KR20030078487A - High Emissivity Coating Composition and Coated Vacuum Chamber - Google Patents

High Emissivity Coating Composition and Coated Vacuum Chamber Download PDF

Info

Publication number
KR20030078487A
KR20030078487A KR1020020017548A KR20020017548A KR20030078487A KR 20030078487 A KR20030078487 A KR 20030078487A KR 1020020017548 A KR1020020017548 A KR 1020020017548A KR 20020017548 A KR20020017548 A KR 20020017548A KR 20030078487 A KR20030078487 A KR 20030078487A
Authority
KR
South Korea
Prior art keywords
coating material
radiation coating
radiation
alumina
vacuum
Prior art date
Application number
KR1020020017548A
Other languages
Korean (ko)
Inventor
송현종
이봉수
장진식
이재춘
Original Assignee
이재춘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이재춘 filed Critical 이재춘
Priority to KR1020020017548A priority Critical patent/KR20030078487A/en
Publication of KR20030078487A publication Critical patent/KR20030078487A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE: A radiation coating material composition and a vacuum container coated with a radiation coating material are provided, to reduce the energy required for heating an article loaded in a vacuum container by coating the vacuum container with the radiation coating material. CONSTITUTION: The radiation coating material composition comprises: a radiation material comprising 33-46 wt% of Cr2O3, 33-61 wt% of silicon carbide (SiC) and 0-34 wt% of ceria (CeO2); and 30-50 wt% of aluminum phosphate aqueous solution having 50% of solid powder, as a heat resistant inorganic binder. The ceramic vacuum container is obtained by coating a ceramic tube such as alumina or mulite or a stainless steel for a vacuum heating furnace with the radiation coating material by the thickness of 30-100 micrometers.

Description

복사코팅재 조성물과 복사코팅재가 도포된 진공용기 {High Emissivity Coating Composition and Coated Vacuum Chamber}High Emissivity Coating Composition and Coated Vacuum Chamber

진공가열로는 공기와 접촉하지 않는 비산화 조건에서 피가열체를 가열 또는 열처리하기 위해 사용되는 노이다. 이러한, 진공가열로는 종종 치밀한 구조를 갖는 알루미나, 실리카 또는 뮬라이트와 같은 재질의 세라믹 튜브 또는 스텐레스스틸과 같은 금속으로 제작된 진공용기로 이루어져서 외부 공기와의 출입이 차단되게 끔 제작된다. 이러한 진공가열로에서 진공용기내에서의 열전달은 진공이므로 대류에 의한 열전달보다는 주로 복사에 의해 열전달 기구에 의해 이루어지게 된다. 또한, 진공용기내에서의 열전달은 대류에 의한 열전달 효과가 없기 때문에 주로 복사에 의해서만 이루어지므로 대기압 공기중에서 가열될 때 보다 피가열체로의 열전달 효과가 낮아지게 된다. 따라서, 진공용기내에 들어있는 피가열체를 일정한 온도로 상승시키기 위해 소요되는 에너지 비용은 대기압 공기중에서 대류에 의한 열전달에 의존하는 가열로에 비해서 에너지 비용이 상대적으로 큰 문제점이 있다.Vacuum furnaces are furnaces used for heating or heat-treating heating elements in non-oxidizing conditions that are not in contact with air. Such a vacuum heating furnace is often made of a ceramic tube made of alumina, silica or mullite having a dense structure, or a vacuum vessel made of a metal such as stainless steel to block access to outside air. Since the heat transfer in the vacuum vessel in the vacuum heating furnace is a vacuum, the heat transfer mechanism is mainly performed by radiation rather than heat transfer by convection. In addition, since the heat transfer in the vacuum container is mainly made by radiation because there is no heat transfer effect by convection, the heat transfer effect to the heating element is lower than when heated in atmospheric air. Therefore, the energy cost required to raise the heating element contained in the vacuum vessel to a constant temperature has a relatively high energy cost compared to a heating furnace which relies on heat transfer by convection in atmospheric air.

볼츠만 법칙에 의하면 복사에너지는 복사체의 복사율에 비례한다. 고온 진공용기로 종종 사용되는 알루미나, 실리카 또는 뮬라이트와 같은 세라믹 재질의 복사율은 0.75 이하이며 금속 재질의 복사율은 이보다 더욱 낮은 0.2~0.3을 나타낸다.본 발명은 알루미나, 실리카, 뮬라이트와 같은 세라믹 또는, 스테인레스스틸과 같은 금속재질의 복사율보다 높은 복사율을 가지면서 동시에 알루미나, 뮬라이트와 같은 세라믹 또는, 스테인레스스틸 재질과 부착력을 갖는 복사재 조성물을 제공하는 데에 있다.According to Boltzmann's law, the radiant energy is proportional to the radiative rate of the radiant material. Ceramic materials, such as alumina, silica, or mullite, which are often used in high temperature vacuum vessels, have an emissivity of 0.75 or less, and metal materials have an emissivity of 0.2-0.3, which is even lower. It is to provide a radiation composition having a higher radiation rate than that of a metal material such as steel, and at the same time having a ceramic or stainless steel material, such as alumina, mullite and adhesion.

본 발명이 이루고자 하는 또다른 기술적 과제는 알루미나, 뮬라이트와 같은 세라믹 튜브 또는, 스테인레스스틸과 같은 금속 용기로 이루어진 진공가열로를 이용하여 피가열체를 진공분위기에서 고온 열처리하는 경우에 소요되는 에너지를 절감시키기 위해 복사코팅재가 도포된 알루미나, 뮬라이트와 같은 세라믹 튜브 또는, 스테인레스스틸과 같은 금속재질의 진공용기를 제공하는 데에 있다.Another technical problem to be solved by the present invention is to reduce the energy required for heat-treating a heated object in a vacuum atmosphere by using a vacuum heating furnace made of a ceramic tube such as alumina or mullite or a metal container such as stainless steel. It is to provide a ceramic tube such as alumina, mullite, or a metallic container, such as stainless steel, to which the radiation coating material is applied.

도 1은 복사코팅재에 의한 에너지 절약효과를 입증하는 성능시험장치 개략도Figure 1 is a schematic diagram of a performance test apparatus for demonstrating the energy saving effect by the radiation coating material

도 2, 도 3, 도 4는 복사코팅재에 의한 에너지 절감효과를 보여주는 그래프2, 3, 4 is a graph showing the energy saving effect by the radiation coating material

복사재 조성물은 알루미나, 실리카 또는 스테인레스스틸과 같은 금속에 비해 복사율이 높은 탄화규소(SiC) 분말과 크롬산화물(Cr2O3), 또는 세리아(CeO2) 분말과 이러한 분말을 알루미나, 또는 뮬라이트와 같은 세라믹 기판 또는 스테인레스스틸과 같은 금속과 접착시킬 수 있는 내열성 결합제로 이루어진다. 복사재 분말의 평균입자 크기는 1∼20㎛ 크기로 이루어지며 내열성 결합제는 제일인산알루미늄 수용액을 사용한다. 복사재 분말이 20㎛보다 크면, 기판과의 접착력이 떨어지며, 1㎛보다 작으면, 분말의 분쇄에 소요되는 비용이 증가된다.The radiation composition is a silicon carbide (SiC) powder and chromium oxide (Cr2O3) or ceria (CeO2) powder having a higher emissivity compared to a metal such as alumina, silica or stainless steel, and the powder may be a ceramic substrate such as alumina or mullite or It consists of a heat-resistant binder that can bond with metals such as stainless steel. The average particle size of the copy powder is 1-20 탆 in size and the heat-resistant binder is an aqueous solution of aluminum phosphate. If the copying material powder is larger than 20 mu m, the adhesion to the substrate is lowered, and if it is smaller than 1 mu m, the cost of pulverizing the powder is increased.

본 발명의 복사코팅재의 조성은 복사재로 Cr2O3와 SiC 또는, CeO2를 사용하며, 이러한 복사재를 알루미나 튜브 또는 스테인레스 스틸과 같은 용기에 부착시키기 위해 제일인산알루미늄 수용액을 사용한다. 표1은 복사코팅재 조성물의 조성에 따른 500℃에서의 복사율 측정값을 알루미나 기판과 비교하여 나타낸다.The composition of the radiation coating material of the present invention uses Cr2O3 and SiC or CeO2 as the copy material, and aqueous aluminum phosphate solution is used to attach the copy material to a container such as an alumina tube or stainless steel. Table 1 shows the measured emissivity at 500 ° C. according to the composition of the radiation coating material composition compared with the alumina substrate.

표1. 복사코팅재 조성물의 조성에 따른 복사율 측정값Table 1. Emissivity measurement value according to the composition of the radiation coating material composition

조성물Composition 복사재(중량백분율)Copy materials (weight percentage) 복사율Emissivity 비고Remarks Cr2O3SiC CeO2 Cr 2 O 3 SiC CeO 2 조성예1Composition Example 1 33 33 3433 33 34 0.850.85 50% 제일인산알루미늄수용액은 복사재 분말무게의 40% 사용50% aqueous solution of aluminum phosphate using 40% of the weight of the copy material powder 조성예2Composition Example 2 39 61 -39 61- 0.790.79 조성예3Composition Example 3 46 54 -46 54- 0.790.79 Al2O3 Al 2 O 3 -- 0.750.75

고온 진공용기로 사용되는 알루미나, 실리카, 뮬라이트와 같은 세라믹 튜브 또는 스테인레스스틸과 같은 금속 용기 표면에 표1에 나타난 복사코팅재 조성물을 코팅한 후 건조, 소성시켜 복사재코팅 두께가 30~100㎛가 되게 끔 한다. 코팅재 두께가 30㎛보다 작으면 기판에 의한 복사율 감소효과가 나타날 수 있으며, 코팅두께가 100㎛보다 크게되는 경우에는 박리현상이 나타날 수 있다. 따라서, 세라믹 튜브 또는 금속용기에 코팅되는 복사재의 두께는 50㎛이 적합하다.Coating the radiation coating material composition shown in Table 1 on the surface of a ceramic tube, such as alumina, silica, mullite, or stainless steel, which is used as a high temperature vacuum vessel, and then drying and firing the coating material to a thickness of 30 to 100 μm. Turn it off. If the thickness of the coating material is less than 30㎛ may exhibit the effect of reducing the emissivity by the substrate, the peeling phenomenon may appear when the coating thickness is greater than 100㎛. Therefore, the thickness of the copy material coated on the ceramic tube or the metal container is preferably 50 μm.

도 1은 복사코팅재의 에너지 절감효과를 입증하는 시험장치 개략도로써 전기로 내에 한쪽 끝이 막힌 알루미나 튜브를 삽입시킨 후, 진공펌프를 이용하여 알루미나 튜브를 50∼300 밀리토르(millitorr)로 진공을 유지시키면서 열전대 TC1을 이용하여 전기로의 온도를 분당 10℃로 상승시키면서 바닥면에서 3cm 떨어진 지점에서 온도를 열전대 TC2로 측정한 결과이다. 표 1에 나타난 조성예2 또는 조성예3의 복사재가 코팅된 알루미나 튜브는 복사재가 코팅되지 않은 알루미나 튜브에 비해 복사열전달 효과가 커서 알루미나 튜브내의 바닥 표면온도에 따라 피가열체가 감지되는 온도가 약 7∼15℃ 높게 나타나는 효과가 도 2와 3에 나타나 있다. 도 4는 도 1에 나타난 시험장치를 이용하여 바닥에서 3cm 떨어진 피가열체의 온도가 1000℃에 도달 될 때까지 소요된 적산전력을 디지탈 파워메타로 측정한 결과를 나타낸다. 복사재가 코팅된 알루미나 튜브의 경우, 도 1에 나타난 전기로를 분당 10℃의 승온속도로 가열시켜 열전대 TC2가 감지하는 온도가 1000℃에 도달하기 위해 소요된 전력은 549 Wh인 반면, 복사재가 코팅되지 않은 알루미나 튜브 가열에 소요된 전력은 595 Wh로 복사코팅재에 의해 46 Wh의 전력 절감효과가 나타난다. 따라서, 본 발명의 복사코팅재를 알루미나 재질의 진공용기에 사용하므로써 약 8%의 에너지 절감효과를 얻을 수 있는 것을 알 수 있다.1 is a schematic diagram of a test apparatus demonstrating the energy saving effect of a radiation coating material, after inserting an alumina tube blocked at one end into an electric furnace, and maintaining a vacuum at 50 to 300 millitorr using an alumina tube using a vacuum pump. Using the thermocouple TC1 while raising the temperature of the electric furnace to 10 ℃ per minute while measuring the temperature with the thermocouple TC2 at a point 3cm away from the bottom. The alumina tube coated with the copy material of Composition Example 2 or Composition 3 shown in Table 1 has a greater radiative heat transfer effect than the alumina tube without the copy material coated, so that the temperature of the heating target is detected depending on the bottom surface temperature in the alumina tube. The effect which shows -15 degreeC high is shown by FIG. 2 and FIG. Figure 4 shows the result of measuring the integrated power consumed until the temperature of the heating element 3cm away from the bottom reaches 1000 ℃ by using the test apparatus shown in Figure 1 with a digital power meter. In the case of the alumina tube coated with the radiation material, the electric furnace shown in FIG. 1 was heated at a temperature increase rate of 10 ° C per minute, so that the power required for the thermocouple TC2 to detect the temperature reached 1000 ° C was 549 Wh, while the radiation material was not coated. The power required to heat the alumina tube is 595 Wh, resulting in a power saving of 46 Wh due to the radiation coating material. Therefore, it can be seen that the energy saving effect of about 8% can be obtained by using the radiation coating material of the present invention in a vacuum chamber made of alumina.

Claims (2)

복사코팅재 조성물로서 중량비가 크롬산화물(Cr2O3) 33∼46%, 탄화규소(SiC) 33∼61%, 세리아(CeO2)0∼34%로 이루어진 복사재와 내열성 무기결합제로써 고형분 50%인 제일인산알루미늄 수용액이 복사재 중량에 대해 30∼50% 혼합된 것을 특징으로 하는 복사코팅재 조성물.Radiation coating material composition, which is composed of 33 to 46% by weight of chromium oxide (Cr2O3), 33 to 61% of silicon carbide (SiC), and 0 to 34% of ceria (CeO2) and 50% of solid aluminum phosphate as a heat-resistant inorganic binder. A radiation coating material composition, characterized in that the aqueous solution is mixed 30 to 50% by weight of the copy material. 표면에 상기기술된 복사코팅재가 30∼100㎛ 두께로 코팅되어 있는 진공가열로용 알루미나 또는 뮬라이트와 같은 세라믹 튜브 또는 스테인레스스틸과 같은 세라믹 진공용기.A ceramic tube such as alumina or mullite for vacuum heating or a ceramic vacuum vessel such as stainless steel, the surface of which the above-described radiation coating material is coated to a thickness of 30 to 100 μm.
KR1020020017548A 2002-03-29 2002-03-29 High Emissivity Coating Composition and Coated Vacuum Chamber KR20030078487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020017548A KR20030078487A (en) 2002-03-29 2002-03-29 High Emissivity Coating Composition and Coated Vacuum Chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020017548A KR20030078487A (en) 2002-03-29 2002-03-29 High Emissivity Coating Composition and Coated Vacuum Chamber

Publications (1)

Publication Number Publication Date
KR20030078487A true KR20030078487A (en) 2003-10-08

Family

ID=32377281

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020017548A KR20030078487A (en) 2002-03-29 2002-03-29 High Emissivity Coating Composition and Coated Vacuum Chamber

Country Status (1)

Country Link
KR (1) KR20030078487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100580079B1 (en) * 2004-12-22 2006-05-16 재단법인 포항산업과학연구원 Method of preparing ceramic thermal radiation coating material
CN115557526A (en) * 2022-09-29 2023-01-03 包头市安德窑炉科技有限公司 Cerium oxide tunnel kiln energy-saving method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900005393A (en) * 1988-09-30 1990-04-14 신훈철 Optical inspection device of laser pickup
KR940000726A (en) * 1992-06-05 1994-01-03 전성원 Automotive intake and exhaust valve opening and closing variable device
KR20020058174A (en) * 2000-12-29 2002-07-12 이구택 Inorganic refractory paint having good heat emissivity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900005393A (en) * 1988-09-30 1990-04-14 신훈철 Optical inspection device of laser pickup
KR940000726A (en) * 1992-06-05 1994-01-03 전성원 Automotive intake and exhaust valve opening and closing variable device
KR20020058174A (en) * 2000-12-29 2002-07-12 이구택 Inorganic refractory paint having good heat emissivity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100580079B1 (en) * 2004-12-22 2006-05-16 재단법인 포항산업과학연구원 Method of preparing ceramic thermal radiation coating material
CN115557526A (en) * 2022-09-29 2023-01-03 包头市安德窑炉科技有限公司 Cerium oxide tunnel kiln energy-saving method
CN115557526B (en) * 2022-09-29 2023-09-22 包头市安德窑炉科技有限公司 Energy-saving method for cerium oxide tunnel kiln

Similar Documents

Publication Publication Date Title
Chen et al. Preparation of mullite by the reaction sintering of kaolinite and alumina
JP5795555B2 (en) Manufacturing method of ceramic for heat radiation member, ceramic for heat radiation member, solar cell module and LED light emitting module using the ceramic
CN106588021A (en) Silicon carbide ceramic and preparation method thereof
CN114573345A (en) Preparation method and application of perovskite type high-entropy high-emissivity ceramic coating film coating liquid
Michálek et al. Effect of carbon contamination on the sintering of alumina ceramics
KR20030078487A (en) High Emissivity Coating Composition and Coated Vacuum Chamber
EP0994827B1 (en) Infrared radiation emitting ceramic material
Ye et al. Microstructural evolution and infrared radiation property of Ca2+-Cr3+ doped LaAlO3 in the presence of SiO2
CN110085346B (en) Heating resistor slurry adaptive to silicon nitride substrate and preparation method and application thereof
JP2007305406A (en) Insulating structure, and device and insulating sheet having the insulating structure
Tian et al. Dependence of infrared radiation on microstructure of polymer derived ceramic coating on steel
CN109456070A (en) A kind of high emissivity coating suitable for refractory surface
JP3268303B2 (en) Non-oxide refractory raw materials and refractories with excellent oxidation resistance
RU2716065C2 (en) Method of producing refractory material for use in upper structure of vanished glass furnaces, as well as method of increasing spectral radiation coefficient of molded refractory articles
JPS6329712B2 (en)
JPH07215782A (en) Corrosion resistant insulating coating method for silicon carbide heating element
JPH0753281A (en) Aluminum titanate sintered compact stable at high temperature
JPH0463105B2 (en)
Merzhanov et al. Charge for fabrication of high-temperature heating elements
KR900005393B1 (en) Composition of ceramic-coat and paint agent
JP3131066B2 (en) Jig for firing ceramic products
JPH05152059A (en) Silicon carbide heating body
Carter et al. Furnaces
JPH04231384A (en) Heat transfer body for thermally cooking apparatus
KURUSHIMA et al. Effects of Grain Boundary Phases on the Corrosion of β-SIALON in Molten Copper Oxide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application