KR20030075212A - Dieletric Device Using PVDF and Nano Ceramics Particles, and Method for Fabrication the Same - Google Patents

Dieletric Device Using PVDF and Nano Ceramics Particles, and Method for Fabrication the Same Download PDF

Info

Publication number
KR20030075212A
KR20030075212A KR1020020014262A KR20020014262A KR20030075212A KR 20030075212 A KR20030075212 A KR 20030075212A KR 1020020014262 A KR1020020014262 A KR 1020020014262A KR 20020014262 A KR20020014262 A KR 20020014262A KR 20030075212 A KR20030075212 A KR 20030075212A
Authority
KR
South Korea
Prior art keywords
pvdf
nano
ceramic
piezoelectric
parison
Prior art date
Application number
KR1020020014262A
Other languages
Korean (ko)
Inventor
권경태
강안수
윤철훈
이용욱
민성진
정세일
박지인
Original Assignee
(주)카마텍
민성진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)카마텍, 민성진 filed Critical (주)카마텍
Priority to KR1020020014262A priority Critical patent/KR20030075212A/en
Publication of KR20030075212A publication Critical patent/KR20030075212A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0011Combinations of extrusion moulding with other shaping operations combined with compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0017Combinations of extrusion moulding with other shaping operations combined with blow-moulding or thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: A piezo-electric body using PVDF(Polyvinylidene Fluoride) and nano ceramic is provided to mold PVDF/nano ceramic composites on a film, and to perform an annealing process with pressing/elongating processes for the composites, thereby improving distribution of ceramic particles on PVDF. CONSTITUTION: A pressing process is performed as follows. PVDF/nano ceramic composites are kneaded in an extruder(24), and are applied a blow-molding process, to be molded into a tube-type parison(12). The parison(12) is united on a single film by guiding plates(28). The united parison(12) passes through many pinch rollers(31,32,33,34). Many containers(51,52) are impregnated with the parison(12) through an annealing process. A driving roller(60) is used for implementing excellent piezo-orientation through an elongating process.

Description

폴리비닐리덴 플루오라이드와 나노 세라믹을 이용한 압전체 및 그 제조방법 {Dieletric Device Using PVDF and Nano Ceramics Particles, and Method for Fabrication the Same}Piezoelectric material using polyvinylidene fluoride and nano ceramics and its manufacturing method {Dieletric Device Using PVDF and Nano Ceramics Particles, and Method for Fabrication the Same}

본 발명은 폴리비닐리덴 플루오라이드(PVDF: polyvinylidene fluoride)와 나노 세라믹을 이용한 압전체 및 그 제조방법에 관한 것으로, 보다 상세하게는 플라스틱 중 유전율과 압전율이 우수한 폴리비닐리덴 플루오라이드(PVDF: polyvinylidene fluoride)와 압전율, 유전율 및 도전성 등이 우수한 나노 세라믹 입자를 혼합한 복합재를 블로우 성형하여 필름 상으로 몰딩하고, 이를 로울러에 의한 압착 및 연신 공정을 수행함으로써 세라믹 입자의 PVDF에 대한 분산성이 향상되고, 우수한 압전 특성 및 기계적 강도를 가지며, 연속적인 제조공정에 따른 비용의 절감의 효과를 갖는 PVDF와 나노 세라믹을 이용한 압전체 및 그 제조방법에 관한 것이다.The present invention relates to a piezoelectric material using polyvinylidene fluoride (PVDF) and nano ceramics, and more particularly, to a polyvinylidene fluoride (PVDF) having excellent dielectric constant and piezoelectricity in plastics. ) And blow-molded a composite material of nano ceramic particles having excellent piezoelectricity, dielectric constant, conductivity, and the like, and molding onto a film, and then performing a pressing and stretching process using a roller to improve dispersibility of the ceramic particles in PVDF. The present invention relates to a piezoelectric material using PVDF and nano ceramics having excellent piezoelectric properties and mechanical strength, and having an effect of reducing cost according to a continuous manufacturing process, and a method of manufacturing the same.

유전성, 압전성 등의 기능을 갖는 기능성 세라믹은 각종전기·전자 부품 등으로서 광범위한 분야에 사용되고 있다. 예컨대, 각종 작동기(actuator), 센서(sensor), 공진기(resonator) 등의 압전 소자에 사용되고 있다. 이러한 기능성 세라믹으로서 유전성을 갖는 세라믹으로는 실리카 글라스, 알루미나, 질화알루미늄, 티타늄산바륨 등을 들수 있으며, 압전성을 갖는 세라믹으로는 티탄산지르콘산연 등을 들수 있다.Functional ceramics having functions such as dielectric properties and piezoelectricity are used in a wide range of fields as various electric and electronic components. For example, it is used for piezoelectric elements, such as various actuators, a sensor, and a resonator. Examples of such ceramics having dielectric properties include silica glass, alumina, aluminum nitride, barium titanate, and the like, and piezoelectric ceramics include lead zirconate titanate.

그러나, 세라믹은 원하는 형상으로 성형하기 위해서는 소성 공정이 필요하고, 소성 후에는 기계 가공을 하는 것이 일반적이다. 세라믹은 가소성(plasticity)이 전혀 없어 복잡한 형상의 성형품을 얻는 것이 곤란하다. 즉, 성형의 자유도가 부족하다는 결점이 있다. 또한, 플라스틱에 비하여 성형 공정이 번잡하고, 생산성이 떨어지며 성형 비용이 비싸게 되는 단점을 동시에 가지고 있다. 따라서, 압전 특성에 영향을 주지 않으면서 세라믹에 유연성을 부여하는 기술이 필요하다.However, in order to shape | mold a ceramic to a desired shape, a baking process is needed, and after baking, it is common to machine. Ceramics have no plasticity, making it difficult to obtain a molded article having a complicated shape. That is, there is a drawback that the degree of freedom of molding is insufficient. In addition, it has the disadvantage that the molding process is more complicated than plastic, the productivity is low and the molding cost is expensive. Therefore, there is a need for a technique for imparting flexibility to ceramics without affecting piezoelectric properties.

한편, 플라스틱은 성형성이 우수하여 어떠한 복잡한 형상이라도 아주 정밀하고 저렴하게 제조할 수 있다는 장점이 있는 반면, 플라스틱은 강도가 약하고 전기전도도와 열전도도가 낮은 결점을 갖고 있다. 최근에는 많은 연구의 결과로 전자파 차폐용 박막, 이차전지, 센서 등에 다양하게 응용할 수 있는 전도성 고분자가 발표되고 있다. 예를 들어, 폴리파라페닐렌(polyparaphenylene), 폴리비닐리덴 플루오라이드(polyvinylidenefluororide; 이하 "PVDF"), 폴리피롤(polypyrrole), 폴리아세틸렌(polyacetylene) 등은 센서, 기억소자, 전극재료 등에 실용화되고 있는 전도성 고분자이다. 특히, PVDF는 이차전지의 전극성형 등에 널리 적용되고 있는 대표적인 전도성 고분자로서 압전 및 유전 특성을 갖는 폴리머이다. 그러나 전도성 고분자는 세라믹 분말에 비해 성형성은 매우 우수하지만 압전 특성은 낮은 문제점이 있다.On the other hand, plastic has the advantage of being excellent in formability, so that any complicated shape can be manufactured very precisely and inexpensively, whereas plastic has a weak strength, low electrical conductivity and low thermal conductivity. Recently, as a result of many studies, conductive polymers that can be applied to a variety of electromagnetic wave shielding thin films, secondary batteries, sensors, and the like have been published. For example, polyparaphenylene, polyvinylidenefluororide (hereinafter referred to as "PVDF"), polypyrrole, polyacetylene, and the like are used in sensors, memory devices, electrode materials, and the like. It is a polymer. In particular, PVDF is a polymer having piezoelectric and dielectric properties as a typical conductive polymer widely applied to electrode formation of secondary batteries. However, the conductive polymer is very excellent in formability compared to the ceramic powder, but the piezoelectric properties are low.

이에, 압전 특성이 우수한 세라믹 분말과 성형성이 우수한 플라스틱을 혼합, 조성하여 얻어진 복합재를 각종 압전 소자에 적용할 수 있는 압출 또는 사출 성형제품의 제조방법이 개발되고 있다. 플라스틱/세라믹 복합재는 플라스틱으로 이루어지는 매트릭스에 세라믹 입자를 분산시켜 제조한 것으로서 플라스틱에 세라믹 입자를 분산시켜 만든 것이기 때문에 그 성형이 용이하고, 저렴하게 제조할 수 있다.Accordingly, a method of manufacturing an extrusion or injection molded product in which a composite material obtained by mixing and forming a ceramic powder having excellent piezoelectric properties and a plastic having excellent moldability can be applied to various piezoelectric elements has been developed. Plastic / ceramic composites are made by dispersing ceramic particles in a matrix made of plastic, and are made by dispersing ceramic particles in plastic, so that molding is easy and can be manufactured at low cost.

즉, 세라믹과 같이 소성 및 소성 후의 기계 가공이 필요 없기 때문에 기계 가공에서는 제조할 수 없는 복잡한 형상의 물품을 용이하게 성형할 수 있고 생산성을 크게 향상시킬 수 있는 장점이 있다.That is, since there is no need for machining after firing and firing like ceramics, there is an advantage in that an article of a complicated shape that cannot be manufactured in machining can be easily molded and productivity can be greatly improved.

위와 같은 세라믹 분말과 플라스틱을 혼합함에 있어서는 균일한 혼합이 중요하다. 혼합이 균일하여야 공극이 최소화되고 압전체의 기계적 특성이 향상된다.In mixing the ceramic powder and plastic as described above, uniform mixing is important. Uniform mixing minimizes voids and improves the mechanical properties of the piezoelectric body.

따라서, 세라믹 분말과 플라스틱의 균일한 혼합에 의한 공극을 최소화하기 위해서는 보다 미세한 세라믹 분말을 사용하는 것이 요구된다. 그러나, 종래의 플라스틱/세라믹 복합재에 적용되는 세라믹 분말은 마이크로 사이즈의 입자로 그 크기가 커서 효과적인 혼합이 이루어지기 어려워 기계적 강도 및 분산성의 저하 등의 문제점이 있다. 이에 따라, 분산성을 향상시키기 위하여 물 또는 유기용매의 분산매와 실란커플링제, 티타네이트커플링제, 지루코알루미네이트커플링제 등의 커플링제(coupling agent)를 별도로 첨가해야 하는 문제점이 있었다.Therefore, in order to minimize voids caused by uniform mixing of ceramic powder and plastic, it is required to use finer ceramic powder. However, the ceramic powder applied to the conventional plastic / ceramic composite is a micro-sized particle having a large size, so that it is difficult to effectively mix, and thus there is a problem such as deterioration in mechanical strength and dispersibility. Accordingly, in order to improve dispersibility, there is a problem in that a dispersion agent of water or an organic solvent and a coupling agent such as a silane coupling agent, a titanate coupling agent, or a zirucoaluminate coupling agent must be added separately.

또한, 세라믹의 입자와 입자 사이의 공극으로 인하여 압전성, 유전성 및 도전성 등의 전기적 성능이 저하되는 문제점이 있었다. 즉, 세라믹 입자가 커서 입자와 입자 사이에 큰 공극이 생기고, 이 공극에 플라스틱이 함입되어지나 복합재의 단위 체적당 플라스틱보다 압전성, 유전성 등의 전기적 성능이 우수한 세라믹의 밀도가 작아져 만족할 만한 전기적 성능을 얻을 수가 없었다.In addition, there is a problem in that electrical performance such as piezoelectricity, dielectric property, and conductivity decreases due to the pores between the particles of the ceramic. That is, the ceramic particles are large, so that large voids are formed between the particles and the particles, and plastics are contained in the voids, but the electrical density of the ceramic, which is better in piezoelectricity and dielectric properties than the plastics per unit volume of the composite, is satisfactory, resulting in satisfactory electrical performance. Couldn't get it.

한편, 종래 상기와 같은 플라스틱/세라믹 복합재를 이용한 필름 상의 압전체를 성형함에 있어서는 세라믹 기판(substrate) 상에 압전성을 갖는 PVDF를 진공 증착시켜 압전 특성이 나타나도록 배향을 갖게 하거나, PVDF 필름 상에 마이크론 입자 크기의 메탈, 세라믹 등을 진공 증착, 스크린 인쇄 또는 접착 등의 방법을 이용하였다. 그러나, 위와 같은 진공 증착, 스크린 인쇄 등의 방법은 1회 배치(batch)식이어서 연속적인 공정이 어려웠으며 이에 따른 비용 증가의 문제점이 있었다.Meanwhile, in forming a piezoelectric material on a film using the plastic / ceramic composite as described above, the piezoelectric PVDF is vacuum-deposited on a ceramic substrate to have an orientation such that the piezoelectric properties are exhibited, or the micron particles on the PVDF film. Metals, ceramics, and the like of a size were used by vacuum deposition, screen printing, or bonding. However, the method of vacuum deposition, screen printing, etc. as described above is a single batch type, so that a continuous process is difficult and thus there is a problem of increased cost.

본 발명은 상기한 문제점을 해결하기 위하여 안출한 것으로, 유전율과 압전율이 우수한 PVDF에 압전율, 유전율 및 도전성 등이 우수한 세라믹 입자를 압출기에서 분산시키되 상기 세라믹 입자를 나노입자로 도입하고, 이러한 PVDF/나노 세라믹 복합재를 블로우 성형(blow molding) 방법에 의하여 필름 상으로 몰딩하고, 이를 로울러에 의한 압착 및 연신 공정과 물이 수용된 수용조에 함침시키는 어닐링(annealing)을 수행함으로써, PVDF에 세라믹 입자의 분산성을 향상시킴과 동시에 세라믹 입자간의 공극을 최소화하고, 우수한 압전성, 유전성 및 기계적 강도를 가지며, 연속적인 제조공정에 따른 비용 절감의 효과를 갖는 PVDF와 나노 세라믹을 이용한 압전체 및 그 제조방법을 제공하려는 것이다.The present invention has been made to solve the above problems, disperse ceramic particles having excellent piezoelectricity, dielectric constant, conductivity, etc. in an extruder in PVDF having excellent dielectric constant and piezoelectricity while introducing the ceramic particles as nanoparticles, and the PVDF The nano-particle composite is molded onto the film by blow molding method, which is then pressed and stretched by a roller and subjected to annealing to impregnate the water bath containing water, thereby dispensing the ceramic particles into PVDF. To improve the acidity, minimize the voids between ceramic particles, have excellent piezoelectricity, dielectric and mechanical strength, and provide a piezoelectric material using PVDF and nano ceramics and a method of manufacturing the same, which has the effect of reducing the cost of the continuous manufacturing process. will be.

도 1은 본 발명에 따른 PVDF와 나노 세라믹을 이용한 압전체의 제조방법을 설명하기 위한 장치의 개략적인 구성도.1 is a schematic configuration diagram of a device for explaining a method for manufacturing a piezoelectric material using PVDF and nano-ceramic according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10: 압전체12: 파리손10: piezoelectric 12: flyson

20: 블로우 성형기22: 호퍼20: blow molding machine 22: hopper

24: 압출기26: 압출다이24: extruder 26: extrusion die

28: 안내판31, 32, 33, 34: 핀치 로울러28: Information board 31, 32, 33, 34: Pinch roller

40: 안내 로울러45: 가열판40: guide roller 45: hot plate

51, 52: 수용조60: 구동 로울러51, 52: reservoir 60: drive roller

본 발명은 PVDF와 나노 세라믹을 적정 비율로 조성한 PVDF/나노 세라믹 복합재를 압출기에서 혼련한 후 이를 블로우 성형(blow molding) 방법에 의하여 튜브 상의 파리손(parison)으로 몰딩하고, 상기 파리손을 핀치 로울러(pinch roller)에 통과시켜 필름 상으로 압착시킨 다음, 우수한 압전 배향을 갖도록 구동 로울러에 의한 연신 공정을 수행하고, 이와 동시에 기계적 강도를 보강하기 위하여 수용조에 함침시키는 어닐링 공정을 연속적으로 수행한 PVDF와 나노 세라믹을 이용한 압전체 및 그 제조방법을 제공한다.The present invention kneads PVDF / nano ceramic composites having a proper ratio of PVDF and nano ceramics in an extruder, and then molds them into a parison on a tube by a blow molding method and pinches the parisson. PVDF which is passed through a pinch roller and pressed onto a film, followed by a drawing process by a driving roller to have an excellent piezoelectric orientation, and at the same time a PVDF which is continuously subjected to an annealing process which is impregnated into a receiving tank to reinforce mechanical strength. Provided are a piezoelectric body using a nano ceramic and a method of manufacturing the same.

상기 PVDF/나노 세라믹 복합재는 압전성 및 유전성 등의 전기적 특성이 우수한 PVDF와 500 ~ 0.1 나노미터(nm) 크기의 세라믹 분말로 조성되는 것을 특징으로 한다. 상기 세라믹 분말은 티타늄(Ti), 납(Pb), 바륨(Ba), 규소(Si), 주석(Sn), 마그네슘(Mg), 니오븀(Nb), 지르코늄(Zr) 등의 금속을 하나 이상 포함하는 나노 입자의 세라믹 분말이다. 상기 금속을 포함하는 나노 입자의 세라믹 분말은 수열합성 또는 졸-겔법에 의하여 나노 크기의 미세 분말로 합성된 것이거나, 현재 상품화되고 있는 것을 사용할 수 있으며, 바람직한 것으로는 티탄산바륨(BaTiO3), PbZrO3-PbTiO3고용체(PZT), PbZrO3-PbTiO3-Pb(Mg1/3Nb2/3) 고용체(PZT-PMN), TiO2, TiO3, SiO2, ZnO, SnO2Zr 계열의 나노 세라믹 분말로서, 목적하는 압전 소자의 특성에 따라 상기 군 중에서 1 또는 2이상 선택하여 혼합 사용할 수 있다.The PVDF / nano ceramic composite material is composed of PVDF having excellent electrical properties such as piezoelectricity and dielectric property, and ceramic powder having a size of 500 to 0.1 nanometers (nm). The ceramic powder includes one or more metals such as titanium (Ti), lead (Pb), barium (Ba), silicon (Si), tin (Sn), magnesium (Mg), niobium (Nb), zirconium (Zr), and the like. It is a ceramic powder of nanoparticles. The ceramic powder of the nanoparticles including the metal may be synthesized into nano-sized fine powders by hydrothermal synthesis or sol-gel method, or may be commercially available, and preferably barium titanate (BaTiO 3 ) or PbZrO. 3 -PbTiO 3 solid solution (PZT), PbZrO 3 -PbTiO 3 -Pb (Mg 1/3 Nb 2/3 ) solid solution (PZT-PMN), TiO 2 , TiO 3 , SiO 2 , ZnO, SnO 2 Zr As the ceramic powder, one or two or more selected from the group can be selected and used according to the characteristics of the desired piezoelectric element.

상기 PVDF/나노 세라믹 복합재는 나노 세라믹 분말과 PVDF의 조성비를 적절히 조정함으로써 전기적 성능과 가공성을 조절할 수 있다. 복합재에 나노 세라믹 입자의 함유량이 많을수록 전기적 성능 면에서는 바람직하나, 너무 많으면 성형 시 유동성을 잃어버려 성형이 어려워진다. 즉, PVDF의 함량을 증가시키면 가공성은 향상되지만 세라믹 분말의 함량이 감소하는데 따른 압전성의 손실이 수반되며, 반면 PVDF의 함량을 감소시키면 압전성은 향상되지만 가공성이 감소하게 된다. 따라서, 상기 PVDF/나노 세라믹 복합재는 나노 세라믹 분말이 복합재의 전체 체적 대비 40체적% ~ 95체적% 함유된다. 반면에 PVDF의 함유량은 5체적% ~ 60체적%가 함유된다. 나노 세라믹 입자의 함유량이 40체적% 미만이면 만족할 만한 압전성을 기대할 수 없으며, 95체적%를 초과하면 가공성이 떨어진다.The PVDF / nano ceramic composite material can control the electrical performance and processability by appropriately adjusting the composition ratio of nano ceramic powder and PVDF. The higher the content of the nano-ceramic particles in the composite material, the more preferable in terms of electrical performance. However, too much of the composite material results in loss of fluidity during molding, making molding difficult. In other words, increasing the content of PVDF improves the workability but is accompanied by a loss of piezoelectricity as the content of the ceramic powder is reduced, while reducing the content of PVDF improves the piezoelectricity but decreases the workability. Therefore, the PVDF / nano ceramic composite material contains 40 to 95 volume% of the nano ceramic powder relative to the total volume of the composite material. On the other hand, the content of PVDF contains 5% by volume to 60% by volume. If the content of the nano-ceramic particles is less than 40% by volume, satisfactory piezoelectricity cannot be expected, and if it exceeds 95% by volume, workability is inferior.

또한, 상기 세라믹 입자의 종횡비는 2.0 이하로 하는 것이 바람직하다. 이는 PVDF에 나노 세라믹 입자를 최고 밀도로 충전하여 분산시킬 수 있으므로 복합재의 열팽창 계수를 더욱 작게 할 수 있기 때문이다. 즉 세라믹 입자의 가로 세로입자형상의 종횡비가 2.0을 초과하는 경우는 세라믹 입자의 함유량을 증가시키기 어렵다.Moreover, it is preferable that the aspect ratio of the said ceramic particle shall be 2.0 or less. This is because the PVDF can be dispersed by packing nanoceramic particles at the highest density, thereby making the thermal expansion coefficient of the composite material even smaller. In other words, when the aspect ratio of the aspect ratio of the ceramic particles exceeds 2.0, it is difficult to increase the content of the ceramic particles.

본 발명은 세라믹 입자를 나노입자로 도입함으로써 PVDF에 세라믹 입자의 분산성이 좋아져 별도의 분산매나 커플링제를 첨가하지 않아도 균일하게 분산시킬 수 있고, 이에 따라, 공극이 최소화되어 압전성 및 유전성 등의 전기적 성능을 발휘한다. 아울러, PVDF에 세라믹 나노 입자가 균일하게 분산됨에 따라 PVDF의 열변형온도(HDT)가 증가되어 PVDF의 강성이 부가되어지므로 이는 결국 우수한 기계적 강도를 갖는 압전체가 제조된다. 이에 더하여, 세라믹의 나노 입자에 따른 난연성 등을 효과를 도모할 수 있다.According to the present invention, the ceramic particles are introduced into the nanoparticles to improve the dispersibility of the ceramic particles in the PVDF so that they can be uniformly dispersed without the addition of a separate dispersion medium or coupling agent. Accordingly, the voids are minimized and the electrical properties such as piezoelectricity and dielectric property are minimized. Performance. In addition, as the ceramic nanoparticles are uniformly dispersed in the PVDF, the heat deflection temperature (HDT) of the PVDF is increased to add the rigidity of the PVDF. Thus, a piezoelectric body having excellent mechanical strength is produced. In addition, the flame retardance according to the nanoparticles of the ceramic can be achieved.

위와 같은 PVDF/나노 세라믹 복합재를 압출기에 투입하여 PVDF의 용융과 동시에 세라믹 입자는 PVDF에 분산되게 하는 혼련 작업을 30 ~ 60분 동안 수행한다. 이 때, 압출기의 온도는 270℃~300℃가 되게 하고, 균일한 혼련을 위해 압출기는 트윈-스크류(twin-screw)가 내장된 것을 사용하는 것이 바람직하다. 연속하여, PVDF/나노 세라믹 용융물을 블로우 성형(blow molding)하여 튜브 형태의 파리손(parison)으로 몰딩한 다음, 블로우 성형기의 상단에 테이퍼지게 구비된 안내판에 의하여 단일 필름 상으로 접합되게 한다. 그리고, 핀치 로울러 사이를 통과시키는 압착 공정을 수행한다. 이에 따라, 나노 세라믹 입자 상호간은 긴밀하게 밀착되어 단위 체적당 세라믹 입자의 밀도가 증가된다. 계속하여, 상기 핀치 로울러를 통과한 압전체의 기계적 강도를 향상시키기 위하여 수용조에 함침시키는 어닐링(annealing) 공정을 수행한다. 이와 동시에 우수한 압전 특성이 나타나는 β배향을 갖도록 하기 위해 구동 로울러에 의한 연신 공정을 수행한다. 바람직하게는 4배 이상의 연신이 이루어지도록 한다. 위와 같은 공정은 연속적으로 수행되며, 공정을 마친 압전체는 구동 로울러에 권취된다.The PVDF / nano ceramic composite material as described above is added to the extruder and the kneading operation is performed for 30 to 60 minutes so that the ceramic particles are dispersed in the PVDF simultaneously with melting of the PVDF. At this time, the temperature of the extruder It is preferable to use a twin-screw-embedded extruder in order to achieve a temperature of 270 ° C to 300 ° C and to uniformly knead the mixture. Subsequently, the PVDF / nano ceramic melt is blow molded and molded into a tube-shaped parison, which is then bonded onto a single film by a guide plate tapered on top of the blow molding machine. Then, a crimping step for passing the pinch rollers is performed. As a result, the nano-ceramic particles closely adhere to each other to increase the density of the ceramic particles per unit volume. Subsequently, an annealing process is performed to impregnate the receiving tank in order to improve the mechanical strength of the piezoelectric body passed through the pinch roller. At the same time, the stretching process by the driving roller is performed in order to have the β orientation showing excellent piezoelectric properties. Preferably at least four times stretching is achieved. The above process is carried out continuously, the finished piezoelectric body is wound in a drive roller.

이하에서는, 도 1을 참조하여 본 발명에 따른 압전체의 제조 방법을 보다 상세히 설명한다.Hereinafter, a method of manufacturing a piezoelectric body according to the present invention will be described in more detail with reference to FIG. 1.

도 1에 보인 바와 같이, 본 발명에 따른 압전체(10)를 제조하기 위한 장치는 호퍼(22), 압출기(24), 압출다이(26) 및 안내판(28)으로 구성되는 블로우 성형기(20), 두 개의 로울러가 소정의 간격을 이루며 구동되는 다수의 핀치 로울러(31)(32)(33)(34), 다수의 안내 로울러(40)가 설치되고 물이 수용된 수용조(51)(52), 그리고 구동 로울러(60)로 구성된다. 도 1은 본 발명에 따른 PVDF와 나노 세라믹을 이용한 압전체의 제조방법을 설명하기 위한 장치의 개략적인 구성도를 보인 것으로 장치를 이루는 다수의 구성 부재들이 생략되어 도시되어 있다. 예를 들면, 압출기(24)에 내장된 트윈-스크류, 압출다이(26)의 에어 주입구 등이다.As shown in FIG. 1, the apparatus for manufacturing the piezoelectric body 10 according to the present invention includes a blow molding machine 20 composed of a hopper 22, an extruder 24, an extrusion die 26, and a guide plate 28. A plurality of pinch rollers 31, 32, 33, 34, two rollers are driven at predetermined intervals, and a plurality of guide rollers 40 are installed and the water tanks 51, 52, And a driving roller 60. 1 is a schematic configuration diagram of a device for explaining a method of manufacturing a piezoelectric material using PVDF and nano ceramics according to the present invention, in which a plurality of constituent members constituting the device are omitted. For example, the twin-screw built into the extruder 24, the air injection port of the extrusion die 26, etc. are mentioned.

압출기(24)의 호퍼(22)에 PVDF와 나노 세라믹 입자를 적정 혼합 조성한 PVDF/나노 세라믹 복합재가 투입된다. 압출기(24)의 온도는 270℃~300℃로 유지되어 PVDF는 용융되고, 압출기(24)에 내장된 트윈-스크류(도시하지 않음)의 회동에 의해 나노 세라믹 입자는 PVDF에 균일하게 분산된다. 위와 같은 혼련 작업은 30~60분 동안 수행된다. PVDF/나노 세라믹 용융물은 압출다이(26)를 통하여 블로우 성형되어 튜브 형태의 파리손(12)으로 몰딩된다. 파리손(12)은 블로우성형기(20)의 상단 좌우측(도면에서 보았을 때)에 구비된 안내판(28)에 의해 단일의 필름으로 접합되고 제1 핀치 로울러(31)를 통과하여 압착된다. 제1 핀치 로울러(31)를 통과한 압전체(10)는 안내 로울러(40)를 따라 130℃~140℃로 승온된 가열판(45)을 지나 제2 핀치 로울러(32)를 통과하게 된다. 계속하여, 80℃~90℃의 물이 수용된 제1 수용조(51)에 함침되고 제3 핀치 로울러(33)에 의해 압착된다. 그리고, 40℃~50℃의 물이 수용된 제2 수용조(52)에 함침된 후 제4 핀치 로울러(34)에 의해 압착된다. 이와 같은 압전체(10)는 구동 로울러(60)에 의해 연신된다.The PVDF / nano ceramic composite material in which PVDF and nano-ceramic particles are appropriately mixed and introduced into the hopper 22 of the extruder 24 is introduced. The temperature of the extruder 24 is 270 ° C to 300 ° C. The PVDF is kept melted and the nano ceramic particles are uniformly dispersed in the PVDF by the rotation of twin-screws (not shown) embedded in the extruder 24. The kneading operation above is carried out for 30 to 60 minutes. The PVDF / nano ceramic melt is blow molded through an extrusion die 26 and molded into a parison 12 in the form of a tube. The parison 12 is bonded to a single film by a guide plate 28 provided on the upper left and right sides (as seen in the drawing) of the blow molding machine 20 and pressed through the first pinch roller 31. The piezoelectric body 10 having passed through the first pinch roller 31 passes through the second pinch roller 32 through the heating plate 45 heated to 130 ° C. to 140 ° C. along the guide roller 40. Subsequently, water of 80 ° C. to 90 ° C. is impregnated in the first accommodating tank 51 housed therein and pressed by the third pinch roller 33. Then, after impregnated in the second receiving tank 52, the water of 40 ℃ ~ 50 ℃ is pressed by the fourth pinch roller 34. The piezoelectric body 10 is stretched by the driving roller 60.

상기 연신 공정은 제1 핀치 로울러(31)에서 시작하여 제4 핀치 로울러(34)를 거치는 과정에서 수행되며, 연신 공정을 거친 압전체(10)는 구동 로울러(60)에 권취된다.The stretching process is performed in the process of starting from the first pinch roller 31 and passing through the fourth pinch roller 34, and the piezoelectric body 10 which has undergone the stretching process is wound around the driving roller 60.

상기 수용조(51)(52)는, 도 1에서는 2개를 도시하여 설명하였으나, 온도 범위를 다르게 한 3개 이상의 다수 개를 설치하여 어닐링(annealing) 공정을 수행할 수 있다.Although the reservoirs 51 and 52 are illustrated in FIG. 1, two or more reservoirs 51 and 52 may be annealed by installing a plurality of three or more units having different temperature ranges.

따라서, 본 발명은 핀치 로울러(31)(32)(33)(34)에 의한 수회의 압착 공정을 수행함에 따라 단위 체적당 세라믹 입자의 밀도를 증가시켜 전기적 성능이 향상되고, 구동 로울러(60)에 의한 연신 공정에 의해 β배향을 형성시켜 우수한 압전 특성을 갖게 하며, 다수의 수용조(51)(52)에 함침시키는 어닐링(annealing) 공정에 의해 기계적 강도가 향상된다.Accordingly, the present invention increases the density of ceramic particles per unit volume by performing several pressing processes by the pinch rollers 31, 32, 33, 34, thereby improving electrical performance, and driving the roller 60. By forming the β orientation by the stretching process by the film, it has excellent piezoelectric characteristics, and the mechanical strength is improved by an annealing process in which the plurality of receiving tanks 51 and 52 are impregnated.

이하에서는, 본 발명의 구체적인 실시예를 통하여 설명한다.Hereinafter, a description will be given through specific embodiments of the present invention.

[실시예]EXAMPLE

PVDF 10체적%에 평균 입자 크기가 0.3nm이고, 종횡비가 1.7인 티탄산바륨(BaTiO3) 90체적%를 혼합 조성하여 도 1에 도시한 바와 같은 공정으로 압전체(10)를 제조하였다.A piezoelectric body 10 was manufactured by a process as shown in FIG. 1 by mixing 90 volume% of barium titanate (BaTiO 3 ) having an average particle size of 0.3 nm and an aspect ratio of 1.7 to 10 volume% of PVDF.

이에 대하여 압전 정수 및 유전율을 측정하여 그 결과를 하기 [표 1]에 나타내었다. 압전 정수는 D meter(일본, ANDO사)를 사용하여 측정하였으며, 유전율은 LSR meter(일본, ANDO사)를 사용하여 측정하였다.On the other hand, the piezoelectric constant and dielectric constant were measured and the results are shown in the following [Table 1]. The piezoelectric constant was measured using a D meter (Ando, Japan), and the dielectric constant was measured using an LSR meter (Ando, Japan).

[비교예][Comparative Example]

PVDF 50체적%에 평균 입자 크기가 35㎛이고, 종횡비가 1.2인 티탄산바륨(BaTiO3) 50체적%를 혼합 조성한 복합재를 300℃에서 사출 성형하여 판형의 압전체로 성형하였다. 이에 대하여 압전 정수 및 유전율을 측정하여 그 결과를 하기 [표 1]에 나타내었다. 측정방법은 상기 실시예와 동일하다.A composite material having 50 vol% of PVDF and 50 vol% of barium titanate (BaTiO3) having an average particle size of 35 µm and an aspect ratio of 1.2 was mixed by injection molding at 300 ° C. to form a plate-like piezoelectric body. On the other hand, the piezoelectric constant and dielectric constant were measured and the results are shown in the following [Table 1]. The measuring method is the same as that of the said Example.

PVDF의 특성Characteristics of PVDF 세라믹(BaTiO3)의 특성Characteristics of Ceramics (BaTiO 3 ) 압전 정수(d31)Piezoelectric Constant (d31) 유전율(33)permittivity( 33) 함유량(체적%)Content (% by volume) 압전 정수(d31)Piezoelectric Constant (d31) 함유량(체적%)Content (% by volume) 평균입자크기Average particle size 종횡비Aspect ratio 실시예Example 1010 25×10-12m/V25 × 10 -12 m / V 9090 0.3㎚0.3 nm 1.71.7 591×10-9m/V591 × 10 -9 m / V 72007200 비교예Comparative example 5050 25×10-12m/V25 × 10 -12 m / V 5050 35㎛35 μm 1.21.2 270×10-12m/V270 × 10 -12 m / V 19001900

따라서, 본 발명은 압전성, 유전성 및 도전성을 갖는 세라믹 분말을 PVDF에분산시킴으로 인해 복잡한 성형물의 가공이 용이하고, 가공성 및 정밀성이 우수하고, 대량 생산, 비용 절감 등과 같은 종래의 플라스틱/세라믹 복합재가 수반하는 효과와 더불어 상기 세라믹 분말을 나노입자로 도입하고, 압착 및 연신 공정이 수행됨으로써 세라믹 입자의 나노 크기의 미세 분말에 따른 공극이 최소화되어 PVDF에 세라믹 입자의 분산성이 향상되고, 별도의 분산매나 커플링제를 첨가하지 않아도 되며, 종래 마이크로 크기 이상의 세라믹 입자가 적용된 압전체에 비해 크게는 수백배, 수천배의 압전율, 유전율 및 도전성을 갖는다.Accordingly, the present invention facilitates the processing of complex moldings by dispersing piezoelectric, dielectric and conductive ceramic powders in PVDF, and is accompanied by conventional plastic / ceramic composites such as mass production, cost reduction, and the like. In addition to the effect of introducing the ceramic powder into the nanoparticles, and the compression and stretching process is carried out to minimize the pores according to the nano-sized fine powder of the ceramic particles to improve the dispersibility of the ceramic particles in the PVDF, The coupling agent does not need to be added, and has a piezoelectricity, dielectric constant and conductivity of several hundred times and thousands of times as compared with the piezoelectric body to which ceramic particles of micro size or more are conventionally applied.

또한, PVDF에 세라믹 나노 입자가 균일하게 분산됨에 따라 PVDF의 열변형온도(HDT)가 증가되어 PVDF의 강성이 부가되어지고 어닐링 공정이 수행되어 우수한 기계적 강도를 갖는다. 이에 더하여, 세라믹 나노 입자의 구조적 특성에 따른 난연성 등의 효과를 도모할 수 있다.In addition, as the ceramic nanoparticles are uniformly dispersed in the PVDF, the heat deflection temperature (HDT) of the PVDF is increased so that the rigidity of the PVDF is added and the annealing process is performed to have excellent mechanical strength. In addition, effects such as flame retardancy according to the structural characteristics of the ceramic nanoparticles can be achieved.

아울러, 본 발명에 따른 제조방법은 압착 및 연신 공정에 따른 압전율의 증가와 연속적인 공정으로 이루어져 대량 생산 및 비용 절감의 효과를 갖는다.In addition, the manufacturing method according to the present invention has the effect of increasing the piezoelectric rate and continuous process according to the pressing and stretching process, and has the effect of mass production and cost reduction.

Claims (5)

폴리비닐리덴 플루오라이드(PVDF: polyvinylidene fluoride)와 세라믹 입자로 구성되는 복합재를 이용하여 제조한 필름 상의 압전체(10)에 있어서,In the piezoelectric body 10 on a film manufactured using a composite material composed of polyvinylidene fluoride (PVDF) and ceramic particles, 상기 세라믹 입자가 500 ~ 0.1 나노미터(nm) 크기의 나노 세라믹 입자이고, PVDF와 나노 세라믹을 적정 비율로 조성한 PVDF/나노 세라믹 복합재를 압출기(24)에서 혼련한 후 이를 블로우 성형하여 튜브 상의 파리손(12)으로 몰딩한 다음, 상기 파리손(12)을 단일 필름 상으로 접합하고, 이를 핀치 로울러(31)(32)(33)(34)에 의해 압착시키고, 다수의 수용조(51)(52)에 함침시키는 어닐링(annealing) 공정 및 구동 로울러(60)에 의한 연신 공정을 수행하여 제조한 필름 형태의 PVDF와 나노 세라믹을 이용한 압전체.The ceramic particles are nano-ceramic particles having a size of 500 to 0.1 nanometers (nm), and the PVDF / nano ceramic composites in which PVDF and nano ceramics are formed in an appropriate ratio are kneaded in an extruder 24 and blow-molded to form a flyson on a tube. After molding with (12), the parison 12 is bonded onto a single film, which is compressed by pinch rollers 31, 32, 33, 34, and a plurality of reservoirs 51 ( 52) A piezoelectric material using PVDF and nano ceramics in the form of a film prepared by annealing (impregnated) and stretching by the driving roller (60). 제 1항에 있어서, 상기 나노 세라믹 입자가 티탄산바륨(BaTiO3), PbZrO3-PbTiO3고용체(PZT), PbZrO3-PbTiO3-Pb(Mg1/3Nb2/3) 고용체(PZT-PMN), TiO2, TiO3, SiO2, ZnO, SnO2Zr 계열로 이루어진 군 중에서 선택된 하나 또는 2이상의 나노 세라믹으로 혼합된 것임을 특징으로 하는 PVDF와 나노 세라믹을 이용한 압전체.The method of claim 1, wherein the nano-ceramic particles are barium titanate (BaTiO 3 ), PbZrO 3 -PbTiO 3 solid solution (PZT), PbZrO 3 -PbTiO 3 -Pb (Mg 1/3 Nb 2/3 ) solid solution (PZT-PMN ), TiO 2 , TiO 3 , SiO 2 , ZnO, SnO 2 Zr is a piezoelectric material using PVDF and nano ceramics, characterized in that it is mixed with one or two or more nano ceramics selected from the group consisting of. 제 1항 또는 제 2항에 있어서, 상기 나노 세라믹 입자의 가로 세로 입자형상의 종횡비가 2.0 이하인 것을 특징으로 하는 PVDF와 나노 세라믹을 이용한 압전체.The piezoelectric element using PVDF and nano ceramics according to claim 1 or 2, wherein an aspect ratio of the aspect ratio of the nano ceramic particles is 2.0 or less. 폴리비닐리덴 플루오라이드(PVDF: polyvinylidene fluoride)와 세라믹 입자로 구성되는 복합재를 이용하여 필름 상의 압전체(10)를 제조하는 제조방법에 있어서,In the manufacturing method of manufacturing the piezoelectric body 10 on a film using the composite material which consists of polyvinylidene fluoride (PVDF) and ceramic particle, PVDF와 500 ~ 0.1 나노미터(nm) 크기의 세라믹을 혼합 조성한 PVDF/나노 세라믹 복합재를 270℃~300℃ 온도의 압출기(24)에 투입하여 30~60분 동안 혼련하여 PVDF/나노 세라믹 용융물을 얻는 단계와,PVDF / nano ceramic composite, which is a mixture of PVDF and 500 ~ 0.1 nanometer (nm) size, is put into an extruder 24 at a temperature of 270 ° C to 300 ° C and kneaded for 30 to 60 minutes to obtain PVDF / nano ceramic melt. Steps, PVDF/나노 세라믹 용융물을 블로우 성형(blow molding)하여 튜브 형태의 파리손(12)으로 몰딩한 다음, 상기 파리손(12)을 안내판(28)에 의하여 단일의 필름으로 접합시키는 단계와,Blow molding the PVDF / nano ceramic melt into a tube-formed parison 12 and then bonding the parison 12 into a single film by means of a guide plate 28; 상기 필름을 다수의 핀치 로울러(31)(32)(33)(34) 사이에 통과시켜 압착하는 단계와,Compressing the film by passing it between a plurality of pinch rollers (31, 32, 33, 34), 다수의 수용조(51)(52)에 함침시키는 어닐링(annealing) 공정을 수행하는 단계와,Performing an annealing process to impregnate the plurality of reservoirs 51 and 52; 구동 로울러(60)에 의한 연신 공정을 수행하는 단계로 이루어진 것을 특징으로 하는 PVDF와 나노 세라믹을 이용한 압전체의 제조방법.Method of manufacturing a piezoelectric material using PVDF and nano-ceramic, characterized in that it comprises the step of performing the stretching process by the drive roller (60). 제 4항에 있어서, 상기 어닐링(annealing) 공정이 130℃~140℃로 승온된 가열판(45)을 지나게 한 다음, 80℃~90℃의 물이 수용된 제1 수용조(51)에 함침시키고, 이어서 40℃~50℃의 물이 수용된 제2 수용조(52)에 함침시켜 수행되는 것을 특징으로 하는 PVDF와 나노 세라믹을 이용한 압전체의 제조방법.The method of claim 4, wherein the annealing process is passed through a heating plate 45 heated to 130 ℃ ~ 140 ℃, and then impregnated in a first receiving tank 51 containing water of 80 ℃ ~ 90 ℃, Subsequently, a method of manufacturing a piezoelectric material using PVDF and nano ceramics, which is performed by impregnating a second container 52 containing water having a temperature of 40 ° C. to 50 ° C.
KR1020020014262A 2002-03-16 2002-03-16 Dieletric Device Using PVDF and Nano Ceramics Particles, and Method for Fabrication the Same KR20030075212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020014262A KR20030075212A (en) 2002-03-16 2002-03-16 Dieletric Device Using PVDF and Nano Ceramics Particles, and Method for Fabrication the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020014262A KR20030075212A (en) 2002-03-16 2002-03-16 Dieletric Device Using PVDF and Nano Ceramics Particles, and Method for Fabrication the Same

Publications (1)

Publication Number Publication Date
KR20030075212A true KR20030075212A (en) 2003-09-26

Family

ID=32225033

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020014262A KR20030075212A (en) 2002-03-16 2002-03-16 Dieletric Device Using PVDF and Nano Ceramics Particles, and Method for Fabrication the Same

Country Status (1)

Country Link
KR (1) KR20030075212A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767290B1 (en) * 2006-07-05 2007-10-17 일신피티에프이공업(주) Mixing machine teflon stuff
KR101429542B1 (en) * 2013-02-19 2014-08-14 국방과학연구소 Method for producing piezoelectric properties enhanced poly(vinylidene fluoride) piezoelectric fiber using wet spinning
KR20160027594A (en) * 2014-09-01 2016-03-10 한국세라믹기술원 Manufacturing method for nanofiber composite using electrospinning
KR20160091703A (en) * 2015-01-26 2016-08-03 서울시립대학교 산학협력단 Energy harvester using piezoelectric fiber and manufaturing method thereof
CN109849379A (en) * 2019-01-09 2019-06-07 苏州东福来机电科技有限公司 Nanosphere reforming process and equipment
CN112216788A (en) * 2020-10-14 2021-01-12 北京化工大学 Preparation method of aerogel/PZT nano powder piezoelectric composite material
KR20210048840A (en) * 2019-10-24 2021-05-04 강석찬 Manufacturing Method of Piezoelectric Device using ceramics-polymer
CN113829598A (en) * 2021-09-29 2021-12-24 墨现科技(东莞)有限公司 Piezoresistive film and preparation method and application thereof
WO2024008213A1 (en) * 2022-07-08 2024-01-11 北京大学口腔医学院 Electrically active antibacterial dental floss and preparation method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767290B1 (en) * 2006-07-05 2007-10-17 일신피티에프이공업(주) Mixing machine teflon stuff
KR101429542B1 (en) * 2013-02-19 2014-08-14 국방과학연구소 Method for producing piezoelectric properties enhanced poly(vinylidene fluoride) piezoelectric fiber using wet spinning
KR20160027594A (en) * 2014-09-01 2016-03-10 한국세라믹기술원 Manufacturing method for nanofiber composite using electrospinning
KR20160091703A (en) * 2015-01-26 2016-08-03 서울시립대학교 산학협력단 Energy harvester using piezoelectric fiber and manufaturing method thereof
CN109849379A (en) * 2019-01-09 2019-06-07 苏州东福来机电科技有限公司 Nanosphere reforming process and equipment
KR20210048840A (en) * 2019-10-24 2021-05-04 강석찬 Manufacturing Method of Piezoelectric Device using ceramics-polymer
CN112216788A (en) * 2020-10-14 2021-01-12 北京化工大学 Preparation method of aerogel/PZT nano powder piezoelectric composite material
CN112216788B (en) * 2020-10-14 2024-04-05 北京化工大学 Preparation method of aerogel/PZT nano-powder piezoelectric composite material
CN113829598A (en) * 2021-09-29 2021-12-24 墨现科技(东莞)有限公司 Piezoresistive film and preparation method and application thereof
WO2023050639A1 (en) * 2021-09-29 2023-04-06 墨现科技(东莞)有限公司 Piezoresistive film and preparation method therefor and application thereof
WO2024008213A1 (en) * 2022-07-08 2024-01-11 北京大学口腔医学院 Electrically active antibacterial dental floss and preparation method therefor

Similar Documents

Publication Publication Date Title
Shanmugasundram et al. A comprehensive review on dielectric composites: Classification of dielectric composites
Kim et al. Fabrication of bulk piezoelectric and dielectric BaTiO3 ceramics using paste extrusion 3D printing technique
Wei et al. 3D printing of piezoelectric barium titanate with high density from milled powders
CN101714453B (en) Thin film capacitor
US8562871B2 (en) Composition and associated method
Su et al. Recent development on modification of synthesized barium titanate (BaTiO 3) and polymer/BaTiO 3 dielectric composites
KR20030075212A (en) Dieletric Device Using PVDF and Nano Ceramics Particles, and Method for Fabrication the Same
US20080006796A1 (en) Article and associated method
Li et al. Direct ink writing of 3D piezoelectric ceramics with complex unsupported structures
US20080009578A1 (en) Composition and associated method
Tolvanen et al. Piezoelectric flexible LCP–PZT composites for sensor applications at elevated temperatures
CN113478810A (en) Preparation method of polyvinylidene fluoride-based 3D printed piezoelectric part with porous structure
Zheng et al. 3D printing orientation controlled PMN-PT piezoelectric ceramics
EP3948964A1 (en) Lead-free piezo composites and methods of making thereof
EP3769349B1 (en) Flexible and low cost piezoelectric composites with high d33 values
CN109291428B (en) Method for regulating and controlling arrangement direction of ceramic nanowires in composite material
EP1053214B1 (en) Polymer compound, the production and use thereof, and sintered compacts produced therefrom
KR20030075211A (en) Composite Material Using Nano Ceramic Particles
CN114174397A (en) Barium titanate fiber, resin composition and polymer composite piezoelectric body each comprising same, and method for producing barium titanate fiber
CN109306142B (en) Novel dielectric composite material
Xu et al. Flexible BaTiO3/SiC@ PbTiO3/epoxy composite films with enhanced dielectric performance at high frequency
JP7460955B2 (en) Barium titanate fiber, resin composition containing same, polymer composite piezoelectric body, and method for producing barium titanate fiber
KR102465218B1 (en) Piezoelectric organic-inorganic hybrid nanoparticles manufacturing method and piezoelectric application products using the same
Sun et al. Piezoelectric-pneumatic micro-jet printing of high viscous piezoelectric slurry
TW202248354A (en) Low dielectric loss resin composition, method for producing same, molded body for high frequency devices, and high frequency device

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid