KR20040002660A - Method for producing cyclohexanone oxime - Google Patents

Method for producing cyclohexanone oxime Download PDF

Info

Publication number
KR20040002660A
KR20040002660A KR1020030040998A KR20030040998A KR20040002660A KR 20040002660 A KR20040002660 A KR 20040002660A KR 1020030040998 A KR1020030040998 A KR 1020030040998A KR 20030040998 A KR20030040998 A KR 20030040998A KR 20040002660 A KR20040002660 A KR 20040002660A
Authority
KR
South Korea
Prior art keywords
cyclohexanone
cyclohexanone oxime
reaction
titanium silicate
reaction mixture
Prior art date
Application number
KR1020030040998A
Other languages
Korean (ko)
Other versions
KR101024233B1 (en
Inventor
오이까와미유끼
후까오마사미
Original Assignee
스미또모 가가꾸 고오교오 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미또모 가가꾸 고오교오 가부시끼가이샤 filed Critical 스미또모 가가꾸 고오교오 가부시끼가이샤
Publication of KR20040002660A publication Critical patent/KR20040002660A/en
Application granted granted Critical
Publication of KR101024233B1 publication Critical patent/KR101024233B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/04Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: A method for preparing a cyclohexanone oxime is provided, to produce a cyclohexanone oxime in a high yield by suppressing the deterioration of the catalytic activity of titanosilicate as a catalyst. CONSTITUTION: The method comprises the step of reacting cyclohexanone with hydrogen peroxide and ammonia in the presence of titanosilicate and a silicon compound other than titanosilicate. Preferably the silicon compound other than titanosilicate is at least one selected from the group consisting of silica gel, silicic acid., silicate and zeolite. Preferably the amounts of titanosilicate and a silicon compound are about 0.1-10 wt% based on the liquid part of the reaction mixture, respectively; and the reaction is carried out in the presence of about 10 wt% or more of water based on the reaction mixture.

Description

시클로헥사논 옥심의 제조방법 {METHOD FOR PRODUCING CYCLOHEXANONE OXIME}Method for preparing cyclohexanone oxime {METHOD FOR PRODUCING CYCLOHEXANONE OXIME}

본 발명은 암모니아 및 과산화수소를 사용하여 시클로헥사논으로부터 시클로헥사논 옥심을 제조하는 방법에 관한 것이다. 시클로헥사논 옥심은 ε-카프로락탐의 제조를 위한 개시 물질 등으로 유용하다.The present invention relates to a process for preparing cyclohexanone oxime from cyclohexanone using ammonia and hydrogen peroxide. Cyclohexanone oxime is useful as a starting material for the preparation of ε-caprolactam and the like.

시클로헥사논 옥심의 제조를 위해서, 타타늄 실리케이트 촉매의 존재 하에, 시클로헥사논을 과산화수소 및 암모니아와 반응시키는 방법이 제안되어 왔다 (예를 들어, 미국 특허 제 (US-)4,745,221 호에 대응하는 일본 특허 출원 공개 제 (JP-A-)62-59256 호; 미국 특허 제 US-5,312,987 호에 대응하는 일본 특허 출원 공개 제 JP-A-6-49015 호; 미국 특허 제 US-5,227,525 호에 대응하는 일본 특허 출원 공개 제 JP-A-6-92922 호; 및 미국 특허 제 US-5,683,952 호, 제 US-5,691,266 호 및 제 US-5,874,596 호에 대응하는 일본 특허 출원 공개 제 JP-A-7-100387 호). 시클로헥사논 옥심의 종래 제조방법에서는 히드록실아민 술페이트로 중화를 수행하는 반면, 상기 방법은 암모니아로 황산을 중화시킬 필요가 없다는 점, 및 고체 촉매를 사용하기 때문에 촉매로부터 생성물의 분리를 용이하게 수행할 수 있다는 점에서 유리하다.For the preparation of cyclohexanone oximes, a method of reacting cyclohexanone with hydrogen peroxide and ammonia in the presence of a titanium silicate catalyst has been proposed (e.g., Japan corresponding to US Pat. No. 4,745,221). Patent Application Publication (JP-A-) 62-59256; Japanese Patent Application Publication No. JP-A-6-49015, corresponding to US Patent No. US-5,312,987; Japanese Patent Application Publication No. US-5,227,525 Patent Application Publication Nos. JP-A-6-92922; and Japanese Patent Application Publication Nos. JP-A-7-100387 corresponding to US Pat. Nos. 5,683,952, US-5,691,266 and US-5,874,596) . While conventional processes for the preparation of cyclohexanone oximes carry out neutralization with hydroxylamine sulfate, the process does not require neutralization of sulfuric acid with ammonia, and the use of solid catalysts facilitates separation of the product from the catalyst. It is advantageous in that it can be performed.

그러나, 시클로헥사논과 과산화수소 및 암모니아와의 상기 반응에서, 티타늄 실리케이트 촉매의 촉매 활성은 반응 시간이 경과함에 따라 점차 저하되어, 시클로헥사논의 전환률이 불충분하게 될 수 있다.However, in the above reaction of cyclohexanone with hydrogen peroxide and ammonia, the catalytic activity of the titanium silicate catalyst gradually decreases as the reaction time elapses, and the conversion rate of cyclohexanone may become insufficient.

본 발명의 목적 중 하나는, 시클로헥사논과 과산화수소 및 암모니아와의 반응에서 티타늄 실리케이트의 불활성화를 억제함으로서, 고 수율의 시클로헥사논 옥심의 제조 방법을 제공하는 것이다.One of the objects of the present invention is to provide a method for producing a high yield of cyclohexanone oxime by inhibiting the inactivation of titanium silicate in the reaction of cyclohexanone with hydrogen peroxide and ammonia.

본 발명자들의 예의 연구 결과로서, 타타늄 실리케이트의 존재 하에, 시클로헥사논을 티타늄 실리케이트 이외의 규소 화합물과 함께 반응시킴으로써, 상기 목적 및 기타 목적을 달성할 수 있음이 밝혀졌고, 본 발명이 완성되었다.As a result of the intensive studies of the present inventors, it has been found that the above and other objects can be achieved by reacting cyclohexanone with silicon compounds other than titanium silicate in the presence of titanium silicate, and the present invention has been completed.

본 발명은 시클로헥사논 옥심의 제조방법으로서, 티타늄 실리케이트 및 티타늄 실리케이트 이외의 규소 화합물의 존재 하에서, 시클로헥사논을 과산화수소 및 암모니아와 반응시키는 단계를 포함하는 방법을 제공한다.The present invention provides a method for preparing cyclohexanone oxime, comprising reacting cyclohexanone with hydrogen peroxide and ammonia in the presence of titanium silicate and silicon compounds other than titanium silicate.

본 발명에서, 시클로헥사논 옥심은 시클로헥사논의 가암모니아산화에 의해 제조되며, 여기서 시클로헥사논은, 티타늄 실리케이트 및 티타늄 실리케이트 이외의 규소 화합물의 존재 하에서, 과산화수소 및 암모니아와 반응한다.In the present invention, cyclohexanone oxime is prepared by ammonia oxidation of cyclohexanone, wherein cyclohexanone is reacted with hydrogen peroxide and ammonia in the presence of silicon compounds other than titanium silicate and titanium silicate.

본 발명에서 사용되는 티타늄 실리케이트는 그것의 골격 구조 내 원소로서 티타늄, 규소 및 산소를 포함하는 제올라이트일 수 있다. 티타늄 실리케이트는 티타늄, 규소 및 산소, 또는 이들 원소뿐만 아니라 임의적인 기타 원소들로 실질적으로 구성된 골격 구조를 가질 수 있다. 티타늄 실리케이트는 10 내지 1000 의 규소 대 티타늄의 원자비를 가질 수 있고, 미세 분말, 펠릿 등의 형태일 수 있다. 티타늄 실리케이트는 미국 특허 제 US-4,410,501 호에 대응하는 일본 특허 제 JP-A-56-96720 호에 개시된 방법 등에 의해서 제조될 수 있다.The titanium silicate used in the present invention may be a zeolite comprising titanium, silicon and oxygen as elements in its skeletal structure. Titanium silicates may have a framework structure substantially composed of titanium, silicon and oxygen, or any other elements as well as these elements. Titanium silicates may have an atomic ratio of silicon to titanium of 10 to 1000, and may be in the form of fine powders, pellets and the like. Titanium silicate may be prepared by the method disclosed in Japanese Patent No. JP-A-56-96720 corresponding to US Pat. No. 4,410,501 and the like.

본 발명에서, 상기 티타늄 실리케이트 및 티타늄 실리케이트 이외의 규소 화합물을 사용함으로써, 시클로헥사논을 과산화수소 및 암모니아와 반응시켜 시클로헥사논 옥심을 수득한다.In the present invention, by using a silicon compound other than the titanium silicate and the titanium silicate, cyclohexanone is reacted with hydrogen peroxide and ammonia to obtain cyclohexanone oxime.

본 발명에서 개시 물질로서 사용되는 시클로헥사논은, 예를 들어 시클로헥산을 산화시키거나, 시클로헥센을 수화시킨 후, 탈수소 반응시키거나, 또는 페놀을 수소 첨가 반응시켜 수득될 수 있다.Cyclohexanone used as the starting material in the present invention can be obtained, for example, by oxidizing cyclohexane, hydrating cyclohexene, followed by dehydrogenation, or hydrogenation of phenol.

본 발명에서 사용되는 과산화수소는 소위 안트라퀴논 (anthraquinone) 방법에 의해 제조될 수 있다. 안트라퀴논 방법은, 예를 들어 α-에틸안트라퀴논을 벤젠과 같은 비수용성 용매에 용해시킨 후, 촉매 수소 첨가 반응시켜 히드로안트라퀴논을 수득하고, 히드로안트라퀴논을 α-에틸안트라퀴논으로 산화시키면서, 과산화수소를 제공하는 방법에 의해 수행될 수 있다. 약 10 중량% 내지 약 70 중량% 의 농도를 갖는 수용액인 시판용 과산화수소를 또한 본 발명에서 사용할 수 있다. 과산화수소의 상대 몰량은, 시클로헥사논 1 몰을 기준으로, 바람직하게는 약 0.5 몰 내지 약 3 몰의 범위, 더 바람직하게는 약 0.5 몰 내지 약 1.5 몰의 범위이다. 본 발명에서 사용되는 과산화수소는, 예를 들어 소듐 포스페이트와 같은 포스페이트 염, 소듐 피로포스페이트 및 소듐 트리폴리포스페이트와 같은 폴리포스페이트 염, 피로포스포릭산, 아스코르브산, 에틸렌디아민-테트라아세트산, 니트로 트리-아세트산, 아미노 트리-아세트산, 디에틸렌트리아미노 펜타-아세트산 등을 포함하는 안정화제를 포함할 수 있다.Hydrogen peroxide used in the present invention can be prepared by the so-called anthraquinone method. The anthraquinone method is, for example, dissolving α-ethylanthraquinone in a non-aqueous solvent such as benzene, followed by catalytic hydrogenation to obtain hydroanthraquinone, while oxidizing hydroanthraquinone to α-ethylanthraquinone, It may be carried out by a method for providing hydrogen peroxide. Commercial hydrogen peroxide, an aqueous solution having a concentration of about 10% to about 70% by weight, can also be used in the present invention. The relative molar amount of hydrogen peroxide is preferably in the range of about 0.5 moles to about 3 moles, more preferably in the range of about 0.5 moles to about 1.5 moles, based on 1 mole of cyclohexanone. Hydrogen peroxide used in the present invention includes, for example, phosphate salts such as sodium phosphate, polyphosphate salts such as sodium pyrophosphate and sodium tripolyphosphate, pyrophosphoric acid, ascorbic acid, ethylenediamine-tetraacetic acid, nitro tri-acetic acid, Stabilizers including amino tri-acetic acid, diethylenetriamino penta-acetic acid, and the like.

본 발명에서, 암모니아는 기체 상태, 액체 상태, 또는 물, 유기 용매 등을 사용한 용액 상태로 사용될 수 있다. 암모니아의 상대 몰량은, 시클로헥사논 1 몰을 기준으로, 바람직하게는 약 1 몰 이상, 더 바람직하게는 약 1.5 몰 이상이다.In the present invention, ammonia can be used in a gaseous state, a liquid state, or a solution state using water, an organic solvent, or the like. The relative molar amount of ammonia is preferably about 1 mole or more, more preferably about 1.5 mole or more, based on 1 mole of cyclohexanone.

암모니아 및 과산화수소를 사용한 시클로헥사논 옥심의 제조 반응은 용매를 사용하여 용액에서 수행될 수 있다. 용매의 예로는, 알콜, 예컨대 메틸 알콜, 에틸 알콜, n-프로필 알콜, 이소프로필 알콜, n-부틸 알콜, sec-부틸 알콜, tert-부틸 알콜 및 tert-아밀 알콜, 물, 및 그의 혼합물을 포함한다.The reaction for preparing cyclohexanone oxime using ammonia and hydrogen peroxide can be carried out in solution using a solvent. Examples of solvents include alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol and tert-amyl alcohol, water, and mixtures thereof. do.

본 발명에서, 암모니아 및 과산화수소를 사용한 시클로헥사논 옥심의 제조 반응은, 티타늄 실리케이트의 존재 하에서 티타늄 실리케이트 이외의 규소 화합물과 함께 수행된다. (이하, 티타늄 실리케이트 이외의 규소 화합물은 어떤 경우에 "규소 화합물" 로 간단히 언급될 수 있다.) 티타늄 실리케이트와 함께 규소 화합물을 사용함으로써, 티타늄 실리케이트의 불활성화를 억제할 수 있고, 그럼으로써 반응에서 촉매로 사용되는 티타늄 실리케이트의 양을 줄일 수 있다. 비용 감소 측면에서, 통상 상대적으로 비싼 티타늄 실리케이트 보다 덜 비싼 규소 화합물을 사용하는 것이 바람직하다. 규소 화합물은, 그 자체로서, 반응에서 실질적으로 촉매 활성을 갖지 않을 수 있다.In the present invention, the reaction for preparing cyclohexanone oxime using ammonia and hydrogen peroxide is carried out together with silicon compounds other than titanium silicate in the presence of titanium silicate. (Hereinafter, silicon compounds other than titanium silicates may in some cases be referred to simply as “silicon compounds”.) By using silicon compounds in combination with titanium silicates, it is possible to inhibit the inactivation of titanium silicates, and thereby in the reaction. The amount of titanium silicate used as catalyst can be reduced. In terms of cost reduction, it is usually desirable to use silicon compounds which are less expensive than relatively expensive titanium silicates. The silicon compound, by itself, may be substantially free of catalytic activity in the reaction.

규소 화합물의 예로는, 규소 및 산소 함유 화합물, 예컨대 실리카 겔, 규산및 실리케이트를 포함한다. 또한, 각각 지올라이트형 구조를 갖는, 결정체 실리카 겔 및 메탈로-실리케이트를 사용하는 것이 바람직하다. 규소 화합물은 단독으로 사용될 수 있거나, 또는 필요한 경우, 둘 이상의 규소 화합물을 조합하여 사용할 수 있다.Examples of silicon compounds include silicon and oxygen containing compounds such as silica gel, silicic acid and silicates. It is also preferable to use crystalline silica gels and metallo-silicates, each having a zeolitic structure. The silicon compound may be used alone or in combination of two or more silicon compounds, if necessary.

본 발명에서, 티타늄 실리케이트 및 규소 화합물을, 반응 혼합물의 액체 부분을 기준으로, 각각 약 0.1 중량% 내지 약 10 중량% 의 농도로 사용하는 것이 바람직하며, 따라서, 타타늄 실리케이트 및 규소 화합물이 혼합물에 현탁된다.In the present invention, it is preferred to use titanium silicate and silicon compounds in concentrations of about 0.1% to about 10% by weight, respectively, based on the liquid portion of the reaction mixture, so that the titanium silicate and silicon compounds are incorporated into the mixture. Suspended.

티타늄 실리케이트의 촉매 활성의 불활성화를 억제하는 효과는, 물이 약 10 중량% 이상의 농도로 반응 혼합물에 존재하는 경우에 특히 두드러진다.The effect of inhibiting inactivation of the catalytic activity of titanium silicates is particularly pronounced when water is present in the reaction mixture at a concentration of at least about 10% by weight.

암모니아 및 과산화수소를 사용한 시클로헥사논 옥심의 제조 반응은 배치 방식으로, 또는 연속 방식으로 수행될 수 있다. 배치 방식 반응은, 예를 들어 반응기에 시클로헥사논, 암모니아, 티타늄 실리케이트, 규소 화합물 및 용매를 충전시키고, 거기에 교반하면서 과산화수소를 도입시키는 방법에 의해; 또는 반응기에 시클로헥사논, 티타늄 실리케이트, 규소 화합물 및 용매를 충전시키고, 거기에 교반하면서 과산화수소 및 암모니아를 도입시키는 방법에 의해; 또는 반응기에 티타늄 실리케이트, 규소 화합물 및 용매를 충전시키고, 거기에 교반하면서 시클로헥사논, 과산화수소 및 암모니아를 도입시키는 방법에 의해 수행될 수 있다. 연속 반응은, 예를 들어 시클로헥사논, 과산화수소, 암모니아 및 용매가 부가 도입되는 반응기에서 티타늄 실리케이트 및 규소 화합물의 현탁액을 제조하면서, 생성 반응 혼합물의 액체 부분을 반응기로부터 필터를 통해 추출하는 방법에 의해서 수행될수 있다. 과산화수소의 분해 방지의 관점에서, 유리 라이닝 반응기, 스테인레스 스틸 반응기 등을 사용하는 것이 바람직하다.The reaction for preparing cyclohexanone oxime with ammonia and hydrogen peroxide can be carried out in batch mode or in continuous mode. The batch mode reaction can be carried out by, for example, charging the reactor with cyclohexanone, ammonia, titanium silicate, silicon compound and solvent and introducing hydrogen peroxide with stirring therein; Or by charging the reactor with cyclohexanone, titanium silicate, silicon compound and solvent and introducing hydrogen peroxide and ammonia with stirring therein; Or by charging the reactor with titanium silicate, silicon compound and solvent and introducing cyclohexanone, hydrogen peroxide and ammonia with stirring therein. The continuous reaction is carried out by the process of extracting the liquid portion of the resulting reaction mixture from the reactor through a filter, for example, while preparing a suspension of titanium silicate and silicon compounds in a reactor in which cyclohexanone, hydrogen peroxide, ammonia and a solvent are additionally introduced. Can be performed. From the viewpoint of preventing decomposition of hydrogen peroxide, it is preferable to use a glass lining reactor, a stainless steel reactor, or the like.

반응 온도는 약 50 ℃ 내지 100 ℃ 의 범위일 수 있다. 반응은 표준 압력에서 수행될 수 있고, 암모니아의 반응 혼합물 중 액체 부분으로의 용해도를 증가시키기 위한 압력이 바람직하다. 압력 하 반응의 경우, 질소 기체 및 헬륨 기체와 같은 불활성 기체를 사용하여 압력을 조정할 수 있다.The reaction temperature may range from about 50 ° C to 100 ° C. The reaction can be carried out at standard pressure, and a pressure for increasing the solubility of the ammonia into the liquid portion of the reaction mixture is preferred. For reactions under pressure, inert gases such as nitrogen gas and helium gas can be used to adjust the pressure.

반응 혼합물로부터의 시클로헥사논 옥심의 분리와 같은 후 취급 과정은 제한되지 않으며, 공지된 방법을 사용하여 적절히 수행될 수 있다. 예를 들어, 시클로헥사논 옥심의 분리는, 티타늄 실리케이트 및 규소 화합물을 여과 등에 의해 반응 혼합물로부터 분리시켜, 반응 혼합물의 액체 부분을 수득한 후, 액체 부분을 증류시키는 것과 같은 방식으로 수행될 수 있다.Post-processing procedures, such as the separation of cyclohexanone oxime from the reaction mixture, are not limited and may be appropriately carried out using known methods. For example, the separation of cyclohexanone oxime can be carried out in such a way that the titanium silicate and silicon compound are separated from the reaction mixture by filtration or the like to obtain a liquid portion of the reaction mixture and then distill the liquid portion. .

본 발명에 따르면, 촉매로서의 티타늄 실리케이트의 불활성화를 억제하면서, 시클로헥사논을 과산화수소 및 암모니아와 반응시켜, 고 수율의 시클로헥사논 옥심을 제조한다.According to the present invention, cyclohexanone is reacted with hydrogen peroxide and ammonia while suppressing the inactivation of titanium silicate as a catalyst to produce a high yield of cyclohexanone oxime.

본 발명이 상기처럼 설명되는 바, 그 동일 발명이 많은 방법으로 변형될 수 있다는 것이 명백할 것이다. 상기 변형은 본 발명의 취지 및 범위 내에 있는 것으로 간주되고, 당업자에게 명백한 모든 상기 변형은 하기 청구항의 범위 내에 있을 것이다.As the present invention has been described above, it will be apparent that the same invention can be modified in many ways. Such modifications are considered to be within the spirit and scope of the invention, and all such modifications apparent to those skilled in the art will be within the scope of the following claims.

명세서, 특허청구범위 및 요약서를 가리키는, 2002 년 6 월 28 일에 출원된 일본 특허 출원 제 2002-189450 호의 전체 개시가 전체적으로 참고로서 본원에 인용되었다.The entire disclosure of Japanese Patent Application No. 2002-189450, filed on June 28, 2002, indicating the specification, claims, and abstract, is hereby incorporated by reference in its entirety.

실시예Example

본 발명은 하기 실시예를 참고로 더 상세히 설명되나, 본 발명의 범위를 제한하는 것으로 해석되어서는 안된다.The invention is described in more detail with reference to the following examples, which should not be construed as limiting the scope of the invention.

실시예 및 비교예에서, 시클로헥사논 및 시클로헥사논 옥심을 기체-크로마토그래피로 분석하였고, 시클로헥사논의 전환률, 시클로헥사논 옥심에 대한 선택도,및 시클로헥사논 옥심의 수율을 분석 결과를 기초로 계산하였다.In the examples and comparative examples, cyclohexanone and cyclohexanone oxime were analyzed by gas-chromatography, the conversion of cyclohexanone, selectivity for cyclohexanone oxime, and yield of cyclohexanone oxime based on the analysis results. Calculated as

실시예 1Example 1

반응기로서의 1 ℓ오토클레이브에 시클로헥사논, 함수 t-부틸 알콜 (물 12 중량% 함유) 및 과산화수소 60 중량% 를, 각각 67 g/hour, 252 g/hour 및 43 g/hour 의 속도로 충전하였다. 동시에, 암모니아를 반응기에 공급하여 생성 반응 혼합물의 액체 부분을 기준으로 2 중량% 의 농도로 존재하도록 하면서, 반응 혼합물의 액체 부분을 필터를 통해 반응기로부터 배출하여, 반응을 연속적으로 수행하였다. 반응 동안에, 티타늄 실리케이트 및 실리카 겔 (상표명: WAKO GEL LP-20, Wako Pure Chemical Industries, Ltd. 사제) 을, 반응 혼합물의 액체 부분을 기준으로, 각각 0.9 중량% 및 6 중량% 의 양으로 반응기에 넣었다. 85 ℃ 의 온도 및 0.25 MPa 의 압력 하에서 72 분의 체류 시간으로 연속 반응을 수행하였다. 5.5 시간의 반응 후에 수득된 액체 부분의 분석 결과로서, 시클로헥사논의 전환률은 99.1 % 였고, 시클로헥사논 옥심에 대한 선택도는 99.5 % 였으며, 시클로헥사논 옥심의 수율은 98.6 % 였다.A 1 l autoclave as a reactor was charged with cyclohexanone, hydrous t-butyl alcohol (containing 12 wt% water) and 60 wt% hydrogen peroxide at rates of 67 g / hour, 252 g / hour and 43 g / hour, respectively. . At the same time, the ammonia was fed to the reactor to be present at a concentration of 2% by weight, based on the liquid part of the resulting reaction mixture, while the liquid part of the reaction mixture was withdrawn from the reactor through a filter, and the reaction was carried out continuously. During the reaction, titanium silicate and silica gel (trade name: WAKO GEL LP-20, manufactured by Wako Pure Chemical Industries, Ltd.) were added to the reactor in amounts of 0.9% and 6% by weight, respectively, based on the liquid portion of the reaction mixture. Put in. The continuous reaction was carried out with a residence time of 72 minutes under a temperature of 85 ° C. and a pressure of 0.25 MPa. As a result of analysis of the liquid portion obtained after the reaction of 5.5 hours, the conversion rate of cyclohexanone was 99.1%, the selectivity to cyclohexanone oxime was 99.5%, and the yield of cyclohexanone oxime was 98.6%.

비교예 1Comparative Example 1

티타늄 실리케이트의 양을 반응 혼합물의 액체 부분을 기준으로 0.9 중량% 에서 1.3 중량% 로 바꾸고, 실리카 겔을 사용하지 않은 것을 제외하고는, 실시예 1 에서와 동일한 방식으로 연속 반응을 수행하였다. 결과로서, 시클로헥사논의 전환률은 98.6 % 였고, 시클로헥사논 옥심에 대한 선택도는 99.5 % 였으며, 시클로헥사논 옥심의 수율은 98.1 % 였다.The amount of titanium silicate was changed from 0.9% to 1.3% by weight based on the liquid portion of the reaction mixture and a continuous reaction was carried out in the same manner as in Example 1 except that no silica gel was used. As a result, the conversion of cyclohexanone was 98.6%, the selectivity to cyclohexanone oxime was 99.5%, and the yield of cyclohexanone oxime was 98.1%.

비록 비교예 1 에서 사용된 티타늄 실리케이트의 양이 실시예 1 에서의 양보다 많다고 하더라도 (양은 반응 혼합물의 액체 부분을 기준으로, 각각 1.3 중량% 및 0.9 중량% 임), 비교예 1 에서는 실리카 겔을 사용하지 않았기 때문에, 비교예 1 에서의 시클로헥사논의 전환률은 실시예 1 에서의 전환률과 거의 같거나 그 미만임을 발견하였다.Although the amount of titanium silicate used in Comparative Example 1 was higher than that in Example 1 (the amounts are 1.3% and 0.9% by weight, respectively, based on the liquid portion of the reaction mixture), silica gel was used in Comparative Example 1 Since not used, the conversion rate of cyclohexanone in Comparative Example 1 was found to be about the same or less than the conversion rate in Example 1.

비교예 2Comparative Example 2

티타늄 실리케이트의 양을 반응 혼합물의 액체 부분을 기준으로 0.9 중량% 에서 1.2 중량% 로 바꾸고, 실리카 겔을 사용하지 않은 것을 제외하고는, 실시예 1 에서와 동일한 방식으로 연속 반응을 수행하였다. 결과로서, 시클로헥사논의 전환률은 93.0 % 였고, 시클로헥사논 옥심에 대한 선택도는 99.0 % 였으며, 시클로헥사논 옥심의 수율은 92.1 % 였다.The amount of titanium silicate was changed from 0.9% to 1.2% by weight based on the liquid portion of the reaction mixture, and the continuous reaction was carried out in the same manner as in Example 1 except that no silica gel was used. As a result, the conversion of cyclohexanone was 93.0%, the selectivity to cyclohexanone oxime was 99.0%, and the yield of cyclohexanone oxime was 92.1%.

비록 비교예 2 에서 사용된 티타늄 실리케이트의 양이 실시예 1 에서의 양보다 많다고 하더라도 (양은 반응 혼합물의 액체 부분을 기준으로, 각각 1.2 중량% 및 0.9 중량% 임), 비교예 2 에서는 실리카 겔을 사용하지 않았기 때문에, 비교예2 에서의 시클로헥사논의 전환률은 실시예 1 에서의 전환률보다 약 6 중량% 작음을 발견하였다.Although the amount of titanium silicate used in Comparative Example 2 was higher than that in Example 1 (the amount is 1.2% by weight and 0.9% by weight, respectively, based on the liquid portion of the reaction mixture), silica gel was used in Comparative Example 2 Since not used, the conversion rate of cyclohexanone in Comparative Example 2 was found to be about 6% by weight less than the conversion rate in Example 1.

실시예 2Example 2

교반하면서, 80 ℃ 의 온도에서, 반응기로서의 200 ㎖ 오토클레이브 (SUS316 로부터 제조됨) 에 시클로헥사논 (12.8 g), 암모니아수 25 중량% (13.2 g), 함수 t-부틸 알콜 (19.7 g) (물 13 중량% 함유), 티타늄 실리케이트 (1 g) 및 규산 (3 g) (Nakalai Chemicals Co., Ltd. 사제) 을 충전하였다. 반응기에 30 % 과산화수소 (14.9 g) 를 55 분에 걸쳐 공급하였고, 생성 반응 혼합물을 35 분 동안 유지하였다. 반응 혼합물로부터 촉매를 분리하였고, 잔류 액체 부분을 분석하였다. 결과로서, 시클로헥사논의 전환률은 70.9 % 였고, 시클로헥사논 옥심에 대한 선택도는 74.4 % 였으며, 시클로헥사논 옥심의 수율은 52.7 % 였다.With stirring, at a temperature of 80 ° C., cyclohexanone (12.8 g), 25% by weight aqueous ammonia (13.2 g), hydrous t-butyl alcohol (19.7 g) (water) in a 200 ml autoclave (made from SUS316) as a reactor 13 wt%), titanium silicate (1 g) and silicic acid (3 g) (manufactured by Nakalai Chemicals Co., Ltd.) were charged. 30% hydrogen peroxide (14.9 g) was fed to the reactor over 55 minutes and the resulting reaction mixture was maintained for 35 minutes. The catalyst was separated from the reaction mixture and the residual liquid portion was analyzed. As a result, the conversion of cyclohexanone was 70.9%, the selectivity to cyclohexanone oxime was 74.4%, and the yield of cyclohexanone oxime was 52.7%.

비교예 3Comparative Example 3

규산을 사용하지 않은 것을 제외하고는, 실시예 2 에서와 동일한 방식으로 반응을 수행하였다. 결과로서, 시클로헥사논의 전환률은 68.0 % 였고, 시클로헥사논 옥심에 대한 선택도는 70.6 % 였으며, 시클로헥사논 옥심의 수율은 48.0 % 였다.The reaction was carried out in the same manner as in Example 2 except that no silicic acid was used. As a result, the conversion of cyclohexanone was 68.0%, the selectivity to cyclohexanone oxime was 70.6%, and the yield of cyclohexanone oxime was 48.0%.

실시예 3Example 3

티타늄 실리케이트의 양을 반응 혼합물의 액체 부분을 기준으로 0.9 중량% 에서 1 중량% 로 바꾼 것을 제외하고는, 실시예 1 에서와 동일한 방식으로 연속 반응을 수행하였다. 반응 시간이 16 시간 경과할 때까지, 촉매의 불활성화로 인한 기체 부분에서의 산소 농도 증가가 관찰되지 않았다. 15.5 시간의 반응 후에 수득된 액체 부분의 분석 결과로서, 시클로헥사논의 전환률은 85.3 % 였고, 시클로헥사논 옥심에 대한 선택도는 96.7 % 였으며, 시클로헥사논 옥심의 수율은 82.5 % 였다.A continuous reaction was carried out in the same manner as in Example 1, except that the amount of titanium silicate was changed from 0.9% to 1% by weight based on the liquid portion of the reaction mixture. Until the reaction time had elapsed 16 hours, no increase in oxygen concentration in the gaseous portion due to deactivation of the catalyst was observed. As a result of analysis of the liquid portion obtained after the reaction of 15.5 hours, the conversion rate of cyclohexanone was 85.3%, the selectivity to cyclohexanone oxime was 96.7%, and the yield of cyclohexanone oxime was 82.5%.

비교예 4Comparative Example 4

티타늄 실리케이트의 양을 반응 혼합물의 액체 부분을 기준으로 0.9 중량% 에서 1 중량% 로 바꾸고, 실리카 겔을 사용하지 않은 것을 제외하고는, 실시예 1 에서와 동일한 방식으로 연속 반응을 수행하였다. 반응 시간이 6 시간 경과했을 때, 촉매의 불활성화로 인한 기체 부분에서의 산소 농도 증가가 관찰되었다. 5.5 시간의 반응 후에 수득된 액체 부분의 분석 결과로서, 시클로헥사논의 전환률은 87.6 % 였고, 시클로헥사논 옥심에 대한 선택도는 90.4 % 였으며, 시클로헥사논 옥심의 수율은 79.3 % 였다.The amount of titanium silicate was changed from 0.9% to 1% by weight based on the liquid portion of the reaction mixture, and the continuous reaction was carried out in the same manner as in Example 1 except that no silica gel was used. When the reaction time passed 6 hours, an increase in the oxygen concentration in the gaseous portion due to deactivation of the catalyst was observed. As a result of analysis of the liquid portion obtained after the reaction of 5.5 hours, the conversion rate of cyclohexanone was 87.6%, the selectivity to cyclohexanone oxime was 90.4%, and the yield of cyclohexanone oxime was 79.3%.

본 발명에 따라, 촉매로서 티타늄 실리케이트의 불활성화를 억제하여 반응을 수행함으로써, 고 수율의 시클로헥사논 옥심이 제공된다.According to the present invention, a high yield of cyclohexanone oxime is provided by carrying out the reaction by inhibiting inactivation of titanium silicate as a catalyst.

Claims (4)

티타늄 실리케이트 및 티타늄 실리케이트 이외의 규소 화합물의 존재 하에서, 시클로헥사논을 과산화수소 및 암모니아와 반응시키는 단계를 포함하는 시클로헥사논 옥심의 제조 방법.A method for preparing cyclohexanone oxime comprising reacting cyclohexanone with hydrogen peroxide and ammonia in the presence of titanium silicate and silicon compounds other than titanium silicate. 제 1 항에 있어서, 티타늄 실리케이트 이외의 규소 화합물이 실리카 겔, 규산, 실리케이트 및 제올라이트로부터 선택된 하나 이상의 화합물인 것을 특징으로 하는 방법.The method of claim 1, wherein the silicon compound other than titanium silicate is at least one compound selected from silica gel, silicic acid, silicate and zeolite. 제 1 항에 있어서, 티타늄 실리케이트 및 규소 화합물을, 반응 혼합물의 액체 부분을 기준으로, 각각 약 0.1 중량% 내지 약 10 중량% 의 농도로 사용하는 것을 특징으로 하는 방법.The method of claim 1, wherein the titanium silicate and the silicon compound are used at concentrations of about 0.1% to about 10% by weight, respectively, based on the liquid portion of the reaction mixture. 제 1 항에 있어서, 반응 혼합물을 기준으로, 약 10 중량% 이상의 양의 물의 존재 하에서 반응을 수행하는 것을 특징으로 하는 방법.The process according to claim 1, wherein the reaction is carried out in the presence of an amount of water of at least about 10% by weight, based on the reaction mixture.
KR1020030040998A 2002-06-28 2003-06-24 Method for producing cyclohexanone oxime KR101024233B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2002-00189450 2002-06-28
JP2002189450 2002-06-28

Publications (2)

Publication Number Publication Date
KR20040002660A true KR20040002660A (en) 2004-01-07
KR101024233B1 KR101024233B1 (en) 2011-03-29

Family

ID=29717673

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030040998A KR101024233B1 (en) 2002-06-28 2003-06-24 Method for producing cyclohexanone oxime

Country Status (5)

Country Link
US (1) US6828459B2 (en)
EP (1) EP1375473A1 (en)
KR (1) KR101024233B1 (en)
CN (1) CN1307149C (en)
TW (1) TWI324990B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60328693D1 (en) * 2002-05-31 2009-09-17 China Petroleum & Chemical METHOD FOR OXADIMATING CARBONYL COMPOUNDS
JP4534428B2 (en) 2003-04-09 2010-09-01 住友化学株式会社 Method for producing cyclohexanone oxime
JP4577025B2 (en) * 2005-01-27 2010-11-10 住友化学株式会社 Method for producing cycloalkanone oxime
JP4577077B2 (en) * 2005-04-25 2010-11-10 住友化学株式会社 Method for producing cyclohexanone oxime
KR20070060017A (en) * 2005-12-07 2007-06-12 스미또모 가가꾸 가부시끼가이샤 Process for producing cyclohexanone oxime
JP5055585B2 (en) * 2006-03-15 2012-10-24 株式会社ニコン Head mounted display
US8262835B2 (en) * 2007-12-19 2012-09-11 Purdue Research Foundation Method of bonding carbon nanotubes
JP4683083B2 (en) * 2008-07-15 2011-05-11 住友化学株式会社 Oxime production method
DE102008041870A1 (en) * 2008-09-08 2010-03-11 Evonik Degussa Gmbh Reactor with titanium silicate recycle
JP2012020966A (en) * 2010-07-15 2012-02-02 Sumitomo Chemical Co Ltd Method for producing oxime
JP2012067044A (en) * 2010-09-27 2012-04-05 Sumitomo Chemical Co Ltd Method for producing cyclohexanone oxime
TWI480100B (en) * 2011-04-27 2015-04-11 China Petrochemical Dev Corp Taipei Taiwan Titanium-silicon molecular sieve and its preparation method and method for producing cyclohexanone oxime using the molecular sieve
TWI508935B (en) 2011-08-11 2015-11-21 China Petrochemical Dev Corp Taipei Taiwan Titanium-silicon molecular sieve and its preparation method and method for producing cyclohexanone oxime using the molecular sieve
CN103896801B (en) 2012-12-25 2016-03-16 中国石油化学工业开发股份有限公司 Process for producing ketoxime
US10655733B2 (en) * 2016-11-18 2020-05-19 Schaublin Sa Elastomeric seal having impact protecting protrusions
CN107118124B (en) * 2017-06-19 2019-04-23 中触媒新材料股份有限公司 A method of inhibiting ammoxidation of cyclohexanone catalyst loss

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1214622B (en) * 1985-07-10 1990-01-18 Montedipe Spa CATALYTIC PROCESS FOR THE PRODUCTION OF CYCLOHEXANONE.
IT1244680B (en) * 1991-01-23 1994-08-08 Montedipe Srl MULTI-STAGE PROCESS FOR THE LIQUID STAGE OF CARBONYL COMPOUNDS
IT1255745B (en) * 1992-04-01 1995-11-15 Enichem Anic Srl TWO-STAGE PROCESS FOR LIQUID PRODUCTION OF OXIME
HU214200B (en) * 1992-12-03 1998-01-28 Leuna-Katalysatoren Gmbh. Oxydation catalysts and methods of producing them and their use
DE69426907T2 (en) * 1993-08-11 2001-09-27 Mitsubishi Gas Chemical Co Titanosilicate catalyst particles
IT1270196B (en) * 1994-06-09 1997-04-29 Enichem Spa CATALYTIC PROCEDURE FOR OXYME PRODUCTION
JP2000026387A (en) * 1998-07-03 2000-01-25 Mitsubishi Gas Chem Co Inc Manufacture of cyclohexanone oxime
JP2000080067A (en) * 1998-09-02 2000-03-21 Mitsubishi Gas Chem Co Inc Production of oxime
DE10047435A1 (en) * 2000-09-26 2002-04-11 Degussa Process for the production of oximes

Also Published As

Publication number Publication date
US20040002619A1 (en) 2004-01-01
KR101024233B1 (en) 2011-03-29
EP1375473A1 (en) 2004-01-02
US6828459B2 (en) 2004-12-07
TW200400168A (en) 2004-01-01
TWI324990B (en) 2010-05-21
CN1307149C (en) 2007-03-28
CN1468841A (en) 2004-01-21

Similar Documents

Publication Publication Date Title
US7161036B2 (en) Process for producing oxime
KR101024233B1 (en) Method for producing cyclohexanone oxime
JPS5934642B2 (en) Synthesis of hydrogen peroxide
KR101084021B1 (en) Method for producing cyclohexanone oxime
EP1674450B1 (en) Process for producing cyclohexanone oxime
JP4633337B2 (en) Method for producing cyclohexanone oxime
JP2012067044A (en) Method for producing cyclohexanone oxime
US8003825B2 (en) Process for producing cycloalkanone oximes
JP4548409B2 (en) Method for producing cyclohexanone oxime
JP2007238541A (en) Method for producing oxime
JP2000026387A (en) Manufacture of cyclohexanone oxime
KR20070060017A (en) Process for producing cyclohexanone oxime
JP2000026439A (en) Production of propylene oxide
JP2970470B2 (en) Method for producing 1,3-di- (2-hydroxy-2-propyl) -benzene
JP2000072737A (en) Production of oxime
KR20060086852A (en) Process for producing cycloalkanone oxime
JP2000086608A (en) Production of methyl ethyl ketone oxime
JPS6023350A (en) Preparation of dicyclohexylamine

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee