JP2000072737A - Production of oxime - Google Patents

Production of oxime

Info

Publication number
JP2000072737A
JP2000072737A JP10241852A JP24185298A JP2000072737A JP 2000072737 A JP2000072737 A JP 2000072737A JP 10241852 A JP10241852 A JP 10241852A JP 24185298 A JP24185298 A JP 24185298A JP 2000072737 A JP2000072737 A JP 2000072737A
Authority
JP
Japan
Prior art keywords
reaction
ammonia
oxime
pressure
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10241852A
Other languages
Japanese (ja)
Inventor
Chiharu Nishizawa
千春 西沢
Toshihiro Nomura
俊広 野村
Yoshio Nishimura
喜男 西村
Naoko Matsuka
直子 松家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP10241852A priority Critical patent/JP2000072737A/en
Publication of JP2000072737A publication Critical patent/JP2000072737A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing an oxime using a titanosilicate catalyst. SOLUTION: The concentration of ammonia dissolved in a reactional solvent is made to >=15 wt.% in the initial period of a reaction in a method for producing an oxime from a ketone, a quinone or an aldehyde using hydrogen peroxide and ammonia in the presence of a titanosilicate catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分析試薬等として
有用な各種オキシム化合物を経済的に効率よく製造する
方法に関する。
The present invention relates to a method for economically and efficiently producing various oxime compounds useful as analytical reagents and the like.

【0002】[0002]

【従来の技術】カルボニル基を持つケトン類やアルデヒ
ド類を触媒の存在下で、過酸化水素とアンモニアを用い
て液相酸化でオキシムを製造するアンモオキシメーショ
ンは広く知られており(ドイツ特許1245371号
等)、特にチタノシリケートを触媒とし、6−ナイロン
の中間原料であるシクロヘキノサンオキシムの合成検討
が幅広く研究されている(特公平8−16091号公
報)。この方法は、従来のオキシム製造プロセスで副生
する硫酸アンモニウムが発生しない優れたプロセスであ
り、また、固体触媒であるがために分離操作が容易であ
るなどの利点を数多く有している。
2. Description of the Related Art Ammoximation of producing an oxime by liquid phase oxidation using hydrogen peroxide and ammonia in the presence of a ketone or aldehyde having a carbonyl group in the presence of a catalyst is widely known (German Patent 1,245,371). Etc.), in particular, the synthesis of cyclohexinosan oxime, which is an intermediate raw material for 6-nylon, using titanosilicate as a catalyst has been widely studied (Japanese Patent Publication No. 8-16091). This method is an excellent process in which ammonium sulfate produced as a by-product in the conventional oxime production process is not generated, and has many advantages such as easy separation operation because it is a solid catalyst.

【0003】しかし、このチタノシリケート触媒は、触
媒調整後、使用前に必ず、例えば硫酸−過酸化水素等の
無機酸を用いた活性化処理が必要であり(欧州特許第2
08311号、第267362号、及び第314147
号)、また、触媒の活性化が低下する度に上記の操作を
繰返すことから、手間がかかり、触媒再生のために余分
な設備投資も必要となる等、生産性及び経済性に問題を
有している。
However, this titanosilicate catalyst requires an activation treatment using an inorganic acid such as, for example, sulfuric acid-hydrogen peroxide after the catalyst preparation and before use (European Patent No. 2).
08311, 267362, and 314147
The above operation is repeated every time the activation of the catalyst is reduced, which is troublesome and requires extra capital investment for the regeneration of the catalyst. are doing.

【0004】[0004]

【発明を解決するための課題】本発明者らは、前述した
ような課題を解決し、オキシム類を高収率で得られる方
法を提供することにある。
The object of the present invention is to solve the above-mentioned problems and to provide a method for obtaining oximes in high yield.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前述の問
題を解決するためにオキシムの反応条件について鋭意検
討を行ったところ、反応条件中の圧力を2kg/cm2(ゲー
ジ)以上に調整して反応終了まで保持し、水に溶解して
いるアンモニア濃度を常に5重量%以上とすることによ
り、触媒の活性化処理を省略し、且つ比較的反応性が低
いカルボニル基を持つ化合物を用いた場合でも、対応す
るオキシム化合物が高収率で得られることを見い出し、
本発明を完成するに至った。
Means for Solving the Problems The present inventors have intensively studied the reaction conditions of oxime in order to solve the above-mentioned problems, and found that the pressure during the reaction conditions was increased to 2 kg / cm 2 (gauge) or more. By adjusting and maintaining until the end of the reaction, the concentration of ammonia dissolved in water is always 5% by weight or more, so that the catalyst activation treatment is omitted and a compound having a carbonyl group having relatively low reactivity is obtained. Even when used, they find that the corresponding oxime compound can be obtained in high yield,
The present invention has been completed.

【0006】チタノシリカライト触媒の存在下で、過酸
化水素及びアンモニアを用いてケトン、キノンまたはア
ルデヒドからオキシムを製造する方法において、反応溶
媒に溶解するアンモニア濃度を反応初期に15重量%以
上にすること特徴とするオキシムの製造方法に関するも
のである。
In a method for producing an oxime from a ketone, a quinone or an aldehyde using hydrogen peroxide and ammonia in the presence of a titanosilicalite catalyst, the concentration of ammonia dissolved in a reaction solvent is increased to 15% by weight or more at the beginning of the reaction. The present invention relates to a method for producing an oxime.

【0007】[0007]

【発明の実施の形態】本発明のオキシム合成に使用する
触媒は、チタノシリケートが好適に使用される。チタノ
シリケートとは、ゼオライト構造を持つ結晶性シリカラ
イトの珪素の一部をチタンで置換することにより得られ
るものである。本発明に使用されるチタノシリケートの
合成法は特に限定されるものではないが、例えば特開昭
56−96720号公報が挙げられる。チタノシリケー
トにおけるSi/Ti比は10〜1000のものが用い
られる。本発明においては、チタノシリケート触媒の使
用量は特に制限はなく、懸濁床式の場合には、通常反応
溶液中に0.1重量%〜10重量%の範囲で使用され
る。触媒の形態は微粉末、ペレットなど任意のもので良
い。
BEST MODE FOR CARRYING OUT THE INVENTION As a catalyst used in the oxime synthesis of the present invention, titanosilicate is preferably used. The titanosilicate is obtained by substituting a part of silicon of crystalline silicalite having a zeolite structure with titanium. The method for synthesizing titanosilicate used in the present invention is not particularly limited, and examples thereof include JP-A-56-97720. The titanosilicate having a Si / Ti ratio of 10 to 1000 is used. In the present invention, the amount of the titanosilicate catalyst used is not particularly limited. In the case of a suspension bed system, it is usually used in a range of 0.1% by weight to 10% by weight in the reaction solution. The catalyst may be in any form such as fine powder or pellets.

【0008】本発明で用いられる過酸化水素は、通常、
アントラキノン法又は水素と酸素を高圧下で触媒と共に
接触させる直接酸化法で合成された過酸化水素でり、一
般には10重量%〜70重量%の水溶液で市販されてい
る。また過酸化水素は、その安定剤として一般的に用い
られているリン酸塩、ポリリン酸塩(ピロリン酸ソー
ダ、トリポリリン酸ソーダなど)、錫酸塩、ピロリン
酸、アスコルビン酸やエチレンジアミンテトラ酢酸、ニ
トロトリ酢酸、アミノトリ酢酸、ジエチレントリアミン
ペンタ酢酸、エチレンジアミンテトラ(メチレンホスホ
ン酸)ジエチレントリアミノペンタ(メチレンホスホン
酸)が添加されていてもよい。
[0008] The hydrogen peroxide used in the present invention is usually
Hydrogen peroxide synthesized by the anthraquinone method or the direct oxidation method in which hydrogen and oxygen are brought into contact with a catalyst under high pressure, and are generally commercially available as a 10% to 70% by weight aqueous solution. Hydrogen peroxide is used as a stabilizer of phosphate, polyphosphate (sodium pyrophosphate, sodium tripolyphosphate, etc.), stannate, pyrophosphoric acid, ascorbic acid, ethylenediaminetetraacetic acid, nitrotriphosphate. Acetic acid, aminotriacetic acid, diethylenetriaminepentaacetic acid, ethylenediaminetetra (methylenephosphonic acid) diethylenetriaminopenta (methylenephosphonic acid) may be added.

【0009】本発明で用いるアンモニアは、反応開始前
にガスで供給する方法、予めアンモニア水溶液や水又は
過酸化水素、反応溶媒等に対して可溶な硫酸アンモニウ
ム、リン酸アンモニウム、アンモニウムクロライドなど
で例示されるアンモニウム塩を添加する方法を用いるこ
とが出来る。
Ammonia used in the present invention is exemplified by a method of supplying a gas before the start of the reaction, an aqueous ammonia solution, water or hydrogen peroxide, ammonium sulfate, ammonium phosphate, ammonium chloride, etc., which are soluble in the reaction solvent and the like. A method of adding an ammonium salt to be used can be used.

【0010】本発明で用いるケトン、キノンまたはアル
デヒドは、一般式R1 、R2 −C=Oの式で表されるカ
ルボニル基を1つ又は2つ以上持つ化合物が対象とな
る。ここで、R1 、R2 は、水素、1〜12個の炭素原
子を含むアルキル基、3〜12個の炭素原子を含む分岐
アルキル基またはシクロアルキル基、6〜12個の炭素
原子を含む芳香族基または3〜12の炭素原子を含む直
鎖または分岐アルキレン基を表し、これらのアルキル基
は、ハロゲン、NO2 基、ヒドロキシ基、アルコキシ基
またはカルボン酸エステルによって置換されても良い。
1 、R2 は、互いに同一でも異なっていてもよい。
The ketone, quinone or aldehyde used in the present invention is a compound having one or more carbonyl groups represented by the general formulas R 1 and R 2 —COO. Here, R 1 and R 2 include hydrogen, an alkyl group containing 1 to 12 carbon atoms, a branched alkyl group or a cycloalkyl group containing 3 to 12 carbon atoms, and 6 to 12 carbon atoms. represents a linear or branched alkylene group containing an aromatic group or a 3 to 12 carbon atoms, these alkyl groups, halogen, NO 2 group, hydroxy group, may be substituted by an alkoxy group or a carboxylic acid ester.
R 1 and R 2 may be the same or different from each other.

【0011】具体的には、アセトン、メチルエチルケト
ン及びメチルイソブチルケトン、2−ペプタノン、3−
ペプタノン、4−ペプタノン、2,2−ジメチル−3−
ペプタノン、t−ブチルフェニルケトン、シクロヘキサ
ノン等のケトン類、又は、P−ベンゾキノン、O−ベン
ゾキノン等のキノン類、ベンズアルデヒド等のアルデヒ
ド類が好適に用いられる。
Specifically, acetone, methyl ethyl ketone and methyl isobutyl ketone, 2-peptanone,
Peptanone, 4-peptanone, 2,2-dimethyl-3-
Ketones such as peptanone, t-butylphenyl ketone and cyclohexanone, quinones such as P-benzoquinone and O-benzoquinone, and aldehydes such as benzaldehyde are preferably used.

【0012】本発明のオキシムの合成方法は、反応器に
予め原料、溶媒、触媒及び添加剤を仕込みアンモニアガ
スを吹き込みながら充分な攪拌下で過酸化水素又は、過
酸化水素とケトン類反応溶媒を混合した溶液を供給して
反応を行い、引続き一定時間反応完結時間をおいた後、
生成したオキシムの分離を行うバッチ法や、原料、触
媒、溶媒および添加剤を一段又は多段の反応器を用いて
連続的に供給する連続反応でも良い。
The method for synthesizing an oxime of the present invention is characterized in that a raw material, a solvent, a catalyst and an additive are previously charged into a reactor, and hydrogen peroxide or a reaction solvent of hydrogen peroxide and a ketone are mixed with sufficient stirring while blowing ammonia gas. After supplying the mixed solution and conducting the reaction, and after a certain period of time, complete the reaction,
A batch method for separating the generated oxime or a continuous reaction in which the raw materials, the catalyst, the solvent, and the additive are continuously supplied using a single-stage or multi-stage reactor may be used.

【0013】反応器の材質は、過酸化水素の分解を防ぐ
不活性なものが適しており、例えばグラスライニングや
ステンレススチール製の反応容器が好ましい。また、反
応初期の圧力を調整する方法は、各原料を添加後、原料
として供給するアンモニアガスにより圧力を調整しても
良いし、所定温度上昇後に液相から気相へ移動するアン
モニアの圧力を利用してもよい。
As the material of the reactor, an inert material that prevents decomposition of hydrogen peroxide is suitable. For example, a glass lining or a stainless steel reaction vessel is preferable. In addition, the method of adjusting the pressure at the beginning of the reaction may be such that after adding each raw material, the pressure may be adjusted by ammonia gas supplied as a raw material, or the pressure of ammonia moving from a liquid phase to a gas phase after a predetermined temperature rise. May be used.

【0014】本発明でオキシム類を合成する際の反応温
度は50℃〜100℃で実施されるが、用いるカルボニ
ル基を持つ化合物により適正な温度を選択しなければな
らない。反応圧力は、液相中の水に対するアンモニア濃
度を15重量%以上に保つ必要から、気体の溶解度に影
響する温度との関連は重要であり、反応温度と関連して
いる。例えば反応温度が80℃の場合は、初期圧力2kg
/cm2(ゲージ)以上で実施されることが好ましい。アン
モニアの溶解度は、他の反応溶媒や用いるケトン、アル
デヒト、キノンにより影響を受けることも予測される
が、基本的に最もアンモニア溶解性が高いのは水であ
り、水への溶解度が、液相中のアンモニア溶解量に対し
て最も影響する。従って、水への溶解度を指標として、
各反応温度に対し圧力を制御することが重要である。
The reaction temperature for synthesizing oximes in the present invention is from 50 ° C. to 100 ° C., but an appropriate temperature must be selected depending on the compound having a carbonyl group to be used. Since the reaction pressure needs to maintain the ammonia concentration in water in the liquid phase at 15% by weight or more, the relationship with the temperature which affects the solubility of the gas is important, and is related to the reaction temperature. For example, when the reaction temperature is 80 ° C., the initial pressure is 2 kg.
It is preferably carried out at a pressure of at least / cm 2 (gauge). Although the solubility of ammonia is expected to be affected by other reaction solvents and the ketones, aldehydes and quinones used, water is basically the most ammonia-soluble, and its solubility in water is It has the greatest effect on the amount of dissolved ammonia in the air. Therefore, using the solubility in water as an index,
It is important to control the pressure for each reaction temperature.

【0015】本発明における過酸化水素とケトン等の好
ましいモル比の範囲は、ケトン等1モルに対して、過酸
化水素が0.5〜3、好ましくは0.5〜1.5であ
る。アンモニアとケトン類のモル比は、ケトン等1モル
に対して1以上、好ましくは1.5以上である。
The preferred range of the molar ratio of hydrogen peroxide to ketone in the present invention is 0.5 to 3, preferably 0.5 to 1.5, per mole of ketone or the like. The molar ratio of ammonia to ketones is 1 or more, preferably 1.5 or more, per mole of ketone or the like.

【0016】本発明に用いる反応溶媒としては、アルコ
ールが好適に用いられる。具体的には、メタノール、エ
タノール、n−プロピルアルコール、イソプロピルアル
コール、n−ブタノール、2−ブタノール、t−ブタノ
ール、t−アミルアルコール等を挙げられる。中でもt
−ブタノールが最も好適に使用される。これらのアルコ
ールの中から2種以上のアルコールを混合して用いても
よい。
As a reaction solvent used in the present invention, alcohol is preferably used. Specific examples include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, 2-butanol, t-butanol, t-amyl alcohol and the like. Among them t
Butanol is most preferably used. Two or more of these alcohols may be used as a mixture.

【0017】以下に実施例により本発明を具体的に説明
するが、本発明は以下の実施例により制限されるもので
はない。なお、圧力はゲージ圧である。 実施例1 ステンレス(SUS316)製の攪拌器付オートクレー
ブに、アセトン7.0gとアンモニア水15.0g、t
−ブタノール15.0gと活性化処理を施していないチ
タノシリケート1.5gを仕込み、攪拌しながらアンモ
ニアをガスで供給し反応容器内の圧力を1.0kg/cm2
で上昇させた。その後、温度を80℃まで昇温させたと
ころ、反応容器の圧力は4.4kg/cm2まで上昇した(水
に対するアンモニア溶解度は約27重量%)。所定温度
に到達後、15重量%に希釈した過酸化水素溶液34.
0gを3時間かけて添加した。
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to the following Examples. The pressure is a gauge pressure. Example 1 In an autoclave with a stirrer made of stainless steel (SUS316), 7.0 g of acetone and 15.0 g of aqueous ammonia were added.
-15.0 g of butanol and 1.5 g of titanosilicate not subjected to the activation treatment were charged, and ammonia was supplied with a gas while stirring to increase the pressure in the reaction vessel to 1.0 kg / cm 2 . Thereafter, when the temperature was raised to 80 ° C., the pressure in the reaction vessel rose to 4.4 kg / cm 2 (the solubility of ammonia in water was about 27% by weight). After reaching a predetermined temperature, a hydrogen peroxide solution diluted to 15% by weight.
0 g was added over 3 hours.

【0018】ガスクロマトグラフでアセトンオキシムの
収率を測定した。最終の反応容器圧力は、1.6kg/cm2
にまで低下した。得られた反応液は、5種Cの濾紙で濾
別して触媒を分離し、ガスクロマトグラフ(島津製作所
製GC−14A)でオキシムの収率を測定した。その結
果、アセトン基準のアセトンオキシム収率を求めたとこ
ろ96.4%であった。また、過酸化水素転化率を沃素
滴定により求めたところ99.9%であった。
The yield of acetone oxime was measured by gas chromatography. The final reaction vessel pressure was 1.6 kg / cm 2
Down to. The resulting reaction solution was separated by filtration through five kinds of C filter paper to separate the catalyst, and the oxime yield was measured by gas chromatography (GC-14A, manufactured by Shimadzu Corporation). As a result, the acetone oxime yield based on acetone was determined to be 96.4%. The conversion of hydrogen peroxide was determined to be 99.9% by iodine titration.

【0019】比較例1 加圧操作を行わずに、実施例1と同様の条件で反応を行
った。その結果、初期の反応圧力は1.6kg/cm2(水に
対するアンモニア溶解度は約12重量%)、反応終了時
の圧力は0.6kg/cm2であった。この反応のアセトンの
アセトンオキシム収率は63.9%であった。
Comparative Example 1 A reaction was carried out under the same conditions as in Example 1 without performing a pressurizing operation. As a result, the initial reaction pressure was 1.6 kg / cm 2 (the solubility of ammonia in water was about 12% by weight), and the pressure at the end of the reaction was 0.6 kg / cm 2 . The acetone oxime yield of acetone in this reaction was 63.9%.

【0020】実施例2 ステンレス(SUS316)製の攪拌器付オートクレー
ブに、シクロヘキサノン11.8gとアンモニア水1
5.0g、t−ブタノール15.0gと活性化処理を施
していないチタノシリケート1.5gを仕込み、攪拌し
ながらアンモニアをガスで供給し反応容器内の圧力を
1.0kg/cm2まで上昇させた。その後、温度を80℃ま
で昇温させたところ、反応容器の圧力は4.6kg/cm2
で上昇した(水に対するアンモニア溶解度は約27重量
%)。所定温度に到達後、15重量%に希釈した過酸化
水素溶液34.0gを3時間かけて添加した。過酸化水
素の滴下終了後、温度、圧力をそのまま維持して更に1
時間反応を行い、シクロヘキサノンオキシムを合成し
た。このとき、最終の反応容器圧力は、1.7kg/cm2
あった。反応終了後、反応容器内を窒素で置換しアンモ
ニアガスを回収すると共に大気圧まで脱圧し冷却を行っ
た。得られた反応液は、実施例1と同様に触媒を分離
し、ガスクロマトグラフでシクロヘキサノンオキシムの
収率を測定した。その結果、シクロヘキサノン基準のシ
クロヘキサノンオキシム収率は99.0%であった。
Example 2 11.8 g of cyclohexanone and aqueous ammonia 1 were placed in an autoclave with a stirrer made of stainless steel (SUS316).
5.0 g, 15.0 g of t-butanol and 1.5 g of titanosilicate not activated were charged, and ammonia was supplied with gas while stirring to increase the pressure in the reaction vessel to 1.0 kg / cm 2. I let it. Thereafter, when the temperature was raised to 80 ° C., the pressure in the reaction vessel rose to 4.6 kg / cm 2 (the solubility of ammonia in water was about 27% by weight). After reaching the predetermined temperature, 34.0 g of a hydrogen peroxide solution diluted to 15% by weight was added over 3 hours. After the completion of dropping of hydrogen peroxide, the temperature and pressure are maintained as they are for one more hour.
Reaction was carried out for a time to synthesize cyclohexanone oxime. At this time, the final pressure in the reaction vessel was 1.7 kg / cm 2 . After completion of the reaction, the inside of the reaction vessel was replaced with nitrogen to collect ammonia gas, and the pressure was reduced to atmospheric pressure to perform cooling. The catalyst was separated from the obtained reaction solution in the same manner as in Example 1, and the yield of cyclohexanone oxime was measured by gas chromatography. As a result, the cyclohexanone oxime yield based on cyclohexanone was 99.0%.

【0021】比較例2 加圧操作を行わずに、実施例3と同様の条件で反応を行
った。その結果、初期の反応圧力は1.7kg/cm2(水に
対するアンモニア溶解度は約12重量%)で反応終了時
の圧力は1.2kg/cm2であった。この反応の過酸化水素
基準のシクロヘキサノンオキシム収率は81.3%であ
った。
Comparative Example 2 A reaction was carried out under the same conditions as in Example 3 without performing a pressurizing operation. As a result, the initial reaction pressure was 1.7 kg / cm 2 (the solubility of ammonia in water was about 12% by weight), and the pressure at the end of the reaction was 1.2 kg / cm 2 . The cyclohexanone oxime yield based on hydrogen peroxide in this reaction was 81.3%.

【0022】実施例3 ステンレス(SUS316)製の攪拌器付オートクレー
ブに、ベンズアルデヒド10.6gとアンモニア水1
5.0g、t−ブタノール15.0gと活性化処理を施
していないチタノシリケート1.5gを仕込み、攪拌し
ながらアンモニアをガスで供給し反応容器内の圧力を
1.0kg/cm2まで上昇させた。その後、温度を80℃ま
で昇温させたところ、反応容器の圧力は4.4kg/cm2
で上昇した(水に対するアンモニア溶解度は約27重量
%)。所定温度に到達後、15重量%に希釈した過酸化
水素溶液22.7gを3時間かけて添加した。過酸化水
素は、実施例1に示した方法で調整し、実施例1と同様
に反応を行ってガスクロマトグラフでベンズアルドキシ
ムの収率を測定した。また、最終の反応容器圧力は、
1.6kg/cm2にまで低下した。その結果、ベンズアルデ
ヒド基準のベンズアルドキシム収率は97.5%であっ
た。また、過酸化水素転化率を沃素滴定により求めたと
ころ99.9%であった。
Example 3 10.6 g of benzaldehyde and 1 part of aqueous ammonia were placed in an autoclave with a stirrer made of stainless steel (SUS316).
5.0 g, 15.0 g of t-butanol and 1.5 g of titanosilicate not activated were charged, and ammonia was supplied with gas while stirring to increase the pressure in the reaction vessel to 1.0 kg / cm 2. I let it. Thereafter, when the temperature was raised to 80 ° C., the pressure in the reaction vessel rose to 4.4 kg / cm 2 (the solubility of ammonia in water was about 27% by weight). After reaching the predetermined temperature, 22.7 g of a hydrogen peroxide solution diluted to 15% by weight was added over 3 hours. Hydrogen peroxide was prepared by the method described in Example 1, and the reaction was carried out in the same manner as in Example 1, and the yield of benzaldoxime was measured by gas chromatography. Also, the final reaction vessel pressure is
It decreased to 1.6 kg / cm 2 . As a result, the benzaldoxime yield based on benzaldehyde was 97.5%. The conversion of hydrogen peroxide was determined by iodine titration to be 99.9%.

【0023】比較例3 加圧操作を行わずに、実施例4と同様の条件で反応を行
った。その結果、初期の反応圧力は1.6kg/cm2(水に
対するアンモニア溶解度は約12重量%)で、反応終了
時の圧力は1.0kg/cm2であった。この反応の過酸化水
素基準のベンズアルドキシム収率は76.3%であっ
た。
Comparative Example 3 A reaction was carried out under the same conditions as in Example 4 without performing a pressurizing operation. As a result, the initial reaction pressure was 1.6 kg / cm 2 (the solubility of ammonia in water was about 12% by weight), and the pressure at the end of the reaction was 1.0 kg / cm 2 . The benzaldoxime yield based on hydrogen peroxide in this reaction was 76.3%.

【0024】[0024]

【発明の効果】本発明によると触媒の活性化処理を省略
しても高収率で目的化合物を得ることができ、経済的に
有利なオキシムの製造を提供できる。
According to the present invention, the target compound can be obtained in high yield even if the catalyst activation treatment is omitted, and the production of an oxime which is economically advantageous can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C07B 61/00 300 C07B 61/00 300 (72)発明者 松家 直子 三重県四日市市日永東2丁目4番16号 三 菱瓦斯化学株式会社四日市工場内 Fターム(参考) 4G069 AA01 AA08 BA02A BA02B BA04A BA04B BA15A BA15B CB01 DA05 EA01Y EA02Y FB10 FC07 FC08 4H006 AA02 AC59 BA10 BA33 BA71 BB14 BC10 BC35 BD10 BD21 BE14 BE32 BW30 4H039 CA72 CD50 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C07B 61/00 300 C07B 61/00 300 (72) Inventor Naoko Matsuya Hiinahigashi Yokkaichi City, Mie Prefecture F-term (reference) 4G069 AA01 AA08 BA02A BA02B BA04A BA04B BA15A BA15B CB01 DA05 EA01Y EA02Y FB10 FC07 FC08 4H006 AA02 AC59 BA10 BA33 BA71 BB14 BC10 BE35 BD32 4H039 CA72 CD50

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チタノシリケート触媒の存在下で、過酸
化水素及びアンモニアを用いてケトン、キノンまたはア
ルデヒドからオキシムを製造する方法において、反応溶
媒に溶解するアンモニア濃度を反応初期に15重量%以
上にすること特徴とするオキシムの製造方法。
1. A method for producing an oxime from a ketone, a quinone or an aldehyde using hydrogen peroxide and ammonia in the presence of a titanosilicate catalyst, wherein the concentration of ammonia dissolved in the reaction solvent is 15% by weight or more at the beginning of the reaction. A method for producing an oxime, comprising:
【請求項2】 反応温度が50〜100℃である請求項
1記載の製造方法。
2. The method according to claim 1, wherein the reaction temperature is 50 to 100 ° C.
JP10241852A 1998-08-27 1998-08-27 Production of oxime Pending JP2000072737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10241852A JP2000072737A (en) 1998-08-27 1998-08-27 Production of oxime

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10241852A JP2000072737A (en) 1998-08-27 1998-08-27 Production of oxime

Publications (1)

Publication Number Publication Date
JP2000072737A true JP2000072737A (en) 2000-03-07

Family

ID=17080477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10241852A Pending JP2000072737A (en) 1998-08-27 1998-08-27 Production of oxime

Country Status (1)

Country Link
JP (1) JP2000072737A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1548000A1 (en) * 2003-12-22 2005-06-29 Sumitomo Chemical Company, Limited Process for producing oxime
EP1674450A1 (en) 2004-12-22 2006-06-28 Sumitomo Chemical Company, Limited Process for producing cyclohexanone oxime
EP1674449A1 (en) 2004-12-22 2006-06-28 Sumitomo Chemical Company, Limited Process for producing cyclohexanone oxime
JP2007001952A (en) * 2005-06-27 2007-01-11 Yokohama National Univ Method for producing oxime

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1548000A1 (en) * 2003-12-22 2005-06-29 Sumitomo Chemical Company, Limited Process for producing oxime
US7161036B2 (en) 2003-12-22 2007-01-09 Sumitomo Chemical Company, Limited Process for producing oxime
EP1674450A1 (en) 2004-12-22 2006-06-28 Sumitomo Chemical Company, Limited Process for producing cyclohexanone oxime
EP1674449A1 (en) 2004-12-22 2006-06-28 Sumitomo Chemical Company, Limited Process for producing cyclohexanone oxime
JP2007001952A (en) * 2005-06-27 2007-01-11 Yokohama National Univ Method for producing oxime

Similar Documents

Publication Publication Date Title
US7161036B2 (en) Process for producing oxime
US4745221A (en) Catalytic process for preparing cyclohexanone-oxime
JP4928044B2 (en) Preparation of oxime
HU216078B (en) Process for preparing pyrazole and its derivatives
KR101024233B1 (en) Method for producing cyclohexanone oxime
KR910000781B1 (en) Process for the preparation of glyoxytic acid and glyoxylic acid derivatives
KR101084021B1 (en) Method for producing cyclohexanone oxime
US5239119A (en) Catalytic synthesis of azines from H2 O2 /NH3 /carbonyl compounds
JP2000072737A (en) Production of oxime
JPH11240847A (en) Oxidation of aromatic compound to hydroxy aromatic compound
US4918194A (en) Process for the synthesis of a N,N-dialkyl-hydroxylamine
KR100193108B1 (en) Process for preparing N-monosubstituted hydroxylamine
CN115108967A (en) N-hydroxy-3, 4,5, 6-tetra (carbazol-9-yl) phthalimide, and preparation method and application thereof
JP2004083560A (en) Production process for cyclohexanone oxime
JP2000080067A (en) Production of oxime
US4737354A (en) Preparation of hydroxylamine-O-sulfonic acid
JP2000072738A (en) Production of oxime
JP2000026387A (en) Manufacture of cyclohexanone oxime
JP4397990B2 (en) Purification method of 3-alkylflavanonol derivatives
JP4743975B2 (en) Method for producing lactone
JP3528859B2 (en) Synthetic method of ketazine
JP2002514564A (en) Method for preparing hydrazine hydrate
JP2000026439A (en) Production of propylene oxide
GB2051067A (en) Process for the Preparation of 3,3-dimethyl-allyl Alcohol
JPH0138773B2 (en)