KR20030091350A - Spray forming device of semi-liquid metal material - Google Patents
Spray forming device of semi-liquid metal material Download PDFInfo
- Publication number
- KR20030091350A KR20030091350A KR1020020029280A KR20020029280A KR20030091350A KR 20030091350 A KR20030091350 A KR 20030091350A KR 1020020029280 A KR1020020029280 A KR 1020020029280A KR 20020029280 A KR20020029280 A KR 20020029280A KR 20030091350 A KR20030091350 A KR 20030091350A
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- flow rate
- melt
- semi
- tundish
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/50—Pouring-nozzles
- B22D41/58—Pouring-nozzles with gas injecting means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
본 발명은 반용융 소재의 제조장치에 관한 것으로서, 더욱 상세하게는 반용융 소재를 제조하기 위해 턴디쉬(Turndish) 내부에 액상의 시료를 넣고, 이 시료를 원하는 칫수로 제조하기 위해 상기 액상을 소정의 유동 속도로 분사함과 동시에 소정의 압력과 유동 속도로 질소가스를 분사함으로써, 성형성이 우수한 실린더 형상의 빌렛을 제조할 수 있는 반용융 소재의 제조장치를 제공한다.The present invention relates to an apparatus for manufacturing a semi-molten material, and more particularly, to put a liquid sample in a tundish (Turndish) to produce a semi-molten material, and to prepare the sample in the desired dimensions Provided is a semi-molten material manufacturing apparatus capable of producing a cylindrical billet excellent in formability by injecting nitrogen gas at a predetermined pressure and a flow rate while simultaneously injecting at a flow rate of.
일반적으로, 반용융 소재의 제조 방법은 주조 후, 압출하여 열처리를 실시하고, 입자 크기를 미세하고 균일하게 하여 이 합금을 고상과 액상의 중간영역까지재가열하여 고상 금속과 액상 금속이 상호 공존하여 압력을 가하여 가공하는 방법이다.In general, a method for producing a semi-molten material is extruded, heat-treated after casting, fine and uniform particle size, and reheated the alloy to the middle region of the solid phase and the liquid phase so that the solid metal and the liquid metal coexist in pressure. It is a method of adding by processing.
그런데, 이와 같은 종래의 반용융 소재의 제조 방법은 도 6과 도7에 도시된 바와 같이, 반용융 합금을 제조할 시에 액상이 입계(粒界)와 입내(粒內)에 동시에 분포하고, 입계에는 적은 양의 액상 금속이 존재함으로써, 반용융 상태에서 성형 가공 시, 성형성이 저하되는 문제점이 있다.However, in the conventional method for producing a semi-molten material, as shown in FIGS. 6 and 7, liquid phases are distributed at the same time in the grain boundary and in the mouth when the semi-molten alloy is manufactured. Due to the presence of a small amount of liquid metal at the grain boundary, there is a problem in that moldability is lowered during molding in a semi-molten state.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 반용융 소재를 제조하기 위해 턴디쉬(Turndish) 내부에 250kw의 유도로로 용융한 750℃ 액상의 시료를 넣고, 이 시료를 원하는 칫수의 빌렛으로 제조하기 위해 용융금속을 2kg/min 유동 속도로 분사함과 동시에 평균 6기압의 압력과 2.1㎥/min의 유동 속도로 질소가스를 분사하여 미세한 액적(液滴)이 기지 금속(substrate)에 적층되도록 함으로써, 성형성이 우수한 실린더 형상의 빌렛을 제조할 수 있는 반용융 소재의 제조장치를 제공하는데 그 목적이 있다.Therefore, the present invention has been made in order to solve the above problems, and put a sample of 750 ℃ liquid melted in a 250kw induction furnace inside a tundish (Turndish) to produce a semi-melt material, the desired sample In order to manufacture the billet of the dimension, molten metal is injected at a flow rate of 2kg / min and nitrogen gas is injected at an average pressure of 6 atm and a flow rate of 2.1㎥ / min. It is an object of the present invention to provide an apparatus for producing a semi-molten material which can produce a cylindrical billet having excellent moldability by being laminated on the sheet).
도 1은 본 발명에 따른 반용융 소재의 제조장치를 나타내는 개략적인 측단면도Figure 1 is a schematic side cross-sectional view showing an apparatus for producing a semi-molten material according to the present invention
도 2는 본 발명의 610℃(fs=0.70)에서 100g의 일정하중을 가할 시, 2014알루미늄 합금의 시간에 대한 인장강도를 나타내는 그래프Figure 2 is a graph showing the tensile strength of the aluminum alloy 2014 over time when a constant load of 100g at 610 ℃ (f s = 0.70) of the present invention
도 3은 본 발명의 변형온도에서 100g의 일정하중을 가할 시, 2014알루미늄 합금의 시간에 대한 인장강도를 나타내는 그래프Figure 3 is a graph showing the tensile strength of the aluminum alloy 2014 over time when a constant load of 100g at the deformation temperature of the present invention
도 4는 본 발명의 610℃(fs=0.70)에서 20분 동안 유지한 후, 물에 담금질(quenching)한 2014알루미늄 합금을 주사전자현미경(SEM)으로 관찰한 미세조직을 나타내는 도면4 is a view showing the microstructure observed by scanning electron microscopy (SEM) of the 2014 aluminum alloy quenched in water after holding for 20 minutes at 610 ℃ (f s = 0.70) of the present invention.
도 5는 본 발명의 2014알루미늄 합금을 주사전자현미경(SEM)으로 관찰한 미세조직을 나타내는 도면5 is a view showing the microstructure of the 2014 aluminum alloy of the present invention observed with a scanning electron microscope (SEM)
도 6은 종래의 변형온도에서 100g의 일정하중을 가할 시, 2014알루미늄 합금의 시간에 대한 인장강도를 나타내는 그래프Figure 6 is a graph showing the tensile strength of the aluminum alloy 2014 over time when a constant load of 100g at a conventional deformation temperature
도 7은 종래의 610℃(fs=0.70)에서 20분 동안 유지한 후, 물에 담금질(quenching)한 2014알루미늄 합금을 주사전자현미경(SEM)으로 관찰한 미세조직을 나타내는 도면7 is a view showing the microstructure observed by scanning electron microscopy (SEM) of the 2014 aluminum alloy quenched in water after holding for 20 minutes at a conventional 610 ℃ (f s = 0.70)
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
10 : 턴디쉬(turndish) 11 : 용탕 분사 노즐10 turndish 11: melt spray nozzle
12 : 가스 분사구 13 : 금형12 gas injection hole 13 mold
14 : 기지 금속(substrate) 15 : 노즐구14 base metal 15 nozzle hole
16 : 알루미나 판(Al2O3plate)16: alumina plate (Al 2 O 3 plate)
이하, 상기와 같은 목적을 달성하기 위한 본 발명의 특징에 대해 설명하면 다음과 같다.Hereinafter, the features of the present invention for achieving the above object are as follows.
본 발명에 따른 반용융 소재의 제조장치는 유도로로 용융한 액상의 시료를턴디쉬(turndish)(10) 내부에 넣고, 상기 턴디쉬(10)로부터 용탕 분사 노즐(11)을 통해 미세 금속 액적(液滴) 및 질소가스를 회전하면서 상하이동 가능한 금형(13)에 분사할 수 있도록 형성된 것을 특징으로 한다.In the apparatus for producing a semi-molten material according to the present invention, a liquid sample melted in an induction furnace is placed in a tundish 10, and fine metal droplets are formed from the tundish 10 through the melt spray nozzle 11. (I) and it is characterized in that it is formed so as to be sprayed to the movable mold (13) while rotating the nitrogen gas.
상기 용탕 분사 노즐(11)로부터 용탕 액적(液滴)과 가스를 분사 시, 용탕의 유동 속도 및 가스의 압력과 유동 속도 그리고, 용탕/가스의 유동 속도비가 조절 가능한 것을 특징으로 한다.When spraying the molten metal droplets and the gas from the molten metal injection nozzle 11, the flow rate of the melt, the pressure and flow rate of the gas, and the flow rate ratio of the melt / gas is adjustable.
특히, 상기 용탕의 유동 속도는 2kg/min이고, 가스의 압력과 유동 속도는 각각 6기압과 2.1㎥/min인 것을 특징으로 한다.In particular, the flow rate of the molten metal is 2kg / min, the pressure and flow rate of the gas is characterized in that 6 atm and 2.1 ㎥ / min, respectively.
이하, 첨부도면을 참조하여 본 발명의 구성에 대해 상세하게 설명하면 다음과 같다.Hereinafter, the configuration of the present invention with reference to the accompanying drawings in detail.
도 1은 본 발명에 따른 반용융 소재의 제조장치를 나타내는 개략적인 측단면도로서, 반용융 소재의 제조장치는 크게 턴디쉬(turndish)(10), 용탕 분사 노즐(11), 가스 분사구(12), 금형(13) 그리고, 기지 금속(substrate)(14)으로 구성되어 있다.Figure 1 is a schematic side cross-sectional view showing an apparatus for producing a semi-molten material according to the present invention, the apparatus for manufacturing a semi-molten material is largely turneddish (10), melt injection nozzle 11, gas injection hole 12 And a mold 13 and a matrix metal 14.
여기서, 용탕 분사 노즐(11)은 내열성을 갖는 노즐구(15)와 알루미나 판(Al2O3plate)(16)을 통해서 삽입되어 있으며, 금형(13)에 연결되어 있다.Here, the molten metal injection nozzle 11 is inserted through the nozzle port 15 and the plate alumina (Al 2 O 3 plate) ( 16) having heat resistance, and is connected to the mold 13.
시료는 흑연 도가니에서 250kw의 유도로를 통해서 가열되어 용탕으로 제조하고, 용탕의 온도를 800℃로 유지한 다음, 턴디쉬(10)로 운반하게 된다.The sample is heated in a graphite crucible through an induction furnace of 250 kw to prepare a molten metal, maintain the temperature of the molten metal at 800 ° C., and then transport it to the tundish 10.
상기 턴디쉬(10)에 있는 용탕의 온도는 분사 성형 전 5분동안 750℃로 유지된다.The temperature of the melt in the tundish 10 is maintained at 750 ° C. for 5 minutes before spray molding.
상기 용탕은 100rpm으로 회전하는 스테인레스 스틸재의 기지 금속(14)에 분사를 실시하게 되는 바, 상기 용탕 분사 노즐(11)과 분사된 용탕과의 거리를 430mm로 항상 유지할 수 있도록 되어 있으며, 수직선으로부터의 분사각은 35°로 유지되어 있다.The molten metal is sprayed onto the base metal 14 made of stainless steel rotating at 100 rpm, so that the distance between the molten metal spray nozzle 11 and the molten metal is always maintained at 430 mm. The spray angle is kept at 35 °.
아울러, 상기 용탕과, 가스 분사구(12)를 통해 유입된 가스가 분사되면서 적층되므로 높이를 일정하게 하기 위한 하강속도를 0.34mm/s로 하여 기지 금속(14)이 하강되도록 하는데, 이때 용탕을 2kg/min의 유동 속도로 분사하게 된다.In addition, since the molten gas and the gas introduced through the gas injection hole 12 are laminated while being sprayed, the base metal 14 is lowered by setting the descending speed to make the height constant 0.34 mm / s, wherein the molten metal is 2 kg. Spray at a flow rate of / min.
또한, 상기 용탕과 함께 가스가 분사하게 되는데, 상기 가스는 질소 가스로서, 2.2㎥/min의 속도로 가스가 분사되며, 이때의 압력은 6기압으로 설정하게 된다.In addition, the gas is injected together with the molten metal, the gas is nitrogen gas, the gas is injected at a rate of 2.2 m 3 / min, the pressure is set to 6 atm.
한편, 상기 용탕과 금속의 유동 속도비를 대략 1로 유지하는 것이 바람직하다.On the other hand, it is preferable to maintain the flow rate ratio of the said melt and metal to about 1.
상기와 같은 방법으로 제조된 빌렛을 밀폐된 금형에서 진공상태(10-4torr)로 유지하고, 압력 30Mpa, 온도 475℃에서 1시간 동안 단축(短軸)으로 가압해서 내부의 기포등의 결함을 제거하여 밀도를 높히도록 한다.The billet manufactured by the above method was kept in a vacuum state (10 -4 torr) in a closed mold, and pressurized for 1 hour at a pressure of 30Mpa and a temperature of 475 ° C for 1 hour to eliminate defects such as bubbles inside. Remove to increase density.
도 2는 본 발명의 610℃(fs=0.70)에서 100g의 일정하중을 가할 시, 2014알루미늄 합금의 시간에 대한 인장강도를 나타내는 그래프이고, 도 3은 본 발명의 변형온도에서 100g의 일정하중을 가할 시, 2014알루미늄 합금의 시간에 대한 인장강도를 나타내는 그래프로서, 도 2와 도 3의 그래프에 나타낸 바와 같이, 주어진 변형시간 동안 560~610℃(fs=0.90-0.70)에서 시험한 결과, 본 방법에 의해 제조된 합금은 도 6에 나타낸 기존의 방법보다 성형가공이 월등히 우수하다.Figure 2 is a graph showing the tensile strength with respect to the time of the aluminum alloy 2014 when applying a constant load of 100g at 610 ℃ (f s = 0.70) of the present invention, Figure 3 is a constant load of 100g at a deformation temperature of the present invention A graph showing tensile strength with respect to time of 2014 aluminum alloy at the time of addition, as shown in the graphs of FIGS. 2 and 3, the test results at 560 ~ 610 ℃ (f s = 0.90-0.70) for a given deformation time , The alloy produced by this method is far superior to the conventional molding process shown in FIG.
이와 같이, 성형 가공성이 우수한 이유는 첫째, 본 방법에 의해 제조된 합금이 도 4에 도시된 바와 같이, 유효입계 액상금속(effective grain boundary liquid)을 다량으로 함유하고 있기 때문이다.As described above, the reason why the moldability is excellent is because, firstly, the alloy produced by the present method contains a large amount of an effective grain boundary liquid as shown in FIG. 4.
도 5에 나타낸 2014알루미늄 합금을 주사전자현미경(SEM)으로 관찰한 미세조직은 거의 모든 2상 입자(second phases particle)가 입계에 연속적인 네트웍(semi-continuous network)을 구성하고, 이것이 고상과 액상의 공존영역에서 용해되어 유효 액상을 구성한다.The microstructure in which the 2014 aluminum alloy shown in FIG. 5 was observed with a scanning electron microscope (SEM) constituted a semi-continuous network in which almost all second phase particles were formed at a grain boundary. Are dissolved in the co-existing region of to form an effective liquid phase
그러나, 기존의 방법에서는 2상의 입자들이 입계와 입내에 분포하여 고상과 액상의 공존영역까지 재 가열 시, 상기 2상 입자가 용해되어 입내에 액적(液滴)을 형성하여 궁극적으로 유효 입계 액상분율을 감소시켜 반용융 상태에서 성형 가공 시, 성형성이 저하되는 문제점이 있다.However, in the conventional method, when the two-phase particles are distributed in the grain boundary and the mouth, and reheated to the coexistence area between the solid phase and the liquid phase, the two-phase particles dissolve to form droplets in the mouth and ultimately the effective grain boundary liquid fraction. There is a problem in that the moldability is lowered during molding in a semi-molten state by reducing the pressure.
둘째는 입계 구조가 저 접촉각 경계(low angle boundary)가 상온에서 5%, 고상과 액상의 공존영역에서 10%로 증가하고, 평균 미 방위각(misorientation angle)이 40°에서 35°로 다소 감소하게 되므로 이것은 610℃(fs=0.70, 고상분율)에서 등온 가열하는 동안 이웃하는(neighboring) 입자들 사이에 선택방위(prefered orientation)가 형성되고, 입계 강도를 강화시켜 결국에는 성형 가공성을 저하시키는 종래기술 대비, 저 접촉각 경계(low angle boundary)가 상온에서 17%, 고상과 액상의 공존영역에서 3%로 감소하고, 평균 미 방위각(misorientation angle)이 34°에서 40°로 다소 증가하게 되므로 이것은 610℃(fs=0.70, 고상분율)에서 등온 가열하는 동안 이유하는 입자들 사이에 선택방위(prefered orientation)가 형성되지 않고, 입계 젖음성을 강화시키므로 이것은 구성 입자들의 슬라이딩 혹은 구름(rolling)등에 의한 재배열을 촉진시켜 결국에는 성형 가공성이 크게 향상된다.Second, the grain boundary structure increases the low angle boundary to 5% at room temperature and 10% in the coexistence region of the solid and liquid phases, and the average misorientation angle is slightly reduced from 40 ° to 35 °. This is a prior art technique in which a preferred orientation is formed between neighboring particles during isothermal heating at 610 ° C. (f s = 0.70, solid phase fraction), enhancing the grain boundary strength and ultimately decreasing the formability. By contrast, the low angle boundary is reduced to 17% at room temperature and 3% in the coexistence region of solid and liquid phases, and the average misorientation angle is slightly increased from 34 ° to 40 °, which is 610 ° C. During isothermal heating at (f s = 0.70, solid phase fraction), no preferred orientation is formed between the weaning particles, which enhances the grain boundary wettability, which causes sliding or rolling of the constituent particles. ng) and the like to promote rearrangement, and eventually formability is greatly improved.
이상에서 상술한 바와 같이, 본 발명에 따른 반용융 소재의 제조장치는 다음과 같은 효과가 있다.As described above, the apparatus for producing a semi-molten material according to the present invention has the following effects.
첫째, 다량의 액상 금속이 입내(粒內)에 존재하는 종래의 제조 방법에 비해, 입계(粒界)에 액상 금속이 더욱 다량으로 존재하여 고상과 액상의 공존영역에서 입계 유효 액상율을 높힐 수 있다.First, compared with the conventional manufacturing method in which a large amount of liquid metal is present in the mouth, a large amount of liquid metal is present at the grain boundary, thereby increasing the grain boundary effective liquidity rate in the coexistence region between the solid phase and the liquid phase. have.
둘째, 작은 압축 하중으로도 편석(片石)없이 크게 변형시킬 수 있어 소비되는 에너지의 양을 줄일 수 있다.Second, even small compression loads can be largely deformed without segregation, reducing the amount of energy consumed.
세째, 고상과 액상의 공존영역에서 제품을 가공 성형하기 때문에 보다 높은 고상분율에서 시편의 성형가공이 가능하다.Third, since the product is formed in the solid phase and the liquid phase coexistence region, it is possible to mold the specimen at a higher solid fraction.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020029280A KR20030091350A (en) | 2002-05-27 | 2002-05-27 | Spray forming device of semi-liquid metal material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020029280A KR20030091350A (en) | 2002-05-27 | 2002-05-27 | Spray forming device of semi-liquid metal material |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20030091350A true KR20030091350A (en) | 2003-12-03 |
Family
ID=32384494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020029280A KR20030091350A (en) | 2002-05-27 | 2002-05-27 | Spray forming device of semi-liquid metal material |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20030091350A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100761996B1 (en) * | 2005-06-08 | 2007-09-28 | 한성석 | An apparatus for manufacturing metal deposition |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01313181A (en) * | 1988-06-10 | 1989-12-18 | Daido Steel Co Ltd | Spray casting device |
US4938275A (en) * | 1985-11-12 | 1990-07-03 | Osprey Metals Limited | Production of spray deposits |
JPH05161956A (en) * | 1991-12-11 | 1993-06-29 | Kobe Steel Ltd | Atomized forming method |
KR20020052746A (en) * | 2000-12-26 | 2002-07-04 | 신현준 | Multi-layer Structure Spray Casting Device |
-
2002
- 2002-05-27 KR KR1020020029280A patent/KR20030091350A/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4938275A (en) * | 1985-11-12 | 1990-07-03 | Osprey Metals Limited | Production of spray deposits |
JPH01313181A (en) * | 1988-06-10 | 1989-12-18 | Daido Steel Co Ltd | Spray casting device |
JPH05161956A (en) * | 1991-12-11 | 1993-06-29 | Kobe Steel Ltd | Atomized forming method |
KR20020052746A (en) * | 2000-12-26 | 2002-07-04 | 신현준 | Multi-layer Structure Spray Casting Device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100761996B1 (en) * | 2005-06-08 | 2007-09-28 | 한성석 | An apparatus for manufacturing metal deposition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9611522B2 (en) | Spray deposition of L12 aluminum alloys | |
KR20060071315A (en) | Laser enhancements of cold sprayed deposits | |
CN106834974A (en) | iron-based alloy coating and method for forming the same | |
KR100269898B1 (en) | Process for manufacturing thin pipes | |
KR100946196B1 (en) | Method of improving surface properties of the metal by spray coating and metal prepared by the same | |
JP2020524217A (en) | Process for forming forged structures using cold atomization | |
CN108754263A (en) | A kind of high intensity space flight aluminium lithium alloy proximate matter and preparation method thereof | |
KR20080065480A (en) | Method for coating with copper-tungsten composite material by using cold spraying process | |
CN118222917A (en) | High-vanadium high-speed steel and preparation method and application thereof | |
CN110396625A (en) | A kind of preparation method of antiwear heat resisting aluminium alloy | |
KR20030091350A (en) | Spray forming device of semi-liquid metal material | |
CN112111714B (en) | Preparation method of tantalum-aluminum alloy sputtering target material | |
Gerling et al. | Spray forming of Ti 48.9 Al (at.%) and subsequent hot isostatic pressing and forging | |
KR20120072235A (en) | Fe-based oxide dispersion strengthened alloy, and manufacturing method thereof | |
CN111842914A (en) | 3D printing process method of high-strength aluminum-copper alloy | |
Si et al. | Microstructure and mechanical properties of low-pressure spray-formed Zn-rich aluminum alloy | |
Tomochika et al. | Fabrication of NiTi intermetallic compound by a reactive gas laser atomization process | |
CN114182196B (en) | Titanium alloy vacuum gas step nitriding method | |
CN114990541B (en) | High-hardness material coating structure and preparation method thereof | |
CN112296606B (en) | Preparation method of vacuum centrifugal TiAl intermetallic compound plate | |
US20070009661A1 (en) | Aluminum material having ain region on the surface thereof and method for production thereof | |
KR100307711B1 (en) | Apparatus and method for manufacturing magnesium alloy | |
JPWO2018232451A5 (en) | ||
CN114318331B (en) | Ultrasonic semi-solid roll forging composite laser melting and resetting forming method and device | |
Tamura et al. | TiN-TiB 2 composite coatings reactively produced by electrothermally exploded powder spray |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |