300℃ 이상에서 소성하는 단계로 구성되는 전기분해용 전극의 제조방법에 있어서,In the manufacturing method of the electrode for electrolysis consisting of the step of firing the coated and dried titanium support in the above step 300 ℃, 상기 코팅 용액을 제조하는 단계에서 Ti 및 Zr으로 구성된 금속의 알콕사이드 1종을 추가로 첨가하는 것을 특징으로 하는 전기분해용 전극의 제조방법.In the step of preparing the coating solution, a method for producing an electrode for electrolysis, characterized in that it further adds one alkoxide of a metal consisting of Ti and Zr. 제 1항에 있어서, 상기 Ru, Ir, Sn, Pt 및 Pb로 구성된 귀금속류의 염화물 1종 또는 2종과 Ti 및 Zr으로 구성된 금속의 알콕사이드 1종의 몰비율이 0.4:0.6임을 특징으로 하는 전기분해용 전극의 제조방법.The electrolysis according to claim 1, wherein the molar ratio of one or two chlorides of the noble metals consisting of Ru, Ir, Sn, Pt and Pb and one alkoxide of one metal of Ti and Zr is 0.4: 0.6. Method for producing an electrode for use. 제 1항에 있어서, 상기 코팅 용액은 알코올에 Ti 및 Zr으로 구성된 금속의 알콕사이드 1종을 몰 비율로 50∼100배 희석한 후 Ru, Ir, Sn, Pt 및 Pb로 구성된 귀금속류의 염화물 1종 또는 2종의 알코올 희석 용액을 적가하여 혼합한 후 초순수와 염산을 적가하여 가수분해 반응 및 중축합 반응을 통하여 투명한 졸을 제조한 뒤 상기 졸을 2∼4시간 숙성시킴으로써 제조된 것임을 특징으로 하는 전기분해용 전극의 제조방법.The method according to claim 1, wherein the coating solution is diluted 50 to 100 times in molar ratio of one alkoxide of a metal consisting of Ti and Zr in alcohol and then one chloride of a noble metal consisting of Ru, Ir, Sn, Pt and Pb or Electrolyte characterized in that it is prepared by dropwise mixing the two alcohol dilution solution, and then by adding dropwise ultrapure water and hydrochloric acid dropwise to prepare a transparent sol through hydrolysis and polycondensation reaction and then aged the sol for 2 to 4 hours Method for producing an electrode for use. 제 1항에 있어서, 상기 코팅 단계에서 코팅 용액에 티타늄 지지체를 침액할 때 인출속도는 1∼15㎝/min의 속도를 유지하는 것을 특징으로 하는 전기분해용 전극의 제조방법.The method of claim 1, wherein the withdrawal speed is maintained at a rate of 1 to 15 cm / min when the titanium support is immersed in the coating solution in the coating step. 제 1항에 있어서, 상기 건조 단계의 온도는 50∼350℃의 범위임을 특징으로 하는 전기분해용 전극의 제조방법.The method of claim 1, wherein the temperature of the drying step is in the range of 50 ~ 350 ℃. 제 1항에 있어서, 상기 소성 단계의 온도는 400∼800℃의 범위임을 특징으로 하는 전기분해용 전극의 제조방법.The method of claim 1, wherein the temperature of the firing step is in the range of 400 ~ 800 ℃. 제 1항에 있어서, 상기 건조 및 소성은 1회 내지 20회 반복하며, 마지막 소성은 1시간 내지 5시간 동안 수행함을 특징으로 하는 전기분해용 전극의 제조방법.The method of claim 1, wherein the drying and firing are repeated once to 20 times, and the final firing is performed for 1 to 5 hours. 제 1항에 있어서, 상기 금속 알콕사이드는 티타늄 이소프로폭사이드, 티타늄 에톡사이드, 티타늄 n-프로폭사이드, 티타늄 부톡사이드, 지르코늄 n-프로폭사이드, 지르코늄 이소프로폭사이드, 지르코늄 부톡사이드 및 지르코늄 에톡사이드로 구성되는 군 중에서 선택되는 어느 하나 이상임을 특징으로 하는 전기분해용 전극의 제조방법.The method of claim 1, wherein the metal alkoxide is titanium isopropoxide, titanium ethoxide, titanium n-propoxide, titanium butoxide, zirconium n-propoxide, zirconium isopropoxide, zirconium butoxide and zirconium ethoxy Method for producing an electrode for electrolysis, characterized in that any one or more selected from the group consisting of side. 제 1항에 있어서, 상기 산은 염산, 질산, 초산 및 황산으로 이루어진 군 중에서 선택되는 어느 하나 이상임을 특징으로 하는 전기분해용 전극의 제조방법.The method of claim 1, wherein the acid is at least one selected from the group consisting of hydrochloric acid, nitric acid, acetic acid, and sulfuric acid.
KR1020030049842A 2003-07-21 2003-07-21 Method for preparation of coating solution for electrolysis and a metal oxide electrode by using it KR20040002809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030049842A KR20040002809A (en) 2003-07-21 2003-07-21 Method for preparation of coating solution for electrolysis and a metal oxide electrode by using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030049842A KR20040002809A (en) 2003-07-21 2003-07-21 Method for preparation of coating solution for electrolysis and a metal oxide electrode by using it

Publications (1)

Publication Number Publication Date
KR20040002809A true KR20040002809A (en) 2004-01-07

Family

ID=37314090

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030049842A KR20040002809A (en) 2003-07-21 2003-07-21 Method for preparation of coating solution for electrolysis and a metal oxide electrode by using it

Country Status (1)

Country Link
KR (1) KR20040002809A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010883A2 (en) * 2009-07-23 2011-01-27 (주)테크로스 Method for manufacturing a dimensionally stable anode for electrolytic sterilization
KR101725971B1 (en) * 2016-04-06 2017-04-11 주식회사 씨엔엘에너지 Preparation of the coating electrode for alkaline water electrolysis and thereof
KR20180060785A (en) * 2016-11-29 2018-06-07 주식회사 엘지화학 Electrode for electrolysis and preparing method for electrode for electrolysis
KR20190007561A (en) * 2017-07-12 2019-01-23 경북대학교 산학협력단 Electrodes for electrochemical water treatment comprising mixed metal oxide coating layer, fabrication method thereof and water treatment method using the same
WO2019240472A1 (en) * 2018-06-12 2019-12-19 경북대학교 산학협력단 Composite oxide-coated electroconductive separation membrane for water treatment and manufacturing method therefor
KR20200077927A (en) * 2018-12-21 2020-07-01 주식회사 엘지화학 Anode Comprising Metal Phosphide Complex and Preparation Method thereof
KR20210129937A (en) * 2020-04-21 2021-10-29 주식회사 테크로스 Pyrochlore-type metal oxide based catalytic electrode for electrolysis of ballast water and preparation method thereof
KR20220005889A (en) * 2020-07-07 2022-01-14 주식회사 테크로스 Transition metal coated catalytic electrode for electrolysis and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010883A2 (en) * 2009-07-23 2011-01-27 (주)테크로스 Method for manufacturing a dimensionally stable anode for electrolytic sterilization
WO2011010883A3 (en) * 2009-07-23 2011-05-26 (주)테크로스 Method for manufacturing a dimensionally stable anode for electrolytic sterilization
KR101148111B1 (en) * 2009-07-23 2012-05-22 (주) 테크로스 Manufacturing Method for Electrolytic Sterilization Insoluble Electrode
KR101725971B1 (en) * 2016-04-06 2017-04-11 주식회사 씨엔엘에너지 Preparation of the coating electrode for alkaline water electrolysis and thereof
KR20180060785A (en) * 2016-11-29 2018-06-07 주식회사 엘지화학 Electrode for electrolysis and preparing method for electrode for electrolysis
KR20190007561A (en) * 2017-07-12 2019-01-23 경북대학교 산학협력단 Electrodes for electrochemical water treatment comprising mixed metal oxide coating layer, fabrication method thereof and water treatment method using the same
WO2019240472A1 (en) * 2018-06-12 2019-12-19 경북대학교 산학협력단 Composite oxide-coated electroconductive separation membrane for water treatment and manufacturing method therefor
KR20200077927A (en) * 2018-12-21 2020-07-01 주식회사 엘지화학 Anode Comprising Metal Phosphide Complex and Preparation Method thereof
KR20210129937A (en) * 2020-04-21 2021-10-29 주식회사 테크로스 Pyrochlore-type metal oxide based catalytic electrode for electrolysis of ballast water and preparation method thereof
KR20220005889A (en) * 2020-07-07 2022-01-14 주식회사 테크로스 Transition metal coated catalytic electrode for electrolysis and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5250663B2 (en) Anode for electrolysis and method for producing anode for electrolysis
AU2004323018B2 (en) Pd-containing coating for low chlorine overvoltage
US4331528A (en) Coated metal electrode with improved barrier layer
AU2005325733A1 (en) High efficiency hypochlorite anode coating
ZA200507569B (en) Electrocatalytic coating with platinum group metals and electrode made therefrom
JP5037133B2 (en) Electrode preparation method and electrode
JP2012092449A (en) Electrode for manufacturing chlorine by electrolysis
NO764378L (en)
EP0014596B1 (en) Method for producing electrodes having mixed metal oxide catalyst coatings
US20080248195A1 (en) Method for the Production of Iridium Oxide Coatings
KR20040002809A (en) Method for preparation of coating solution for electrolysis and a metal oxide electrode by using it
EP0027051B1 (en) Coated metal electrode with improved barrier layer and methods of manufacture and use thereof
JP2014152341A (en) Anode electrolytic plating method of iridium oxide coating
CN113061926A (en) Titanium dioxide anode diffusion layer for PEM water electrolysis cell and preparation method and application thereof
JP2019119930A (en) Chlorine generating electrode
US5431798A (en) Electrolytic electrode and method of production thereof
NO138535B (en) ELECTRODE FOR ELECTROCHEMICAL PROCESSES, AND PROCEDURE FOR THE PRODUCTION OF SUCH AN ELECTRODE
KR890002700B1 (en) Low over-voltage electrodes for alkaline electrolytes
JP2009102676A (en) Corrosion-resistant conductive-coated material and its use
RU2288973C1 (en) Electrode and method of its production
CN114180682B (en) Alkali metal-RuO 2 -TiO 2 Coated titanium electrode and preparation method thereof
NO793526L (en) ELECTROLYCLE CELL ELECTRODE AND PROCEDURES IN MANUFACTURING THEREOF
KR102605336B1 (en) Electrode for electrolysis, method for producing the same, and electrochemical cell
JPH08199384A (en) Electrolyzing electrode and its production
Girenko et al. Novel electrode material for synthesis of low concentration sodium hypochlorite solutions

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
G15R Request for early opening
E902 Notification of reason for refusal
E601 Decision to refuse application