JPH07215782A - Corrosion resistant insulating coating method for silicon carbide heating element - Google Patents

Corrosion resistant insulating coating method for silicon carbide heating element

Info

Publication number
JPH07215782A
JPH07215782A JP3903194A JP3903194A JPH07215782A JP H07215782 A JPH07215782 A JP H07215782A JP 3903194 A JP3903194 A JP 3903194A JP 3903194 A JP3903194 A JP 3903194A JP H07215782 A JPH07215782 A JP H07215782A
Authority
JP
Japan
Prior art keywords
silicon carbide
heating element
carbide heating
coating
zircon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3903194A
Other languages
Japanese (ja)
Inventor
Koji Kako
浩司 加古
Toshio Okumura
俊雄 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Konetsu Kogyo Co Ltd
Original Assignee
Tokai Konetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Konetsu Kogyo Co Ltd filed Critical Tokai Konetsu Kogyo Co Ltd
Priority to JP3903194A priority Critical patent/JPH07215782A/en
Publication of JPH07215782A publication Critical patent/JPH07215782A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for coating a silicon carbide heating element by which high insulating property as well as high corrosion resistance is imparted. CONSTITUTION:The heating part and/or ends of a silicon carbide heating element are coated with a powdery mixture of 55-95wt.% zircon (ZrSiO4) with 5-45wt.% alumina (Al2O3) in 100-2,000mum thickness and the mixture is baked at 1,100-1,350 deg.C to form a coating having the corrosion resistance and insulating property of zircon and the high temp. stability of alumina. The adhesive property of the coating can be improved by heat-treating the heating element in an oxidizing atmosphere before coating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化けい素発熱体の耐
食絶縁コーティング方法に関し、特に金属溶解炉、ガラ
ス溶解炉、セラミック焼成炉に使用する炭化けい素発熱
体の耐食絶縁コーティング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion resistant insulating coating method for a silicon carbide heating element, and more particularly to a corrosion resistant insulating coating method for a silicon carbide heating element used in a metal melting furnace, a glass melting furnace and a ceramic firing furnace.

【0002】[0002]

【従来の技術】炭化けい素発熱体は、一般に1000℃
以上の高温で広く使用されている。これは、炭化けい素
の高温安定性および化学的安定性が優れているためであ
る。特に高温安定性については、炭化けい素表面の酸化
膜に起因する。すなわち、SiC+CO→SiO
CO↑により表面に生成した酸化膜が自己保護膜とな
りそれ以上の酸化を抑制する。しかし、金属溶解炉、ガ
ラス溶解炉、セラミック焼成炉等に使用する場合、被加
熱物から発生する金属蒸気、塩基性物質等と上記表面の
保護膜が反応して、炭化けい素発熱体の寿命が極端に短
くなってしまう。従来から、炭化けい素発熱体を保護す
るため、発熱体表面への耐食性コーティングが種々提案
されている。例えば、炭化けい素発熱体表面に炭化けい
素以外のセラミック粉末、例えば、けい化モリブデン、
アルミナ、ジルコニア、ガラス等を塗布する方法、炭化
けい素発熱体表面にCVD法にて緻密な炭化けい素膜を
形成する方法がある。また、炭化けい素表面の自己保護
膜を積極的に利用するため、実際に使用する前に熱処理
して自己保護膜の厚さを大きくする方法も知られてい
る。しかし、被加熱物から発生する金属蒸気、塩基性物
質等は、炉材と反応して、炉材の電気絶縁性が低下し、
漏電による炭化けい素発熱体の折損事故を起こす。最悪
の場合、炭化けい素発熱体ばかりでなく、電源設備の焼
損事故に至る。従って、金属溶解炉、ガラス溶解炉、セ
ラミック焼成炉等に使用する炭化けい素発熱体の耐食性
コーティングには、金属蒸気、塩基性物質等に対する耐
食性と共に絶縁性が要求される。しかし、上記の従来技
術では、耐食性が不十分なばかりでなく、絶縁性が考慮
されていなかった。ここで絶縁性は、絶縁性=コーティ
ング物質の比抵抗×膜厚で表される。特に、膜厚は、最
低でも100μm以上必要である。例えば、CVDによ
る炭化けい素、けい化モリブデン、ガラス、熱処理によ
る自己保護膜は、比抵抗が低く、絶縁性はほとんどな
い。また、アルミナ、ジルコニアは本来、絶縁性物質だ
が、炭化けい素との熱膨張率が大きく異なるため、絶縁
性を十分確保するために必要な100μm以上のコーテ
ィング層の膜厚をとれない。従って、絶縁性は高いとは
いえなかった。更に、被加熱物から発生する金属蒸気、
塩基性物質等に対する耐食性も十分とはいえない。従来
の各種コーティング材、又は保護膜の耐食性、比抵抗、
膜厚及び判定結果を表1に示す。
2. Description of the Related Art Silicon carbide heating elements generally have a temperature of 1000.degree.
Widely used at higher temperatures. This is because silicon carbide has excellent high temperature stability and chemical stability. In particular, the high temperature stability is due to the oxide film on the surface of silicon carbide. That is, SiC + CO 2 → SiO 2 +
The oxide film formed on the surface by CO 2 ↑ serves as a self-protection film and suppresses further oxidation. However, when used in metal melting furnaces, glass melting furnaces, ceramic firing furnaces, etc., the metal vapor generated from the object to be heated, the basic substance, etc. react with the protective film on the above surface, and the life of the silicon carbide heating element Becomes extremely short. Conventionally, in order to protect a silicon carbide heating element, various corrosion resistant coatings have been proposed on the heating element surface. For example, ceramic powder other than silicon carbide, such as molybdenum silicide, on the surface of the silicon carbide heating element,
There are a method of applying alumina, zirconia, glass and the like, and a method of forming a dense silicon carbide film on the surface of the silicon carbide heating element by a CVD method. Further, in order to positively utilize the self-protecting film on the surface of silicon carbide, there is known a method of increasing the thickness of the self-protecting film by heat treatment before actually using it. However, metal vapors, basic substances, etc. generated from the object to be heated react with the furnace material, and the electrical insulation of the furnace material decreases,
Breakage of silicon carbide heating element due to electric leakage. In the worst case, not only the silicon carbide heating element but also the power supply equipment will be burned. Therefore, the corrosion-resistant coating of the silicon carbide heating element used in a metal melting furnace, a glass melting furnace, a ceramic firing furnace, etc. is required to have corrosion resistance against metal vapor, a basic substance and the like as well as insulation. However, in the above-mentioned conventional technique, not only the corrosion resistance is insufficient, but also the insulating property is not taken into consideration. Here, the insulation is represented by insulation = specific resistance of coating substance × film thickness. In particular, the film thickness needs to be at least 100 μm or more. For example, silicon carbide by CVD, molybdenum silicide, glass, and a self-protection film by heat treatment have low specific resistance and almost no insulation. Alumina and zirconia are originally insulating materials, but since the coefficient of thermal expansion differs greatly from that of silicon carbide, the coating layer thickness of 100 μm or more required to ensure sufficient insulation cannot be obtained. Therefore, it cannot be said that the insulating property is high. Furthermore, metal vapor generated from the object to be heated,
Corrosion resistance to basic substances is not sufficient. Corrosion resistance, specific resistance of various conventional coating materials or protective film,
The film thickness and the determination result are shown in Table 1.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来技術の
問題点を解消し、高耐食性と共に高絶縁性を付加した炭
化けい素発熱体のコーティング方法を提供することにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for coating a silicon carbide heating element which solves the problems of the prior art and has high corrosion resistance and high insulation.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明に係わ
る耐食絶縁コーティング方法は、炭化けい素発熱体の発
熱部および、または、端部にジルコン(ZrSiO
55〜95重量%、アルミナ(Al5〜45重量
%の組成からなる混合粉末を100〜2000μm塗布
し、1100〜1350℃で焼きつけることを特徴とす
る。さらに、上記の混合粉末を塗布する前に炭化けい素
発熱体を酸化雰囲気中で熱処理し、炭化けい素粒子表面
に5〜50μmの酸化膜を形成することが好ましい。
That is, the corrosion-resistant insulating coating method according to the present invention is a method of forming a zircon (ZrSiO 4 ) on the heat generating portion and / or the end portion of a silicon carbide heating element.
It is characterized in that a mixed powder having a composition of 55 to 95% by weight and alumina (Al 2 O 3 5 to 45% by weight) is applied to 100 to 2000 μm and baked at 1100 to 1350 ° C. Further, the above mixed powder is applied. It is preferable that the silicon carbide heating element is heat-treated in an oxidizing atmosphere to form an oxide film of 5 to 50 μm on the surface of the silicon carbide particles before the heating.

【0005】[0005]

【作用】本発明を詳細に説明する。ジルコン(ZrSi
)は、金属との濡れ性が低く、従来から金属の取鍋
等金属工業に使われてきた非常に優れた材料である。ま
た塩基性物質等に対する耐食性も高い。また、絶縁性物
質としても従来から絶縁硝子として使用されている。更
にジルコンは1300℃以下での熱膨張率が、炭化けい
素とほぼ同じなので、絶縁性を十分確保するために必要
な100μm以上の膜厚のコーティング材として使用し
た場合、熱膨張差による剥離は起らない。しかしなが
ら、ジルコンは1300℃以上で異常熱膨張を示し、1
500℃以上で分解を始める使いにくい材料でもある。
アルミナは、ジルコンよりは劣るが、耐食絶縁性物質と
して知られている。また1700℃以上まで安定して使
用できる材料である。しかし、炭化けい素と熱膨張率が
異なるため、絶縁性を十分確保するために必要な100
μm以上の膜厚のコーティングは不可能であった。本発
明者らは、この2種の材料について研究した結果、ジル
コンの耐食、絶縁、熱膨張を維持し、アルミナの高温安
定性を付加するためには、ジルコン(ZrSiO)5
5〜95重量%、アルミナ(Al)5〜45重量
%の組成が最適であることを発見し、本発明に至った。
すなわち、ジルコン55重量%未満では、炭化けい素と
の熱膨張差が大きくなり、コーティングできない。また
95重量%以上では、高温安定性が悪く、炭化けい素発
熱体のコーティングとして不適である。更に、炭化けい
素との付着性を高めるためには、上記の混合粉末を塗布
するまえに炭化けい素発熱体を酸化雰囲気中で熱処理
し、炭化けい素粒子表面に5〜50μmの酸化膜を形成
することが好ましい。
The present invention will be described in detail. Zircon (ZrSi
O 4 ) has low wettability with metals and is a very excellent material that has been used in the metal industry such as a metal ladle. It also has high corrosion resistance to basic substances. Further, as an insulating material, it has been conventionally used as an insulating glass. Furthermore, since the coefficient of thermal expansion of zircon at 1300 ° C or less is almost the same as that of silicon carbide, when used as a coating material with a film thickness of 100 μm or more, which is necessary to ensure sufficient insulation, peeling due to the difference in thermal expansion does not occur. Does not happen. However, zircon exhibits anomalous thermal expansion above 1300 ° C.
It is also a difficult material to start decomposing above 500 ° C.
Alumina, though inferior to zircon, is known as a corrosion resistant insulating material. It is also a material that can be used stably up to 1700 ° C or higher. However, since the coefficient of thermal expansion is different from that of silicon carbide, it is 100% necessary to ensure sufficient insulation.
Coating with a film thickness of μm or more was impossible. As a result of researching these two materials, the present inventors have found that in order to maintain the corrosion resistance, insulation, and thermal expansion of zircon and to add the high temperature stability of alumina, zircon (ZrSiO 4 ) 5
The inventors have found that the optimum composition is 5 to 95% by weight and alumina (Al 2 O 3 ) 5 to 45% by weight, and have reached the present invention.
That is, if the content of zircon is less than 55% by weight, the difference in thermal expansion from that of silicon carbide becomes large and coating cannot be performed. On the other hand, if it is 95% by weight or more, the high temperature stability is poor and it is not suitable as a coating for a silicon carbide heating element. Further, in order to improve the adhesion with silicon carbide, the silicon carbide heating element is heat-treated in an oxidizing atmosphere before applying the mixed powder to form an oxide film of 5 to 50 μm on the surface of the silicon carbide particles. It is preferably formed.

【0006】[0006]

【実施例】以下、本発明を実施例および比較例により説
明し、その結果を表2に示す。
EXAMPLES The present invention will be described below with reference to Examples and Comparative Examples, and the results are shown in Table 2.

【0007】[実施例1]平均粒径3μmのジルコン1
20gと平均粒径1μmのアルミナ80gを秤量し、混
合助剤として、メチルセルロース3g、純水80gを添
加し、ポットミルにて2時間混合した。混合物をスプレ
ーにて、炭化けい素発熱体の発熱部および端部に200
μm塗布した。120℃で十分乾燥した後、1150℃
で10分間焼付けた。この炭化けい素発熱体を反射式の
アルミ溶解炉およびガラス溶解炉にて使用したところ、
寿命は3カ月であったが、コーティングの剥離は起ら
ず、絶縁不良はなかった。
Example 1 Zircon 1 having an average particle size of 3 μm
20 g and 80 g of alumina having an average particle size of 1 μm were weighed, 3 g of methyl cellulose and 80 g of pure water were added as a mixing aid, and mixed in a pot mill for 2 hours. Spray the mixture onto the silicon carbide heating element to 200
μm was applied. After fully drying at 120 ℃, 1150 ℃
Baked for 10 minutes. When this silicon carbide heating element was used in a reflection type aluminum melting furnace and a glass melting furnace,
Although the life was 3 months, the coating did not peel off and there was no defective insulation.

【0008】[実施例2]平均粒径3μmのジルコン1
80gと平均粒径1μmのアルミナ20gを秤量し、混
合助剤として、メチルセルロース3g、純水80gを添
加し、ポットミルにて2時間混合した。混合物をスプレ
ーにて、炭化けい素発熱体の発熱部および端部に100
0μm塗布した。120℃で十分乾燥した後、1300
℃で10分間焼付けた。この炭化けい素発熱体を反射式
のアルミ溶解炉およびガラス溶解炉にて使用したとこ
ろ、寿命は4カ月であったが、一部にコーティングの剥
離がみられたが、絶縁不良はなかった。
Example 2 Zircon 1 having an average particle size of 3 μm
80 g and 20 g of alumina having an average particle size of 1 μm were weighed, 3 g of methyl cellulose and 80 g of pure water were added as a mixing aid, and mixed in a pot mill for 2 hours. The mixture is sprayed onto the silicon carbide heating element at 100 and 100
0 μm was applied. After fully drying at 120 ° C, 1300
Baking for 10 minutes at ° C. When this silicon carbide heating element was used in a reflection type aluminum melting furnace and a glass melting furnace, although the life was 4 months, the coating was partially peeled off, but there was no insulation failure.

【0009】[実施例3]炭化けい素発熱体を大気中1
300℃で1時間熱処理し、表面に10μmの酸化膜を
付けた他は、実施例2とまったく同じ方法で、コーティ
ングを行なった。この炭化けい素発熱体を反射式のアル
ミ溶解炉およびガラス溶解炉にて使用したところ寿命は
4カ月であったが、コーティングの剥離は起らず、絶縁
不良はなかった。
[Embodiment 3] A silicon carbide heating element is placed in the atmosphere 1
Coating was performed by the same method as in Example 2 except that heat treatment was performed at 300 ° C. for 1 hour and an oxide film of 10 μm was attached to the surface. When this silicon carbide heating element was used in a reflection type aluminum melting furnace and a glass melting furnace, the life was 4 months, but the coating did not peel off and there was no insulation failure.

【0010】[比較例1]平均粒径が3μmのジルコン
200gを秤量し、混合助剤として、メチルセルロース
3g、純水80gを添加し、ポットミルにて2時間混合
した。混合物をスプレーにて、炭化けい素発熱体の発熱
部および端部に1500μm塗布した。120℃で十分
乾燥した後、1300℃で10分間焼付けた。この炭化
けい素発熱体を反射式のアルミ溶解炉およびガラス溶解
炉にて使用したところ、寿命は、0.5ヵ月であった。
また、使用中に炉の電流計が不安定となり漏電現象が見
られた。使用後は、コーティングがほとんど分解してい
た。
Comparative Example 1 200 g of zircon having an average particle size of 3 μm was weighed, 3 g of methyl cellulose and 80 g of pure water were added as a mixing aid, and they were mixed in a pot mill for 2 hours. The mixture was sprayed onto the heating portion and the end portion of the silicon carbide heating element to apply 1500 μm. After sufficiently drying at 120 ° C, baking was performed at 1300 ° C for 10 minutes. When this silicon carbide heating element was used in a reflection type aluminum melting furnace and a glass melting furnace, the life was 0.5 months.
In addition, the ammeter of the furnace became unstable during use and a leakage phenomenon was observed. After use, the coating was almost decomposed.

【0011】[比較例2]平均粒径2μmのアルミナ2
00gを秤量し、混合助剤として、メチルセルロース3
g、純水80gを添加し、ポットミルにて2時間混合し
た。混合物をスプレーにて、炭化けい素発熱体の発熱部
および端部に1000μm塗布した。120℃で十分乾
燥した後、1300℃で10分間焼付けた。この炭化け
い素発熱体を反射式のアルミ溶解炉およびガラス溶解炉
にて使用したところ、寿命は1ヵ月であった。また使用
中に炉の電流計が不安定となり漏電現象が見られた。使
用後は、コーティングがほとんど剥離していた。
Comparative Example 2 Alumina 2 having an average particle size of 2 μm
Weigh 00g, and use methyl cellulose 3 as a mixing aid.
g and 80 g of pure water were added and mixed in a pot mill for 2 hours. The mixture was spray-applied to the heating portion and the end portion of the silicon carbide heating element at 1000 μm. After sufficiently drying at 120 ° C, baking was performed at 1300 ° C for 10 minutes. When this silicon carbide heating element was used in a reflection type aluminum melting furnace and a glass melting furnace, the life was one month. In addition, the ammeter of the furnace became unstable during use and a leakage phenomenon was observed. The coating was almost peeled off after use.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【発明の効果】上記の説明のとおり、本発明は、高耐食
性と共に高絶縁性を付加した炭化けい素発熱体のコーテ
ィング方法を安価に提供でき、特に金属溶解炉、ガラス
溶解炉、セラミック焼成炉に使用する炭化けい素発熱体
の保護膜として、最適である。
As described above, the present invention can inexpensively provide a method for coating a silicon carbide heating element having high corrosion resistance and high insulation, and particularly, a metal melting furnace, a glass melting furnace, and a ceramic firing furnace. It is most suitable as a protective film for a silicon carbide heating element used for.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化けい素発熱体の発熱部および、ま
たは端部にジルコン(ZrSiO)55〜95重量
%、アルミナ(Al)5〜45重量%の組成から
なる混合粉末を100〜2000μm塗布し、1100
〜1350℃で焼きつけることを特徴とする炭化けい素
発熱体の耐食絶縁コーティング方法。
1. A mixed powder having a composition of 55 to 95% by weight of zircon (ZrSiO 4 ) and 5 to 45% by weight of alumina (Al 2 O 3 ) is added to the heating portion and / or the end portion of the silicon carbide heating element. ~ 2000μm coated, 1100
A method for corrosion-resistant insulation coating of a silicon carbide heating element, characterized by baking at ˜1350 ° C.
【請求項2】 上記の混合粉末を塗布するまえに炭化
けい素発熱体を酸化雰囲気中で熱処理し、炭化けい素粒
子表面に5〜50μmの酸化膜を形成することを特徴と
する第一項記載の炭化けい素発熱体の耐食絶縁コーティ
ング方法。
2. A silicon carbide heating element is heat-treated in an oxidizing atmosphere before applying the mixed powder to form an oxide film of 5 to 50 μm on the surface of the silicon carbide particles. A method for corrosion-resistant insulation coating of a silicon carbide heating element as described.
JP3903194A 1994-01-31 1994-01-31 Corrosion resistant insulating coating method for silicon carbide heating element Withdrawn JPH07215782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3903194A JPH07215782A (en) 1994-01-31 1994-01-31 Corrosion resistant insulating coating method for silicon carbide heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3903194A JPH07215782A (en) 1994-01-31 1994-01-31 Corrosion resistant insulating coating method for silicon carbide heating element

Publications (1)

Publication Number Publication Date
JPH07215782A true JPH07215782A (en) 1995-08-15

Family

ID=12541747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3903194A Withdrawn JPH07215782A (en) 1994-01-31 1994-01-31 Corrosion resistant insulating coating method for silicon carbide heating element

Country Status (1)

Country Link
JP (1) JPH07215782A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003099739A1 (en) * 2002-05-23 2003-12-04 Saint-Gobain Ceramics And Plastics, Inc. Zircon/zirconia mix for refractory coatings and inks
CN104602371A (en) * 2015-01-28 2015-05-06 周献 Composite silicon carbide electrical heating element and production method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003099739A1 (en) * 2002-05-23 2003-12-04 Saint-Gobain Ceramics And Plastics, Inc. Zircon/zirconia mix for refractory coatings and inks
US6753089B2 (en) 2002-05-23 2004-06-22 Saint-Gobain Ceramics & Plastics, Inc. Zircon/zirconia mix for refractory coatings and inks
US7026039B2 (en) * 2002-05-23 2006-04-11 Saint-Gobain Ceramics & Plastics, Inc. Zircon/zirconia mix for refractory coatings and inks
USRE40301E1 (en) * 2002-05-23 2008-05-06 Saint-Gobain Ceramics & Plastics, Inc. Zircon/zirconia mix for refractory coatings and inks
CN104602371A (en) * 2015-01-28 2015-05-06 周献 Composite silicon carbide electrical heating element and production method thereof
CN104602371B (en) * 2015-01-28 2016-06-08 周献 Complex silicon carbide heating and production method thereof

Similar Documents

Publication Publication Date Title
EP0134769B1 (en) Oxidation prohibitive coatings for carbonaceous articles
JPS61107013A (en) Ceramic glow plug
JP2001146492A (en) Rare earth silicate coating film applied to silicon-based ceramic part for improving corrosion resistance by controlled oxidization
WO2019109752A1 (en) High temperature anti-oxidation coating for tungsten-rhenium thermocouple and application thereof
US4418097A (en) Coating for graphite electrodes
KR910006945B1 (en) Coating composition for preventing high temperature oxidation for electrodes
JP2002121605A (en) Method for forming coating on refractory structural member and use of the coating
JPH07215782A (en) Corrosion resistant insulating coating method for silicon carbide heating element
JPS6143318B2 (en)
CN106927867A (en) For the product of hot operation
JPS6028903B2 (en) Surface treatment method for metal materials
JP2989790B2 (en) Coke oven
JP2589511B2 (en) SiC structural material for steam resistant atmosphere
JP6309526B2 (en) Carbon material and jig for heat treatment using the carbon material
JPH0460314B2 (en)
JPH04231451A (en) Thermal spray material and sprayed heat-resistant member
JPH05152059A (en) Silicon carbide heating body
JP6786078B2 (en) Outer tube of double-layer protective tube for thermocouple protection and industrial furnace
JPH059395B2 (en)
JP2748328B2 (en) Glaze for hot application to coke oven refractories and method of forming glaze layer
TW467956B (en) MoSi2 based heating material which has the vitreous film with low oxygen diffusivity
JP2002348174A (en) HEATER MATERIAL CONTAINING MoSi2 AS ITS MAIN COMPONENT WITH LOW-OXYGEN DIFFUSE VITREOUS COATING FILM
JP2002154818A (en) beta-CRISTOBALITE, MANUFACTURING METHOD THEREFOR AND NON- OXIDE BASED CERAMIC MATERIAL
JPS61201768A (en) Ceramics-metal composite material having oxidation-resistant coating layer and its manufacture
JP2751364B2 (en) Corrosion resistant ceramic material and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010403