KR20030075216A - Method for removing nitrogen compounds from unconverted oil of fuels hydrocracker and its distillate oil under vacuum - Google Patents

Method for removing nitrogen compounds from unconverted oil of fuels hydrocracker and its distillate oil under vacuum Download PDF

Info

Publication number
KR20030075216A
KR20030075216A KR1020020014267A KR20020014267A KR20030075216A KR 20030075216 A KR20030075216 A KR 20030075216A KR 1020020014267 A KR1020020014267 A KR 1020020014267A KR 20020014267 A KR20020014267 A KR 20020014267A KR 20030075216 A KR20030075216 A KR 20030075216A
Authority
KR
South Korea
Prior art keywords
oil
unconverted
distillation
adsorption
vacuum
Prior art date
Application number
KR1020020014267A
Other languages
Korean (ko)
Other versions
KR100877004B1 (en
Inventor
민화식
김규태
김창국
유재욱
김철중
박성범
Original Assignee
에스케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이 주식회사 filed Critical 에스케이 주식회사
Priority to KR1020020014267A priority Critical patent/KR100877004B1/en
Publication of KR20030075216A publication Critical patent/KR20030075216A/en
Application granted granted Critical
Publication of KR100877004B1 publication Critical patent/KR100877004B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • C10G67/0454Solvent desasphalting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/06Vacuum distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1062Lubricating oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes

Abstract

PURPOSE: Provided are an un-conversed oil from hydrogenation process of fuel oil and a method for removal of nitrogen compound from fractions by vacuum distillation of the un-conversed oil and to produce high quality and heavy lubricant base oil source. CONSTITUTION: The process comprises a first vacuum distillation step(R1); a first hydrogenation step(R2); a series of fractional distillation step(Fs); a second vacuum distillation step(V2); and a nitrogen removal step(P1). The first step(R1) is for removing asphalt from residual oil. The first hydrogenation step(R2) is to remove impurities from the de-asphalt oil from the first step(R1). The fractional distillation step(Fs) separates oil products and the un-conversed oil. The second vacuum distillation step(V2) is to produce high quality and heavy lubricant base oil source and the un-conversed oil residual. The last step(P1) is for removing nitrogen compounds by adsorption out of the lubricant base oil source.

Description

연료유 수소화 분해공정의 미전환유 및 이의 감압증류 분획 유분으로부터 질소화합물을 제거하는 방법 {Method for removing nitrogen compounds from unconverted oil of fuels hydrocracker and its distillate oil under vacuum}Method for removing nitrogen compounds from unconverted oil of fuels hydrocracker and its distillate oil under vacuum}

본 발명은 연료유 수소화 분해공정의 미전환유 및 이의 감압증류 분획 유분으로부터 질소화합물을 제거하는 방법에 관한 것으로, 좀 더 상세하게는 감압가스유 (VGO)와 탈아스팔트유(DAO)를 혼합하여 원료로 사용하는 연료유 수소화 분해공정에서 발생되는 미전환유(UCO) 및 이의 감압증류 분획 유분인 고급 또는 중질 윤활기유 공급원료로부터 질소화합물을 제거하는 방법에 관한 것이다.The present invention relates to a method for removing nitrogen compounds from unconverted oil in a fuel oil hydrocracking process and reduced pressure distillation fraction fraction thereof, and more specifically, a mixture of reduced pressure gas oil (VGO) and deasphalted oil (DAO). The present invention relates to a method for removing nitrogen compounds from unconverted oil (UCO) generated in a fuel oil hydrocracking process and a high or heavy lubricating base oil feedstock thereof.

윤활기유 공급원료를 제조하기 위한 대표적인 공정은 탈방향족 공정과 탈왁스(dewaxing) 공정이다. 윤활기유 공급원료의 성상에 따라, 이들 두 공정이 모두 사용되기도 하고 그 중 하나만 사용되기도 하는데, 감압가스유(VGO)의 수소화분해 반응공정(R2)에서 생산되는 미전환유(UCO)를 원료로 사용하는 경우가 탈왁스 공정을 사용하는 대표적인 예이다.Representative processes for producing lube base oil feedstocks are dearomatic processes and dewaxing processes. Depending on the nature of the lubricating base oil feedstock, both of these processes may be used or only one of them may be used, using unconverted oil (UCO) produced in the hydrocracking process (R2) of vacuum gas oil (VGO) as a raw material. This is a representative example of using a dewaxing process.

상기 탈왁스 공정의 종류를 세분하면, 용매 추출방법을 사용하는 방법과 촉매 반응공정을 사용하는 방법으로 대별되는데, 최근에는 수율이 높고 성상 개선 폭이 큰 촉매 반응공정을 주로 사용한다. 탈왁스 촉매 반응공정에 사용되는 촉매들은 질소화합물 및 황화합물 함량에 따라 활성이 크게 변하기 때문에 미전환유(UCO) 중의 이들 화합물의 함량에 제약을 두는 것이 일반적이며, 특히 질소화합물의 함량은 가장 주요한 제약 조건으로 작용한다. 이러한 이유로 미전환유(UCO)를 생산하는 수소화 분해공정의 운전 조건 또는 투입 원료의 성상에 제약이 발생하게 된다.The type of the dewaxing process is subdivided into a method of using a solvent extraction method and a method of using a catalytic reaction process. Recently, a catalytic reaction process having a high yield and a large improvement in properties is mainly used. Since the catalysts used in the dewaxing catalytic reaction process vary greatly depending on the content of nitrogen and sulfur compounds, it is common to limit the content of these compounds in unconverted oil (UCO), especially the content of nitrogen compounds is the most important constraint. Acts as For this reason, the operating conditions of the hydrocracking process for producing unconverted oil (UCO) or the properties of the input raw materials are restricted.

한편, 단위 원유당 생산되는 중질유의 양을 최소화하기 위해 용매 탈아스팔트 장치(SDA)가 많이 사용되는데, 이로부터 생산된 탈아스팔트유(DAO)를 감압가스유(VGO)와 혼합하여 수소화 분해공정에 투입하는 방법이 있다. 이러한 탈아스팔트유(DAO)는 감압가스유(VGO)에 비해 하기 표 1과 같이 성상이 열악하기 때문에, 이들 혼합물을 수소화분해하여 생산하는 미전환유(UCO)의 성상도 감압가스유(VGO) 만을 처리하는 경우에 비해 열악해지며, 탈아스팔트유(DAO) 비율 증가하면 그 경향은 더욱 뚜렷해진다.Meanwhile, in order to minimize the amount of heavy oil produced per unit crude oil, a lot of solvent deasphalting apparatus (SDA) is used. The deasphalting oil (DAO) produced therefrom is mixed with a reduced pressure gas oil (VGO) to be subjected to hydrocracking process. There is a way to do it. Since deasphalted oil (DAO) is inferior in properties to that of vacuum gas (VGO), as shown in Table 1 below, only non-converted gas (VGO) of unconverted oil (UCO) produced by hydrocracking these mixtures is used. It is worse than the treatment, and the trend becomes more pronounced when the deasphalted oil (DAO) ratio is increased.

종류Kinds VGOVGO DAODAO VGO를 처리하여생산된 UCOUCO produced by processing VGO VGO와 DAO를 혼합처리하여생산된 UCOUCO produced by mixing VGO and DAO 황 함량, wt%Sulfur content, wt% 2.952.95 3.93.9 0.00090.0009 0.0150.015 질소분 함량, ppmNitrogen content, ppm 900900 3,1003,100 44 2323 니켈 함량, ppmNickel content, ppm <1<1 8.18.1 <1<1 <1<1 바나듐 함량, ppmVanadium content, ppm <1<1 26.526.5 <1<1 <1<1 잔류탄소 함량, wt%Residual carbon content, wt% 0.40.4 10.210.2 -- --

따라서, 고급 및 중질 윤활기유 공급원료를 얻기 위해 감압가스유(VGO) 및 탈아스팔트유(DAO)를 이용하는 공정의 경우, 다량의 질소분 함량을 저감시킬 필요가 있다.Therefore, in the case of a process using vacuum gas oil (VGO) and deasphalted oil (DAO) to obtain a high and heavy lubricating base oil feedstock, it is necessary to reduce a large amount of nitrogen content.

한편, 미국특허 제4,846,962호에는 윤활기유의 산화안정성 향상을 위해 염기성 질소 화합물을 제거하고자, 고체의 산성 극성 흡착제를 이용하여 BNC(basic nitrogen compound)을 흡착시켜 용매 추출유로부터 BNC를 선택적으로 제거하는 방법이 기재되어 있으며, 이는 본 발명과 적용 대상물질, 적용 분야 및 적용 효과 들에서 명확한 차이가 있다.Meanwhile, US Patent No. 4,846,962 discloses a method of selectively removing BNC from solvent extract oil by adsorbing BNC (basic nitrogen compound) using an acidic polar adsorbent to remove basic nitrogen compound to improve oxidation stability of lubricant base oil. This is described, and there is a clear difference between the present invention and the material to be applied, the field of application and the effects of the application.

따라서, 본 발명의 목적은 고급 및 중질 윤활기유 공급원료를 얻기 위해 감압가스유(VGO) 및 탈아스팔트유(DAO)를 원료로서 이용하는 공정에 있어서, 윤활기유 제조공정에 사용되는 촉매 활성 및 수명을 크게 단축시키는 피독 물질인 질소화합물을 제거하고, 윤활기유 공급원료의 다양화, 윤활기유 제조공정 가혹도 완화, 및 윤활기유의 품질 개선을 얻을 수 있는 질소화합물의 흡착 제거방법을 제공하는데 있다.Accordingly, it is an object of the present invention to reduce the catalytic activity and lifespan used in the lubricating base oil manufacturing process in the process using reduced pressure gas oil (VGO) and deasphalted oil (DAO) as raw materials to obtain high and heavy lubricating base oil feedstocks. The present invention provides a method for eliminating nitrogen compounds, which are greatly shortened poisoning substances, diversifying lubricating base oil feedstocks, reducing severity of lubricating base oil manufacturing processes, and improving the quality of lubricating base oils.

상기 목적을 달성하기 위한 본 발명에 따른 질소화합물의 흡착 제거방법은, 상압잔사유를 제1 감압증류공정(V1)에서 증류하여 감압가스유 및 감압잔사유를 분리하고, 상기 감압가스유는 직접 수소화 처리공정(R1)으로 공급하며, 상기 감압잔사유는 용매 탈아스팔트 장치(SDA)에 공급하여 아스팔트 및 불순물이 제거된 탈아스팔트유를 얻고 얻어진 탈아스팔트유를 상기 감압가스유와 함께 수소화 처리공정(R1)으로 공급하는 단계; 상기 수소화 처리공정(R1)에 공급된 감압가스유와 탈아스팔트유에서 불순물을 제거하기 위해 수소화 처리한 후, 수소화 분해공정(R2)으로 공급하여 경질 및 중질의 탄화수소를 얻는 단계; 상기 경질 및 중질의 탄화수소를 일련의 분별증류공정(Fs)에 적용하여 오일제품 및 미전환유로 분리하는 단계; 상기 미전환유의 전부 또는 일부를 제2 감압증류공정(V2)에 공급하여 소정의 점도등급을 갖는 고급 및 중질 윤활기유 공급원료, 및 잔량의 미전환유를 얻는 단계; 및 상기 윤활기유 공급원료를 탈왁스 공정 및 안정화 공정으로 투입하는 단계;를 포함하는 연료유 수소화 분해공정의 미전환유를 이용하여 고급 및 중질 윤활기유 공급원료를 제조하는 방법에서,Adsorption removal method of the nitrogen compound according to the present invention for achieving the above object, by distilling the atmospheric residue oil in the first vacuum distillation step (V1) to separate the vacuum gas oil and vacuum residue oil, the vacuum gas oil directly The depressurized residue oil is supplied to a solvent deasphalting apparatus (SDA) to obtain deasphalted oil from which asphalt and impurities are removed, and the deasphalted oil obtained is subjected to a dehydrogenation process together with the decompressed gas oil. Feeding to R1; Hydrogenation to remove impurities from the vacuum gas oil and deasphalted oil supplied to the hydroprocessing process (R1), and then, supplied to the hydrocracking process (R2) to obtain hard and heavy hydrocarbons; Applying the light and heavy hydrocarbons to a series of fractional distillation processes (Fs) to separate oil products and unconverted oil; Supplying all or part of the unconverted oil to a second vacuum distillation process (V2) to obtain a high-quality and heavy lubricating base oil feedstock having a predetermined viscosity grade, and remaining unconverted oil; In the method for producing a high-grade and heavy lubricating base oil feedstock using the unconverted oil of the fuel oil hydrocracking process comprising the step of injecting the lubricating base oil feedstock into the dewaxing process and stabilization process, comprising:

상기 분별증류공정(Fs)에서 제2 감압증류공정(V2)으로 공급하는 미전환유 또는 제2 감압증류공정(V2)에서 생산된 고급 및 중질 윤활기유 공급원료를 탈질반응공정(P1)에 공급하는 것을 특징으로 한다.Supplying the unconverted oil supplied from the fractional distillation process (Fs) to the second reduced pressure distillation process (V2) or the high and heavy lubricant base oil feedstock produced in the second reduced pressure distillation process (V2) to the denitrification reaction process (P1). It is characterized by.

도 1은 본 발명에 따라 연료유 수소화 분해공정의 미전환유로부터 질소화합물을 제거하는 공정도이다.1 is a process for removing nitrogen compounds from the unconverted oil of the fuel oil hydrocracking process according to the present invention.

도 2는 본 발명에 따라 연료유 수소화 분해공정 미전환유의 감압증류 분획 유분으로부터 질소화합물을 제거하는 공정도이다.2 is a process for removing nitrogen compounds from the vacuum distillation fraction fraction of unconverted fuel oil hydrocracking process according to the present invention.

도 3은 본 발명의 일실시예에 따라 신규 흡착제 및 재생 흡착제를 이용하여 미전환유(UCO)로부터 질소화합물의 제거를 나타내는 그래프이다.Figure 3 is a graph showing the removal of nitrogen compounds from unconverted oil (UCO) using a novel adsorbent and a regenerated adsorbent according to one embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of Symbols for Main Parts of Drawings>

DAO: 탈아스팔트유,VGO: 감압가스유DAO: Deasphalted Oil, VGO: Decompressed Gas Oil

UCO: 미전환유,AR : 상압잔사유UCO: Unconverted oil, AR: Pressure residue

VR: 감압잔사유,V1: 제1 감압증류공정VR: vacuum residue, V1: first vacuum distillation process

V2: 제2 감압증류공정,SDA: 용매 탈아스팔트 공정V2: second vacuum distillation step, SDA: solvent deasphalting step

R1: 수소화처리 반응공정,R2: 수소화분해 반응공정R1: hydroprocessing reaction process, R2: hydrocracking reaction process

R3: 탈왁스 공정,Fs: 분별증류공정R3: dewaxing process, Fs: fractional distillation process

P1: 탈질공정P1: Denitrification Process

이하, 본 발명을 첨부된 도면을 참조하면서 좀 더 구체적으로 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명에 따라 연료유 수소화 분해공정의 미전환유로부터 질소화합물을 제거하는 일예의 공정도이고, 도 2는 본 발명에 따라 연료유 수소화 분해공정 미전환유의 감압증류 분획 유분으로부터 질소화합물을 제거하는 일예의 공정도이다.1 is a process diagram of an example of removing nitrogen compounds from the unconverted oil of the fuel oil hydrocracking process according to the present invention, Figure 2 is a nitrogen compound from the vacuum distillation fraction of the unconverted oil of fuel oil hydrocracking process according to the present invention. This is an example of a process chart.

도 1 및 도 2를 통해서 알 수 있는 바와 같이, 본 발명에 따른 연료유 수소화 분해공정의 미전환유(UCO)를 이용하여 고급 및 중질 윤활기유 공급원료를 제조하는 방법은 하기 단계들을 수반한다.As can be seen from FIG. 1 and FIG. 2, a process for producing high and heavy lubricating base oil feedstocks using unconverted oil (UCO) in a fuel oil hydrocracking process according to the invention involves the following steps.

a) 상압잔사유를 제1 감압증류공정(V1)에서 증류하여 감압가스유 및 감압잔사유를 분리하고, 상기 감압가스유는 직접 수소화 처리공정(R1)으로 공급하며, 상기 감압잔사유는 용매 탈아스팔트 장치(SDA)에 공급하여 아스팔트 및 불순물이 제거된 탈아스팔트유를 얻고 얻어진 탈아스팔트유를 상기 감압가스유와 함께 수소화 처리공정(R1)으로 공급하는 단계;a) Distillation of atmospheric pressure residue oil in the first vacuum distillation process (V1) to separate the vacuum gas oil and vacuum residue oil, the vacuum gas oil is directly supplied to the hydrogenation process (R1), the vacuum residue oil is a solvent Supplying to the deasphalting apparatus (SDA) to obtain deasphalting oil from which asphalt and impurities have been removed, and supplying the deasphalting oil thus obtained to the hydroprocessing process (R1) together with the reduced pressure gas oil;

b) 상기 수소화 처리공정(R1)에 공급된 감압가스유와 탈아스팔트유에서 불순물을 제거하기 위해 수소화 처리한 후, 수소화 분해공정(R2)으로 공급하여 경질 및중질의 탄화수소를 얻는 단계;b) hydroprocessing to remove impurities from the vacuum gas oil and deasphalted oil supplied to the hydroprocessing process (R1), and then feeding the hydrocracking process (R2) to obtain hard and heavy hydrocarbons;

c) 상기 경질 및 중질의 탄화수소를 일련의 분별증류공정(Fs)에 적용하여 오일제품 및 미전환유로 분리하는 단계;c) applying the light and heavy hydrocarbons to a series of fractional distillation processes (Fs) to separate the oil product and unconverted oil;

d) 상기 미전환유의 전부 또는 일부를 제2 감압증류공정(V2)에 공급하여 소정의 점도등급을 갖는 고급 및 중질 윤활기유 공급원료, 및 잔량의 미전환유를 얻는 단계; 및d) supplying all or part of the unconverted oil to the second vacuum distillation process (V2) to obtain a high and heavy lubricating base oil feedstock having a predetermined viscosity grade, and remaining unconverted oil; And

e) 상기 윤활기유 공급원료를 탈왁스 공정 및 안정화 공정으로 투입하는 단계.e) introducing the lubricating base oil feedstock into the dewaxing process and stabilization process.

또한 상기 분별증류공정(Fs)에서 제2 감압증류공정(V2)으로 공급되지 않은 나머지의 미전환유, 및 제2 감압증류공정(V2)에서 얻은 잔량의 미전환유는 수소화 분해반응공정(R2)으로 리싸이클되어 전체 공정이 리싸이클 모드(recycle mode)로 진행되거나, 또는 연료유 배합용 유분으로 사용하기 위해 공정밖으로 배출되어 1회 통과 모드(once-through mode)로 진행된다. 따라서, 상기 제2 감압증류공정(V2)으로부터 수소화분해 반응공정(R2)으로 리싸이클되는 미전환유는 윤활기유 공급원료, 및 연료유 배합용 유분으로 사용하기 위해 배출된 최종잔사유의 유출량을 제외한 나머지가 되고, 상기 분별증류공정(Fs)으로부터 수소화분해 반응공정(R2)으로 리싸이클되는 나머지 미전환유는 연료유 배합용 유분으로 사용하기 위해 배출된 유출량을 제외한 나머지가 된다. 즉, 모두 연료유 배합용 유분으로 배출된다면 리싸이클되는 양이 없이 1회 통과 모드로 진행되는 것이다.In addition, the remaining unconverted oil not supplied to the second distillation distillation process (V2) and the remaining amount of unconverted oil obtained in the second distillation distillation process (V2) are separated into the hydrocracking reaction process (R2). By recycling, the entire process is either in recycle mode or discharged out of the process for use as fuel oil blend fraction and then in once-through mode. Accordingly, the unconverted oil recycled from the second reduced pressure distillation process (V2) to the hydrocracking reaction process (R2) except for the flow rate of the final residue oil discharged for use as a lubricating base oil feedstock and fuel oil blending oil. The remaining unconverted oil recycled from the fractional distillation process (Fs) to the hydrocracking reaction process (R2) becomes the remainder except for the discharged amount for use as a fuel oil mixture fraction. In other words, if all are discharged to the fuel oil blending fraction is to proceed in a single pass mode without the amount of recycle.

또한, 상기 수소화 처리공정(R1) 및 수소화 분해공정(R2)은 일단(one-stage)또는 이단(two-stage)으로 다양하게 구성될 수 있다.In addition, the hydroprocessing process (R1) and hydrocracking process (R2) may be variously configured in one-stage or two-stage.

그 밖의 공정에 대한 상세한 사항은 본 출원인이 한국 특허출원 제2002-12394호로 출원하였다.Details of other processes are filed by the applicant of Korean Patent Application No. 2002-12394.

본 발명에 있어서, 가장 중요한 특징은 연료유 수소화 분해공정의 미전환유(UCO) 또는 이의 감압분획 유분인 고급 및 중질 윤활기유 공급원료를 탈질반응공정(P1)에 공급하여 질소화합물을 흡착 제거함으로써 정제된 제품의 질소화합물 함량을 낮추는 것이다. 즉, 도 1에 도시된 바와 같이, 상기 분별증류공정(Fs)에서 제2 감압증류공정(V2)으로 공급하는 미전환유를 탈질반응공정(P1)에 공급하여 질소화합물을 흡착 제거하거나, 또는 도 2에 도시된 바와 같이, 제2 감압증류공정(V2)에서 생산된 고급 및 중질 윤활기유 공급원료를 탈질반응공정(P1)에 공급하여 질소화합물을 흡착 제거할 수 있다.In the present invention, the most important feature is to supply the high-quality and heavy lubricating base oil feedstock, which is unconverted oil (UCO) of the fuel oil hydrocracking process or its reduced-pressure fraction fraction, to the denitrification process (P1) to adsorb and remove nitrogen compounds to purify it. To lower the nitrogen compound content of the prepared product. That is, as shown in Figure 1, the unconverted oil supplied to the second vacuum distillation step (V2) in the fractional distillation step (Fs) is supplied to the denitrification step (P1) to adsorb or remove nitrogen compounds, or As shown in FIG. 2, the high and heavy lubricating base oil feedstock produced in the second reduced pressure distillation process (V2) may be supplied to the denitrification process (P1) to adsorb and remove nitrogen compounds.

상기 탈질반응공정(P1)에서 질소화합물을 흡착기술로 제거함에 있어서 흡착 선택성이 우수한 흡착제군을 도출하고, 여러 흡착제 재생 방법들에 대한 평가를 통해 흡착제의 성능을 지속 유지할 수 있는 용매, 방법 및 조건을 선별하는 것은 또 다른 주요 기술적 과제이다.Solvents, methods and conditions that can maintain the performance of the adsorbent through derivation of adsorbents with superior adsorption selectivity in the removal of nitrogen compounds by the adsorption technique in the denitrification step (P1) and evaluation of various adsorbent regeneration methods Screening is another major technical challenge.

따라서 본 발명에 있어서, 상기 탈질반응공정(P1)은 비표면적이 100∼1000m2/g이고 기공직경이 1∼35nm인 흡착제가 충진된 하나 이상의 흡착탑에서 교대로 연속 운전하여 흡착과정이 실시되고, 상기 흡착탑이 포화되면 재생용매를 이용하여 주기적으로 흡착탑 재생과정을 실시하게 된다. 즉, 탈질반응공정(P1)에원료로서 투입된 미전환유(UCO) 또는 이의 감압분획 유분은 상기 흡착탑에서 주기적으로 흡착처리되어 질소화합물이 제거된 탄화수소가 생산된다. 한편 상기 흡착탑 내에 질소화합물이 포화되어 정제 제품 중의 질소화합물 함량이 증가하게 되면, 이 때 재생용매가 도입되면서 흡착제에 흡착된 질소화합물을 제거해내는 흡착탑 재생과정을 거치게 된다.Therefore, in the present invention, the denitrification reaction step (P1) is carried out by continuously operating in an alternate continuous one or more adsorption towers filled with an adsorbent having a specific surface area of 100 ~ 1000m 2 / g and a pore diameter of 1 ~ 35nm, When the adsorption tower is saturated, the adsorption tower regeneration process is periodically performed using a regeneration solvent. That is, unconverted oil (UCO) or reduced-pressure fractional fraction thereof introduced as a raw material into the denitrification step (P1) is periodically adsorbed in the adsorption column to produce hydrocarbons from which nitrogen compounds have been removed. On the other hand, when the nitrogen compound is saturated in the adsorption tower to increase the nitrogen compound content in the refined product, the regeneration solvent is introduced, and the adsorption tower regeneration process is performed to remove the nitrogen compound adsorbed on the adsorbent.

또한, 원료의 점도 특성에 따라 공정압력 및 온도를 조절하게 하는데, 본 발명에 있어서, 상기 흡착과정이 40∼250℃의 온도 및 100기압이하의 압력에서 실시되며, 상기 흡착탑 재생과정이 40∼450℃의 온도 및 500기압이하의 압력에서 실시될 때 원료의 점도가 적절히 조정됨으로써 효과적인 흡착 및 흡착재생 결과를 얻을 수 있다.In addition, to adjust the process pressure and temperature according to the viscosity characteristics of the raw material, in the present invention, the adsorption process is carried out at a temperature of 40 to 250 ℃ and pressure of less than 100 atm, the adsorption tower regeneration process is 40 to 450 When carried out at a temperature of &lt; RTI ID = 0.0 &gt; C &lt; / RTI &gt; and below 500 atm, the viscosity of the raw material is properly adjusted to obtain effective adsorption and adsorption regeneration results.

상기 흡착제는 실리카젤, 실리카 알루미나, 활성알루미나, 활성탄소, 실리카 마그네시아 및 제올라이트로 이루어진 군으로부터 적어도 하나 이상 선택하여 사용한다.The adsorbent is selected from at least one selected from the group consisting of silica gel, silica alumina, activated alumina, activated carbon, silica magnesia and zeolite.

또한 상기 흡착탑 재생을 위해서는, 단일 용매를 직접 흡착탑에 공급하거나, 질소, 수소, 이산화탄소와 같은 가스를 사용하여 흡착탑 공극에 잔존하는 정제물을 제거한 후 이차로 용매를 공급하여 흡착제에 흡착된 질소화합물을 제거하는 두 용매 사용방법도 가능하다. 상기 두 가지 용매를 사용하는 경우에는 단일 용매를 사용하는 것에 비해, 부산물의 양이 적어지는 장점이 있다. 또한 재생 과정 중 생성되는 용매와 질소화합물의 혼합물, 또는 용매와 정제제품의 혼합물은 각각 증류장치에서 용매와 질소화합물, 용매와 정제제품으로 회수된다.In addition, in order to regenerate the adsorption column, a single solvent is directly supplied to the adsorption column, or a gas such as nitrogen, hydrogen, and carbon dioxide is used to remove the purified product remaining in the adsorption column pores, and then the solvent is supplied second to supply the nitrogen compound adsorbed to the adsorbent. It is also possible to use two solvents to remove them. In the case of using the two solvents, there is an advantage that the amount of by-products is smaller than using a single solvent. In addition, a mixture of a solvent and a nitrogen compound, or a mixture of a solvent and a purified product generated during the regeneration process is recovered in the distillation apparatus as a solvent and a nitrogen compound, a solvent and a purified product, respectively.

본 발명에서 사용할 수 있는 재생용매는 이산화탄소, 수소, 또는 질소, 탄소수 2∼10의 탄화수소, 피리딘류, 페놀류, MTBE, ETBE 및 아니졸(Anisole)을 포함하는 에테르류, MIBK를 포함하는 케톤류 및 이들의 혼합물로 이루어진 군으로부터 적어도 하나 이상 선택하여 사용할 수 있다.Regeneration solvents that can be used in the present invention are carbon dioxide, hydrogen, or nitrogen, hydrocarbons having 2 to 10 carbon atoms, pyridines, phenols, ethers including MTBE, ETBE and anisole, ketones including MIBK, and these At least one selected from the group consisting of a mixture may be used.

따라서 본 발명에 따라 감압가스유(VGO) 및 탈아스팔트유(DAO)를 원료로 서 이용하는 공정에 있어서, 윤활기유 제조공정에 사용되는 촉매 활성 및 수명을 크게 단축시키는 피독 물질인 질소화합물을 제거함으로써 윤활기유 제조공정의 가혹도를 완화하고 고급 및 중질의 윤활기유 공급원료의 품질을 개선시킬 수 있다.Therefore, in the process of using vacuum gas oil (VGO) and deasphalted oil (DAO) as raw materials according to the present invention, by removing the nitrogen compound, which is a poisoning substance that greatly shortens the catalyst activity and life used in the lubricating base oil manufacturing process It can alleviate the severity of lube base oil manufacturing process and improve the quality of high and heavy lube base oil feedstock.

이하 본 발명을 하기 실시예를 통하여 좀 더 구체적으로 살펴보지만, 이에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited thereto.

실시예 1Example 1

질소분 함량이 35ppm인 미전환유(UCO)를 신규 흡착제 및 재생 흡착제로 처리하였다. 흡착제로는 실리카젤을 사용하였고, 흡착 온도는 70℃, LHSV는 1hr-1이었다. 또한, 흡착제 재생을 위해 7기압 질소를 사용하여 흡착탑 공극에 존재하는 정제 제품을 제거한 후 10기압 및 70℃의 MTBE를 용매로 사용하여 흡착제를 재생하였다. 이 때 각각 흡착제에 따른 흡착성능을 도 3에 도시하였고, 매우 우수한 질소화합물 제거 성능을 얻을 수 있었다. 도 3에서 알 수 있는 바와 같이, 5번 재생한 흡착제를 사용한 경우의 흡착 성능곡선과 30번 재생한 흡착제를 사용한 경우의 흡착 성능곡선에 별다른 차이가 없어 재생성능이 매우 우수함을 알 수 있다.Unconverted oil (UCO) with a nitrogen content of 35 ppm was treated with fresh adsorbent and regenerated adsorbent. Silica gel was used as the adsorbent, and the adsorption temperature was 70 ° C. and the LHSV was 1 hr −1 . In addition, after removing the purified product present in the adsorption column pores using 7 atm nitrogen for adsorbent regeneration, the adsorbent was regenerated using MTBE at 10 atm and 70 ° C as a solvent. At this time, the adsorption performance of each adsorbent is shown in FIG. 3, and very good nitrogen compound removal performance was obtained. As can be seen in Figure 3, the adsorption performance curve in the case of using the regenerated adsorbent 5 times and the adsorption performance curve in the case of using the regenerated adsorbent 30 times does not differ significantly, it can be seen that the regeneration performance is very excellent.

실시예 2Example 2

흡착제별 질소화합물 제거성능을 비교하기 위해 다양한 흡착제에 대한 비교 평가를 실시하였다. 미전환유(UCO)와 흡착제의 비율을 3/1로 고정하고, 70℃에서 교반하면서 2시간 경과후 흡착제를 제거하고 남은 미전환유(UCO) 중의 질소화합물 함량을 측정해 제거율을 상대 비교하여 하기 표 2에 나타내었다. 하기 표 2에서 알 수 있는 바와 같이, 실리카젤 1과 실리카젤 2의 흡착 성능을 비교하면, 실시카젤 2의 비표면적이 넓음에도 불구하고 흡착성능을 낮아 기공직경이 흡착 성능에 미치는 영향이 매우 큰 것을 알 수 있다. 한편, 실리카젤 2와 활성알루미나의 성능을 비교하면, 기공 직경이 유사함에도 비표면적이 넓은 실리카젤 2의 흡착 성능이 우수하여 유사 기공직경에서는 비표면적이 넓은 흡착제의 성능이 우수함을 나타낸다.In order to compare the nitrogen compound removal performance of each adsorbent, a comparative evaluation was performed on various adsorbents. Fix the ratio of unconverted oil (UCO) and adsorbent to 3/1, remove the adsorbent after 2 hours with stirring at 70 ° C, and measure the nitrogen compound content in the remaining unconverted oil (UCO) to compare the removal rate. 2 is shown. As can be seen in Table 2, when comparing the adsorption performance of silica gel 1 and silica gel 2, despite the wide specific surface area of the gel gel 2, the adsorption performance is low and the effect of pore diameter on the adsorption performance is very large. It can be seen that. On the other hand, when comparing the performance of silica gel 2 and activated alumina, the adsorption performance of silica gel 2 having a large specific surface area is excellent even though the pore diameter is similar, indicating that the adsorbent having a large specific surface area is excellent at the similar pore diameter.

흡착제absorbent 기공 직경, nmPore diameter, nm 비표면적, m2/gSpecific surface area, m 2 / g 질소화합물제거율, %Nitrogen removal rate,% 실리카젤 1Silica Gel 1 4∼104 to 10 450450 9595 실리카젤 2Silica gel 2 4∼6.54 to 6.5 550550 8585 활성알루미나Activated alumina 2∼62 to 6 350350 7575 활성탄소Activated carbon 1∼351 to 35 820820 6565 실리카 알루미나Silica alumina 3∼183 to 18 450450 8585 실리카 마그네시아Silica magnesia 3∼153 to 15 380380 7070 제올라이트Zeolite 1One -- 7575

실시예 3Example 3

흡착처리해 질소화합물을 제거한 미전환유(UCO)와 처리하지 않은 미전환유(UCO) 각각을 탈왁스 반응시켜 질소화합물 제거가 탈왁스 촉매의 활성 및 탈왁스 제품 수율, 및 성상에 미치는 영향을 살펴보았다. 미전환유(UCO) 중의 질소화합물 제거를 위해 흡착탑에 실리카젤을 100그램 충진하고, 미전환유(UCO)를 LHSV1hr-1의 속도로 흘려 보냈으며, 이 때 흡착탑의 온도를 75℃로 유지하였다. 질소화합물이 제거된 미전환유(UCO)와 제거되지 않은 미전환유(UCO)의 탈왁스 반응은 20그램의 촉매가 채워진 반응기에 LHSV 1hr-1의 속도로 반응물을 공급하고, 수소와 반응물의 비율은 1,000nm/m3으로 고정하였으며, 반응온도는 325℃ 및 반응압력은 160기압으로 일정하게 고정하였다. 이렇게 얻어진 결과를 하기 표 3에 나타내었다. 하기 표 3에서 알 수 있는 바와 같이, 미전환유(UCO) 중의 질소함량 제거에 따라 탈왁스 촉매의 상대 활성, 탈왁스 제품의 점도지수, 탈왁스 제품의 수율 모두 크게 개선되는 경향을 보였다. 따라서 미전환유(UCO) 중의 질소분 제거 공정인 본 발명의 적용이 매우 효과적인 것을 알 수 있다.Dewaxing of unconverted unconverted oil (UCO) and untreated unconverted oil (UCO), which had been removed by adsorption, was carried out to investigate the effect of the removal of nitrogen compounds on the activity of dewaxing catalyst, dewaxed product yield and properties. In order to remove nitrogen compounds in unconverted oil (UCO), 100 g of silica gel was charged to the adsorption tower, and unconverted oil (UCO) was flowed at a rate of LHSV1hr -1 , at which time the temperature of the adsorption tower was maintained at 75 ° C. Dewaxing reaction of unconverted unconverted oil (UCO) and unconverted unconverted oil (UCO) without nitrogen compound supplies the reactant to the reactor filled with 20 grams of catalyst at the rate of LHSV 1hr -1 . It was fixed at 1,000nm / m 3 , the reaction temperature was fixed at 325 ℃ and the reaction pressure was constant at 160 atm. The results thus obtained are shown in Table 3 below. As can be seen in Table 3 below, the relative activity of the dewaxing catalyst, the viscosity index of the dewaxing product, and the yield of the dewaxing product were all greatly improved as the nitrogen content in the unconverted oil (UCO) was removed. Therefore, it can be seen that the application of the present invention, which is a process for removing nitrogen in unconverted oil (UCO), is very effective.

UCO 종류UCO Type UCOUCO 질소화합물 제거 UCONitrogen Removal UCO UCO중의 질소분 함량, ppmNitrogen content in UCO, ppm 3535 22 탈왁스 촉매 상대활성Dewaxing Catalyst Relative Activity 1One 33 탈왁스 제품의 점도지수Viscosity index of dewaxed products 120120 135135 탈왁스 제품의 수율Yield of dewaxed products 60%60% 85%85%

실시예 4Example 4

흡착제 재생용매들에 대한 재생성능을 비교하기 위해, 흡착제 무게의 200배 만큼의 미전환유(UCO)를 처리하여 흡착제의 질소화합물 제거성능을 포화시킨 후에 이 흡착제를 재생하기 위한 용매를 흘려보냈을 때 흡착탑으로부터 흘러나오는 용매와 질소화합물의 혼합물 중의 질소화합물 농도를 지속적으로 측정하여 질소분 함량이 1ppm으로 낮아질 때까지 흘려보낸 용매의 양을 상대적으로 비교하여 하기 표 4에 나타내었다. 하기 표 4에서 알 수 있는 바와 같이, MTBE (methyl-tert-butyl-ether)의 흡착제 재생 성능이 가장 우수한 것을 알 수 있으며, MIBK (Methyl isobutyl ketone) 및 아니졸(anisole)이 MTBE와 유사한 수준의 성능을 나타내었다. ETBE(ethyl-tert-butyl-ether)와 페놀은 다소 열위이기는 하지만 재생성능을 나타내었고, 톨루엔은 상대적으로 많은 양을 사용하여야 용매와 동일한 재생 성능을 나타내었다. 그러나 이들 용매들 모두 흡착제를 충분히 재생하여야 다음 싸이클에서 흡착 성능을 발휘할 수 있고, 이를 지속유지할 수 있는 성능을 보여주었다In order to compare the regeneration performance of the adsorbent regeneration solvents, when the unconverted oil (UCO) of 200 times the weight of the adsorbent was treated to saturate the nitrogen compound removal ability of the adsorbent, the solvent for regenerating the adsorbent was flowed. The nitrogen compound concentration in the mixture of the solvent and the nitrogen compound flowing out of the adsorption column was continuously measured, and the amount of the solvent flowed until the nitrogen content was lowered to 1 ppm was relatively shown in Table 4 below. As can be seen in Table 4, it can be seen that MTBE (methyl-tert-butyl-ether) has the best adsorbent regeneration performance, MIBK (Methyl isobutyl ketone) and anisole (anisole) of similar levels to MTBE Performance was shown. Ethyl-tert-butyl-ether (ETBE) and phenol exhibited regenerating performance, although somewhat inferior, and toluene showed the same regeneration performance as the solvent in relatively large amounts. However, all of these solvents showed sufficient ability to regenerate the adsorbent to achieve adsorption performance in the next cycle and to maintain it.

용매의 종류Type of solvent 톨루엔toluene MTBEMTBE MIBKMIBK ETBEETBE 아니졸Anisol 페놀phenol 흐름양, 상대부피Flow volume, relative volume 1One 0.30.3 0.40.4 0.70.7 0.50.5 0.70.7

실시예 5Example 5

상기 표 1에 나타난 성상을 지닌 감압가스유(VGO)와 탈아스팔트유(DAO)를 무게비로 3:7로 혼합한 원료를 수소화처리 반응공정(R1)에서 LHSV(Liquid Hourly Space Velocity) 1.2hr-1, 압력 13.5Mpa, 온도 401℃, HDM, HDS, HDN, HDCCR 기능을 가진 촉매를 수소와 오일의 비를 1000nL/L의 조건으로 처리한 후, 후술하는 리싸이클된 미전환유(UCO)와 함께 LHSV 0.4hr-1, 압력 13.5Mpa, 온도 391℃ HDC 촉매를 이용하여 수소와 오일의 비를 1000nL/L의 조건으로 수소화분해 반응공정(R2)에서 처리하였다. 용매 탈아스팔트 공정(SDA)에서 용매는 노말펜탄(n-pentane)을 사용하였고 탈아스팔트유의 수율은 73LV%이었다.The raw material mixed with reduced pressure gas oil (VGO) and deasphalted oil (DAO) having the properties shown in Table 1 in a weight ratio of 3: 7 in the hydroprocessing reaction process (R1) 1.2 hours - LHSV (Liquid Hourly Space Velocity) 1 , pressure 13.5Mpa, temperature 401 ° C, HDM, HDS, HDN, HDCCR catalysts treated with a ratio of hydrogen and oil at 1000nL / L, and then recycled unconverted oil (UCO) described below LHSV The ratio of hydrogen and oil was treated in a hydrocracking reaction process (R2) under conditions of 1000 nL / L using 0.4hr −1 , pressure 13.5Mpa, and temperature 391 ° C. HDC catalyst. In the solvent deasphalting process (SDA), n-pentane was used as the solvent, and the yield of deasphalted oil was 73LV%.

이어서 통상의 분리기 및 일련의 분별증류공정을 거쳐 비점이 350℃ 이하인 디젤 및 경질제품을 회수하고 상기 표 1에 나타난 성상을 지닌 미전환유(UCO)를 얻었으며, 이 미전환유(UCO)의 50%를 상기 수소화분해 반응공정(R2)으로 리싸이클시키고 나머지는 도 1과 같이 탈질반응공정(P1)으로 공급하여 질소화합물을 흡착제거하고 질소화합물이 흡착제거된 미전환유(UCO)를 제2 감압증류공정(V2)에 주입하여 탑정압력 65mmHg, 탑정온도 90℃ 및 탑저압력 130mmHg, 탑저온도 345℃로 감압증류하여 하기 표 5와 같은 경질추출물(Light Distillate) 7.0LV%, 100D 추출물 10LV%, 150D 경질추출물 40.0LV%, 중간추출물 6LV%, 500D 중질추출물 30.0LV% 및 최종잔사유 7LV% 등을 얻었다.Subsequently, diesel and light products having a boiling point of 350 ° C. or lower were recovered through a conventional separator and a series of fractional distillation processes to obtain unconverted oil (UCO) having the properties shown in Table 1, and 50% of the unconverted oil (UCO). Recycle to the hydrocracking reaction step (R2) and supply the remainder to the denitrification step (P1) as shown in FIG. 1 to adsorb and remove nitrogen compounds and to remove unconverted oil (UCO) from which nitrogen compounds are adsorbed and removed under a second reduced pressure distillation process. Injected into (V2) and distilled under reduced pressure at a column top pressure of 65mmHg, tower top temperature of 90 ° C and tower bottom pressure of 130mmHg, and tower bottom temperature of 345 ° C, the light extract (Light Distillate) 7.0LV%, 100D extract 10LV%, 150D hard Extract 40.0LV%, intermediate extract 6LV%, 500D heavy extract 30.0LV% and the final residue 7LV% and the like.

이중 100D, 150D, 500D 추출물만 중간제품으로 하고, 공급량(제2 감압증류공정(V2)으로 공급되는 미전환유(UCO) 양)의 80%(즉, 100D: 10%, 150D: 40%, 500D: 30%)만 빼내고 나머지(공급량의 20%)는 모두 합하여 수소화분해 반응공정(R2)으로 리싸이클시켰다. 따라서 하기 표 5에 나타난 것과 같은 100D 및 150D 등급의 고점도 지수, 저휘발도의 고급 윤활기유 공급원료를 생산하였고, 500D 등급의 중질 윤활기유의 원료생산이 가능하였다.Of these, only 100D, 150D, and 500D extracts are used as intermediate products, and 80% of the feed amount (the amount of unconverted oil (UCO) supplied to the second vacuum distillation process (V2)) (ie, 100D: 10%, 150D: 40%, 500D : 30%) and the rest (20% of the feed) were combined and recycled to the hydrocracking process (R2). Therefore, the high viscosity index, low volatility, high-grade lubricating base oil feedstocks of 100D and 150D grades as shown in Table 5 were produced, and raw materials of 500D-grade heavy lubricating base oils were produced.

경질추출물Hard extract 100D추출물100D extract 150D추출물150D extract 중간추출물Intermediate extract 500D추출물500D extract 최종잔사유Last Residual Reason API 비중API weight 38.938.9 38.638.6 37.737.7 34.034.0 29.429.4 18.618.6 점도, cst@100℃Viscosity, cst @ 100 ℃ 3.43.4 3.83.8 5.75.7 9.09.0 12.112.1 35.235.2 점도지수Viscosity index 123123 135135 152152 120120 113113 6767 유동점, ℃Pour point, ℃ -- 3232 3535 -- 5050 1One 질소함량, ppmNitrogen content, ppm 1One 1One 1One 33 33 77

상기 실시예를 통해 알 수 있는 바와 같이, 본 발명에 따라 감압가스유(VGO) 및 탈아스팔트유(DAO)를 원료로서 이용하는 공정에 있어서, 윤활기유 제조공정에사용되는 촉매 활성 및 수명을 크게 단축시키는 피독 물질인 질소화합물을 제거함으로써 윤활기유 제조공정의 가혹도를 완화하고 고급 및 중질의 윤활기유 공급원료의 품질을 개선시킬 수 있다.As can be seen from the above examples, in the process using reduced pressure gas oil (VGO) and deasphalted oil (DAO) as raw materials according to the present invention, the catalyst activity and life used in the lubricating base oil manufacturing process is greatly shortened. By removing the nitrogen compound, which is a poisonous substance, the severity of the lubricating base oil manufacturing process can be alleviated and the quality of the high and heavy lubricating base oil feedstock can be improved.

본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications and variations of the present invention fall within the scope of the present invention, and the specific scope of the present invention will be apparent from the appended claims.

Claims (7)

상압잔사유를 제1 감압증류공정(V1)에서 증류하여 감압가스유 및 감압잔사유를 분리하고, 상기 감압가스유는 직접 수소화 처리공정(R1)으로 공급하며, 상기 감압잔사유는 용매 탈아스팔트 장치(SDA)에 공급하여 아스팔트 및 불순물이 제거된 탈아스팔트유를 얻고 얻어진 탈아스팔트유를 상기 감압가스유와 함께 수소화 처리공정(R1)으로 공급하는 단계;The atmospheric residue is distilled in the first vacuum distillation process (V1) to separate the vacuum gas oil and the vacuum residue, and the vacuum gas oil is directly supplied to the hydrogenation process (R1), and the vacuum residue is solvent deasphalted. Supplying to the apparatus SDA to obtain deasphalted oil from which asphalt and impurities have been removed, and supplying the deasphalted oil thus obtained to the hydroprocessing process R1 together with the reduced pressure gas oil; 상기 수소화 처리공정(R1)에 공급된 감압가스유와 탈아스팔트유에서 불순물을 제거하기 위해 수소화 처리한 후, 수소화 분해공정(R2)으로 공급하여 경질 및 중질의 탄화수소를 얻는 단계;Hydrogenation to remove impurities from the vacuum gas oil and deasphalted oil supplied to the hydroprocessing process (R1), and then, supplied to the hydrocracking process (R2) to obtain hard and heavy hydrocarbons; 상기 경질 및 중질의 탄화수소를 일련의 분별증류공정(Fs)에 적용하여 오일제품 및 미전환유로 분리하는 단계;Applying the light and heavy hydrocarbons to a series of fractional distillation processes (Fs) to separate oil products and unconverted oil; 상기 미전환유의 전부 또는 일부를 제2 감압증류공정(V2)에 공급하여 소정의 점도등급을 갖는 고급 및 중질 윤활기유 공급원료, 및 잔량의 미전환유를 얻는 단계; 및Supplying all or part of the unconverted oil to a second vacuum distillation process (V2) to obtain a high-quality and heavy lubricating base oil feedstock having a predetermined viscosity grade, and remaining unconverted oil; And 상기 윤활기유 공급원료를 탈왁스 공정 및 안정화 공정으로 투입하는 단계;를 포함하는 연료유 수소화 분해공정의 미전환유를 이용하여 고급 및 중질 윤활기유 공급원료를 제조하는 방법에서,In the method for producing a high and heavy lubricating base oil feedstock using the unconverted oil of the fuel oil hydrocracking process comprising the step of injecting the lubricating base oil feedstock into the dewaxing process and stabilization process, 상기 분별증류공정(Fs)에서 제2 감압증류공정(V2)으로 공급하는 미전환유 또는 제2 감압증류공정(V2)에서 생산된 고급 및 중질 윤활기유 공급원료를 탈질반응공정(P1)에 공급하여 질소화합물을 흡착 제거하는 방법.The high-quality and heavy lubricating base oil feedstock produced in the second distillation distillation process (V2) or the unconverted oil supplied to the second distillation distillation process (V2) from the fractional distillation process (Fs) is supplied to the denitrification reaction process (P1) Method of adsorption and removal of nitrogen compounds. 제1항에 있어서, 상기 탈질반응공정(P1)은 비표면적이 100∼1000m2/g이고 기공직경이 1∼35nm인 흡착제가 충진된 하나 이상의 흡착탑에서 교대로 연속 운전하여 흡착과정이 실시되고, 상기 흡착탑이 포화되면 재생용매를 이용하여 흡착탑 재생과정을 실시하는 것을 특징으로 하는 방법.According to claim 1, The denitrification step (P1) is the adsorption process is carried out by alternating continuous operation in one or more adsorption towers filled with an adsorbent having a specific surface area of 100 ~ 1000m 2 / g and a pore diameter of 1 ~ 35nm, If the adsorption tower is saturated, characterized in that the adsorption column regeneration process using a regeneration solvent. 제2항에 있어서, 상기 흡착과정은 40∼250℃의 온도 및 100 기압이하의 압력에서 실시되며, 상기 흡착탑 재생과정은 40∼450℃의 온도 및 500 기압이하의 압력에서 실시되는 것을 특징으로 하는 방법.According to claim 2, wherein the adsorption process is carried out at a temperature of 40 to 250 ℃ and a pressure of less than 100 atm, the adsorption tower regeneration process is characterized in that carried out at a temperature of 40 to 450 ℃ and a pressure of less than 500 atmospheres Way. 제2항에서, 상기 흡착제는 실리카젤, 실리카 알루미나, 활성알루미나, 활성탄소, 실리카 마그네시아 및 제올라이트로 이루어진 군으로부터 적어도 하나 이상 선택하여 사용하는 것을 특징으로 하는 방법.The method of claim 2, wherein the adsorbent is selected from the group consisting of silica gel, silica alumina, activated alumina, activated carbon, silica magnesia and zeolite. 제2항에 있어서, 상기 재생용매는 이산화탄소, 수소, 질소, 탄소수 2∼10의 탄화수소, 피리딘류, 페놀류, MTBE, ETBE 및 아니졸(Anisole)을 포함하는 에테르류, MIBK를 포함하는 케톤류 및 이들의 혼합물로 이루어진 군으로부터 적어도 하나 이상 선택하여 사용하는 것을 특징으로 하는 방법.The method of claim 2, wherein the regeneration solvent is carbon dioxide, hydrogen, nitrogen, hydrocarbons having 2 to 10 carbon atoms, pyridines, phenols, ethers including MTBE, ETBE and anisole, ketones including MIBK and these At least one selected from the group consisting of a mixture of the method for use. 제1항에 있어서, 상기 분별증류공정(Fs)에서 제2 감압증류공정(V2)으로 공급되지 않은 나머지의 미전환유, 및 제2 감압증류공정(V2)에서 얻은 잔량의 미전환유는 수소화 분해반응공정(R2)으로 리싸이클되거나, 연료유 배합용 유분으로 사용하기 위해 공정밖으로 배출되는 것을 특징으로 하는 방법.According to claim 1, wherein the remaining unconverted oil that is not supplied to the second vacuum distillation step (V2) in the fractional distillation step (Fs), and the remaining amount of unconverted oil obtained in the second vacuum distillation step (V2) is hydrocracking reaction. Recycle to process (R2) or discharge out of process for use as fuel oil blend fraction. 제1항에 있어서, 상기 수소화 처리공정(R1) 및 수소화 분해공정(R2)은 일단(one-stage) 또는 이단(two-stage)으로 구성되는 것을 특징으로 하는 방법.The method according to claim 1, wherein the hydroprocessing process (R1) and the hydrocracking process (R2) are composed of one-stage or two-stage.
KR1020020014267A 2002-03-16 2002-03-16 Method for removing nitrogen compounds from unconverted oil of fuel oil hydrocracking process and its distillation under reduced pressure distillation KR100877004B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020014267A KR100877004B1 (en) 2002-03-16 2002-03-16 Method for removing nitrogen compounds from unconverted oil of fuel oil hydrocracking process and its distillation under reduced pressure distillation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020014267A KR100877004B1 (en) 2002-03-16 2002-03-16 Method for removing nitrogen compounds from unconverted oil of fuel oil hydrocracking process and its distillation under reduced pressure distillation

Publications (2)

Publication Number Publication Date
KR20030075216A true KR20030075216A (en) 2003-09-26
KR100877004B1 KR100877004B1 (en) 2008-12-31

Family

ID=32225037

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020014267A KR100877004B1 (en) 2002-03-16 2002-03-16 Method for removing nitrogen compounds from unconverted oil of fuel oil hydrocracking process and its distillation under reduced pressure distillation

Country Status (1)

Country Link
KR (1) KR100877004B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030073026A (en) * 2002-03-08 2003-09-19 에스케이 주식회사 Method for producing feedstocks of high quality and heavy lube base oil from unconverted oil of fuels hydrocracker
KR100651356B1 (en) * 2002-03-29 2006-11-28 에스케이 주식회사 Method for removing impurities from heavy hydrocarbon and deasphalt oil
KR100819565B1 (en) * 2006-09-18 2008-04-07 전병준 Cracking method of heavy crude oil with electron beam accelator system
WO2009154324A1 (en) * 2008-06-17 2009-12-23 Sk Lubricants Co., Ltd. Process for manufacturing high quality naphthenic base oils
KR101133369B1 (en) * 2007-08-24 2012-04-06 에스케이이노베이션 주식회사 Process for the preparation of clean fuel and aromatics from hydrocarbon mixtures catalytic cracked on fluid bed
WO2011152680A3 (en) * 2010-06-04 2012-04-19 에스케이이노베이션주식회사 Method for preparing lubricating base oils by using vacuum distilled deasphalted oil
KR101222719B1 (en) * 2007-08-24 2013-01-15 에스케이이노베이션 주식회사 Process for the removal of sulfur and nitrogen from petrolic streams
KR101399207B1 (en) * 2007-08-22 2014-05-26 에스케이루브리컨츠 주식회사 Method for producing feedstocks of high quality lube base oil from unconverted oil
KR20170084887A (en) * 2016-01-13 2017-07-21 에스케이이노베이션 주식회사 Method for producing high quality lube base oil through absorption of poly nuclear aromatics in unconverted oil
KR20210098367A (en) * 2020-01-31 2021-08-10 에스케이에코프라임 주식회사 Method for manufacturing bio oil from oils and fats with high free fatty acids
CN114989862A (en) * 2022-05-25 2022-09-02 涿州贝尔森生化科技发展有限公司 Vacuum degassing and mixed reaction and electrification refining separation series denitrification process method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102053871B1 (en) 2019-03-14 2019-12-09 에스케이이노베이션 주식회사 Mineral based base oil having high Viscosity Index and improved volatility and manufacturing method of the same
KR102315378B1 (en) * 2020-05-28 2021-10-21 한국화학연구원 Method for upgrading heavy oil using byproducts from manufacturing cokes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137154A (en) * 1977-07-05 1979-01-30 Mobil Oil Corporation Process for the removal of nitrogen compounds from various organic media
JP3065816B2 (en) * 1992-10-02 2000-07-17 日石三菱株式会社 Production method of high viscosity index low viscosity lubricating base oil
KR970074901A (en) * 1996-05-14 1997-12-10 조규향 How to manufacture fuel oil and lubricating oil using untreated oil

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030073026A (en) * 2002-03-08 2003-09-19 에스케이 주식회사 Method for producing feedstocks of high quality and heavy lube base oil from unconverted oil of fuels hydrocracker
KR100651356B1 (en) * 2002-03-29 2006-11-28 에스케이 주식회사 Method for removing impurities from heavy hydrocarbon and deasphalt oil
KR100819565B1 (en) * 2006-09-18 2008-04-07 전병준 Cracking method of heavy crude oil with electron beam accelator system
KR101399207B1 (en) * 2007-08-22 2014-05-26 에스케이루브리컨츠 주식회사 Method for producing feedstocks of high quality lube base oil from unconverted oil
KR101133369B1 (en) * 2007-08-24 2012-04-06 에스케이이노베이션 주식회사 Process for the preparation of clean fuel and aromatics from hydrocarbon mixtures catalytic cracked on fluid bed
KR101222719B1 (en) * 2007-08-24 2013-01-15 에스케이이노베이션 주식회사 Process for the removal of sulfur and nitrogen from petrolic streams
GB2473992A (en) * 2008-06-17 2011-03-30 Sk Lubricants Co Ltd Process for manufacturing high quality naphthenic base oils
US8585889B2 (en) 2008-06-17 2013-11-19 Sk Lubricants Co., Ltd. Process for manufacturing high quality naphthenic base oils
US20110089080A1 (en) * 2008-06-17 2011-04-21 Sk Lubricants Co., Ltd. Process for manufacturing high quality naphthenic base oils
WO2009154324A1 (en) * 2008-06-17 2009-12-23 Sk Lubricants Co., Ltd. Process for manufacturing high quality naphthenic base oils
KR100934331B1 (en) * 2008-06-17 2009-12-29 에스케이루브리컨츠 주식회사 Manufacturing method of high quality naphthenic base oil
GB2473992B (en) * 2008-06-17 2012-03-07 Sk Lubricants Co Ltd Process for manufacturing high quality naphthenic base oils
CN103140577B (en) * 2010-06-04 2014-04-23 Sk新技术株式会社 Method for preparing lubricating base oils by using vacuum distilled deasphalted oil
CN103140577A (en) * 2010-06-04 2013-06-05 Sk新技术株式会社 Method for preparing lubricating base oils by using vacuum distilled deasphalted oil
WO2011152680A3 (en) * 2010-06-04 2012-04-19 에스케이이노베이션주식회사 Method for preparing lubricating base oils by using vacuum distilled deasphalted oil
US8834706B2 (en) 2010-06-04 2014-09-16 Sk Innovation Co., Ltd. Method for preparing lubricating base oils by using vacuum distilled deasphalted oil
KR20170084887A (en) * 2016-01-13 2017-07-21 에스케이이노베이션 주식회사 Method for producing high quality lube base oil through absorption of poly nuclear aromatics in unconverted oil
KR20210098367A (en) * 2020-01-31 2021-08-10 에스케이에코프라임 주식회사 Method for manufacturing bio oil from oils and fats with high free fatty acids
CN114989862A (en) * 2022-05-25 2022-09-02 涿州贝尔森生化科技发展有限公司 Vacuum degassing and mixed reaction and electrification refining separation series denitrification process method
CN114989862B (en) * 2022-05-25 2024-01-19 涿州贝尔森生化科技发展有限公司 Serial denitrification process for vacuum degassing and mixing reaction powered refining separation

Also Published As

Publication number Publication date
KR100877004B1 (en) 2008-12-31

Similar Documents

Publication Publication Date Title
KR101320813B1 (en) Process for the desulfurization of gasolines comprising a desulfurization by adsorption of the light fraction and a hydrodesulfurization of the heavy fraction
KR102271840B1 (en) Hydrocracking process and system including separation of heavy polynuclear aromatics from recycle by adsorption of ionic liquids and solids
CA2600768C (en) Simultaneous hydrocracking of multiple feedstocks
US6179995B1 (en) Residuum hydrotreating/hydrocracking with common hydrogen supply
KR101829113B1 (en) Integration of residue hydrocracking and solvent deasphalting
KR100877004B1 (en) Method for removing nitrogen compounds from unconverted oil of fuel oil hydrocracking process and its distillation under reduced pressure distillation
JP2010533224A (en) Method for producing naphthenic base oil from effluent of fluid catalytic cracker
RU2663896C2 (en) Residue hydrocracking processing
CA2538186C (en) Hydrocracking process with recycling including adsorption of polyaromatic compounds from the recycled fraction on adsorbent based on limited-macropore silica-alumina
KR20060057510A (en) Process for desulphurizing a hydrocarbon cut in a simulated moving bed
JP2011042734A (en) Method for producing highly aromatic hydrocarbon oil
US4005006A (en) Combination residue hydrodesulfurization and thermal cracking process
RU2695377C2 (en) Two-step method of saturation of aromatic compounds of diesel fuel, using catalyst based on non-precious metal
US3970543A (en) Production of lubricating oils
KR102458858B1 (en) Method for producing high quality lube base oil through absorption of poly nuclear aromatics in unconverted oil
US10443001B2 (en) Removal of sulfur from naphtha
RU2671978C2 (en) Double-stage method of saturation of aromatic diesel fuel compounds using intermediate steaming and basic metal catalyst
KR100651356B1 (en) Method for removing impurities from heavy hydrocarbon and deasphalt oil
RU2341550C2 (en) Meyhod of obtaining distillates and lubricating oils
WO2016057073A1 (en) Process and apparatus for selectively hydrogenating naphtha
JPH07197040A (en) Method for improving quality of petroleum distillate
JPH0631329B2 (en) Catalytic hydrocracking method
CS273334B2 (en) Method of catalytic hydrocracking

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
E801 Decision on dismissal of amendment
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20071022

Effective date: 20080811

Free format text: TRIAL NUMBER: 2007101011046; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20071022

Effective date: 20080811

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120912

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130912

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140916

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20151002

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160926

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180927

Year of fee payment: 11