KR20030066253A - Development of adhesive by using amino acids - Google Patents

Development of adhesive by using amino acids Download PDF

Info

Publication number
KR20030066253A
KR20030066253A KR1020020006612A KR20020006612A KR20030066253A KR 20030066253 A KR20030066253 A KR 20030066253A KR 1020020006612 A KR1020020006612 A KR 1020020006612A KR 20020006612 A KR20020006612 A KR 20020006612A KR 20030066253 A KR20030066253 A KR 20030066253A
Authority
KR
South Korea
Prior art keywords
pmdi
adhesive
amino acids
proteins
polymethylenebisphenylisocyanate
Prior art date
Application number
KR1020020006612A
Other languages
Korean (ko)
Inventor
김환기
박헌
이현우
민경희
강은창
Original Assignee
김환기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김환기 filed Critical 김환기
Priority to KR1020020006612A priority Critical patent/KR20030066253A/en
Publication of KR20030066253A publication Critical patent/KR20030066253A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6415Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63 having nitrogen
    • C08G18/6446Proteins and derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PURPOSE: Provided is an adhesive which is useful for wood, electric and electronic fields, more particularly a non-toxic adhesive using normal amino acids or proteins and not comprising formaldehyde. CONSTITUTION: The adhesive is produced by reacting all amino acids or proteins with polymethylenebisphenyl isocyanate(PMDI). Alternatively, the adhesive is produced by reacting a compound having carboxylic acid and amino acid structures, which is obtained by hydrolyzing all amino acids or proteins, with polymethylenebisphenyl isocyanate(PMDI), wherein the equivalent ratio of the amino acid: PMDI is 3:1 to 1:3. The polymethylenebisphenyl isocyanate(PMDI) is a monomeric or polymeric compound comprising 1-5 equivalent(s) of isocyanate group and has the following structure(wherein n is 0-10).

Description

아미노산을 이용한 접착제 개발{Development of adhesive by using amino acids}Development of adhesive by using amino acids

본 발명은 목재, 전기, 전자용 접착제로, 더욱 상세하게는 일반 아미노산 또는 단백질을 이용한 접착제이다.The present invention is wood, electrical, electronic adhesives, more specifically adhesives using common amino acids or proteins.

국내에서 신소재에 대한 관심이 고조되면서 연구소 및 학교에서 신소재 개발에 참여중이나 특수 전기, 전자 재료를 기초로 한 구조재료에 대한 연구는 기초적인 단계에 있으며 특히 우수한 특수 재료의 경우 선진국이 독점적으로 생산 판매하면서 관련기술의 공개 및 이전을 꺼리고 대부분 노하우로 되어 있는 실정이므로 우수한 구조재료의 개발을 위해서는 국내기술의 축적은 필수적이다. 본 연구팀에서 개발하고자하는 식물성 단백질을 이용한 새로운 접착제 및 코팅제는 부존자원을 이용하여 고부가 가치의 신소재로 경제성이 우수하며, 또한 생분해가 가능하여 그 파급효과는 크다고 볼 수 있다.As interest in new materials is increasing in Korea, research institutes and schools are participating in the development of new materials, but research on structural materials based on special electrical and electronic materials is at a basic stage. At the same time, they are reluctant to disclose and transfer related technologies and are mostly know-how. Therefore, the accumulation of domestic technologies is essential for the development of excellent structural materials. The new adhesives and coatings using vegetable proteins to be developed by the research team are highly economical as new materials with high added value by using existing resources, and they are economically viable and can be considered to have great ripple effects.

통상 접착제는 기계적, 전기절연, 접착성, 성형 가공성 등이 우수한 재료로서 용도나 목적에 따라 여러 가지로 선택되어 사용되고 있다. 이러한 기능성 수지를 얻기 위해서는 기존에 사용하고 있는 물질의 화학적 구조를 선택적으로 변화시켜 화학적, 열적, 전기적, 물리적 성질이 우수한 재료의 특징을 갖는다. 고속성장과 석유화학공업의 발달로 플라스틱은 우리 일상생활에 매우 유용한 산업용 및 소비용품 소재로 사용되고 있다. 플라스틱의 다양한 용도는 가볍고 물성이 우수하며 특히 가공성이 뛰어나 포장재, 전선피복, 전기전자 부품, 자동차부품 등에 쓰여지고 있다. 그러나 근래에 환경의 중요성이 절실해지고 사용 후 발생하는 플라스틱의 폐기물이 분해되지 않고 환경공해를 일으키는 문제점으로 대두되고 있다. 그러나 플라스틱은 타 소재(유리, 금속, 종이)와 비교해 볼 때 제조 공정 상 에너지 사용량이 적으며 또한 공해물질 배출도 작을 수 있는 장점을 지니고 있기 때문에 기존 플라스틱의 사용을 타소재로 대체하기 보다는 효과적인 재활용의 활성화를 통한 노력이 필요하다고 판단된다.In general, adhesives are excellent in mechanical, electrical insulation, adhesion, molding processability, and the like, and are selected and used in various ways depending on the purpose and purpose. In order to obtain such a functional resin, the chemical structure of a material used in the present invention is selectively changed to have characteristics of materials having excellent chemical, thermal, electrical, and physical properties. Due to the rapid growth and development of the petrochemical industry, plastics are used as industrial and consumer goods which are very useful for our daily life. Plastics are used for various applications such as packaging, wire coating, electric and electronic parts, and automobile parts because they are light and have excellent physical properties. However, in recent years, the importance of the environment is desperate, and plastic wastes generated after use have not been decomposed and are causing problems. However, compared to other materials (glass, metal, paper), plastics have the advantage of using less energy in the manufacturing process and lowering the amount of pollutant emissions. Therefore, plastics can be recycled more effectively than other materials. It is necessary to make efforts through the activation of.

이러한 공해문제를 해결하기 위한 노력으로 새로운 분해성, 붕괴성 플라스틱의 개발과 플라스틱을 분리수거 하는 방법, 부피를 최소화하여 매립하는 방법 등이 대두되어 지고 있다. 새로운 분해성 플라스틱은 소유면적이 적은 유럽, 일본 등에서 활발히 진행되고 있으나 현실적으로 가격과 경제적인 면에서 아직 실현성이 적고, 현재 쓰레기 봉투로 사용하고 있는 붕괴성 플라스틱은 단순히 우리 시야에서 보이지 않을 뿐이지 작은 조각 상태로 남아 있는 문제점을 지니고 있다. 매립하는 방법은 우리 나라와 같이 국토 면적이 협소한 경우 매립지 확보의 어려움이 있어 현재로서 환경오염 방지를 위하여 최선의 방책은 폐기물 발생을 줄이거나, 소각하거나, 재활용이 최선의 방법이라 사료된다.Efforts to solve these pollution problems are emerging, such as the development of new degradable, disintegratable plastics, the method of separate collection of plastics, and the method of landfill with minimal volume. New degradable plastics are active in Europe and Japan, where they have a small area of ownership, but in reality, they are still less practical in terms of price and economy, and the disintegratable plastics currently used as garbage bags are simply invisible in our sight. I have a problem remaining. In case of landfill, it is difficult to secure landfill in case of small land area like Korea. Currently, the best way to prevent environmental pollution is to reduce waste, incinerate or recycle.

천연물을 이용한 소재 개발은 환경보호는 물론 자원 재활용을 통한 고부가가치화에 크게 기여할 수 있을 것으로 판단된다. 그러나 새로운 소재가 성공적으로 이용되기 위해서는 경제성 있는 공정개발 및 용도 개발이 필수적이다. 식물성 단백질을 이용한 새로운 열 경화형 접착제 개발은 환경의 중요성 인식으로 매우 유용한 분야로써 특히 스티커 및 점착테이프에 이용되는 종이이형제, 건축용 발수제, 섬유의 방수 코팅, 잉크, 접착제로 응용할 수 있다. 또한, 기능성을 갖는 코팅제(Anti-fogging, Hard coating, anti-static)를 개발하여 고부가 가치화를 추구할 수 있다.The development of materials using natural products is expected to greatly contribute to the high value added through environmental recycling and resource recycling. However, economic process development and application development are essential for the successful use of new materials. Development of new heat-curable adhesives using vegetable proteins is a very useful field in recognition of the importance of the environment. Especially, it can be applied to paper release agent, construction water repellent, textile waterproof coating, ink and adhesive used in stickers and adhesive tapes. In addition, it is possible to pursue high value-added by developing a coating (anti-fogging, hard coating, anti-static) having a functional.

플라스틱을 만드는 거의 모든 소재는 환경오염의 근원이 되는 석유화학을 통하여 얻어지고 있고, 원유의 매장량은 한정되어 있다. 이러한 많은 문제점을 극복할 수 있는 방법 중 하나는 단백질, 즉 아미노산을 사용하여 플라스틱을 만드는 방법으로 환경 친화적 이면서 사용 후 자연적으로 생 분해가 되기 때문에 기존의 플라스틱이 같고 있는 문제점을 자연적으로 해결할 수 있다. 단백질은 우리 일상 생활에 없어서는 안 될 식생활 문화의 필수품으로 고대로부터 현대에 이르기까지 사용되어 졌고 또 사용될 것이다.Almost all materials used to make plastics are obtained through petrochemicals, the source of environmental pollution, and the reserves of crude oil are limited. One of the ways to overcome many of these problems is to make plastics using proteins, that is, amino acids, which are environmentally friendly and naturally biodegradable after use, thereby naturally solving the same problems as conventional plastics. Protein has been and will be used from ancient to modern times as an essential food culture in our daily lives.

..

본 발명에서는 새로운 전기가 될 수 있는 획기적인 방법으로 첫째 식물성 단백질을 이용하여 새로운 환경 친화형 접착제를 개발하는데 있으며, 둘째 목재에 응용되고 있는 열경화형 접착제를 제조하는데 있다. 식물성 단백질은 펩타이드 결합을 하고 있어 자연적으로 가수분해되는 성질을 지니고 있으며, 이러한 가수분해 되는 성질을 이용하여 화학적 구조를 변형시켜 고기능성을 갖는 즉 발수성(hydrophobic) 성질을 갖게 함으로써 수분에 강한 소재 개발에 초점을 두었다. 본 발명은 기존에 사용하고 있는 포름알데히드를 전혀 사용하지 않기 때문에 인체에 해로운 강한 독성을 배제할 수 있고, 또한 경제적 단가를 낮출 수 있다.In the present invention, a revolutionary method to become a new electricity is to develop a new environmentally friendly adhesive using the first vegetable protein, and second to prepare a thermosetting adhesive applied to wood. Plant protein has a property of being naturally hydrolyzed because it has a peptide bond, and by using this hydrolyzable property, the chemical structure is modified to have a high functionality, that is, a hydrophobic property, to develop a material resistant to moisture. Focused. Since the present invention does not use any conventionally used formaldehyde, it is possible to exclude the strong toxicity harmful to the human body, and also to lower the economic cost.

본 발명의 구성은 아미노산이 지니고 있는 아미노기과 카르복시산기를 이소시아네이트기와 반응시켜 아마이드결합과 우레아기를 동시에 형성하여 새로운 성질의 접착제를 개발하는데 있다. 이러한 방법은 기존의 이소시아네트만을 이용한 접착제가 갖는 접착력의 문제점과 이소시아네이트와 폴리올을 이용한 우레탄 수지의 고가 문제를 해결할 수 있다.The structure of the present invention is to develop an adhesive of a new property by forming an amide bond and a urea group at the same time by reacting the amino group and carboxylic acid group of the amino acid isocyanate group. This method can solve the problem of the adhesive strength of the conventional adhesive using only isocyanate and the expensive problem of urethane resin using isocyanate and polyol.

현재 목재에 이용하고 있는 접착제 및 코팅제는 대부분이 석유화학 제품으로 이루어져 있다. 이러한 소재는 연소시 열에 의하여 다이옥신이 발생되는 문제점을 앉고 있으며, 또한 폐기물이 매립처리 될 때 유해물질이 용출하여 토양이나 수질을 오염한다는 새로운 환경문제로 지적되고 있다. 이러한 문제점을 해결할 수 있는 방안은 천연에서 얻어진 생분해성 재료의 이용하므로써 해결할 수 있다. 현재 목재 산업에서 목조주택 및 목재를 이용한 실내마루에 사용되고 있는 포름알데히드 접착제의 발암물질에 대한 위험성으로 국외에서는 그 사용이 제한되고 있다. 예를 들어 파렛트를 이용한 수출시 플라스틱이나 포름알테히드 접착제를 사용한 목재 파렛트는 사용이 규제되고 있다. 이상의 결과에서 아미노산의 함량이 증가함에 따라 접착력이 감소되었으나, 폴리메틸렌비스페닐이소시아네이트 (PMDI)에 대해 아미노산1.2 당량 이하를 사용했을 때 폴리메틸렌비스페닐이소시아네이트 (PMDI)만을 이용한 접착제 보다 우수함을 보여주고 있다. 아미노산 중에서 글리신과 아스파라진을 사용했을 때 특히 우수하게 나타났으며 반면 아민기가 2개 붙어있는 세린과 라이신의 경우 현저히 감소하는 현상을 보여주고 있다. 이는 폴리메틸렌비스페닐이소시아네이트 (PMDI)의 이소시아네이트기와 반응성이 큰 아민기가 먼저 반응하여 목재의 하이드록시기가 반응하는 것을 감소시킨 결과라 할 수 있다. 현재의 결과에서 폴리메틸렌비스페닐이소시아네이트 (PMDI)와 1:1 당량으로 반응하는 것이 접착력과 PMDI의 양을 줄일 수 있는 방법이라 할 수 있다. 반응성은 글리신 > 아스파라진 > 세린 > 아르기닌 > 라이신 순으로 나타났으며 이는 용해도 보다는 아미노산이 가지고있는 고유의 화학적구조에 기인하다고 볼 수 있다.Most of the adhesives and coatings currently used for wood are made of petrochemical products. These materials have a problem that dioxin is generated by heat during combustion, and it is pointed out as a new environmental problem that harmful substances are eluted by polluting soil or water when waste is landfilled. The solution to this problem can be solved by using biodegradable materials obtained from nature. The use of formaldehyde adhesives, which are currently used in wooden houses and wooden floors in the timber industry, is a risk for carcinogens. For example, pallets made of plastic or formaldehyde adhesives are regulated for export using pallets. In the above results, although the adhesion decreased with increasing amino acid content, it showed that it was superior to the adhesive using only polymethylene bisphenyl isocyanate (PMDI) when less than 1.2 equivalents of amino acid was used for polymethylene bisphenyl isocyanate (PMDI). . Among the amino acids, glycine and asparagine were especially excellent, whereas serine and lysine with two amine groups showed a significant decrease. This is the result of reducing the reaction of the hydroxyl group of the wood by first reacting the isocyanate group of the polymethylene bisphenyl isocyanate (PMDI) and the highly reactive amine group. In the present results, a 1: 1 equivalent reaction with polymethylenebisphenylisocyanate (PMDI) can be said to reduce the adhesion and the amount of PMDI. Reactivity was shown in order of glycine> asparagine> serine> arginine> lysine, which is due to the inherent chemical structure of amino acids rather than solubility.

1. 접착시험용 합판제조1. Manufacturing plywood for adhesion test

1.1. 단판1.1. Veneer

접착시험용 합판을 제조하여 접착력을 측정하기 위한 단판은 기건 비중 0.50∼0.65의 뉴기니아 활엽수재인 카나리움(Canariumspp.)을 사용하였다. 단판은 국내 합판제조회사에서 분양받았다. 단판 두께는 표리판 1.0mm, 심판 2.4mm였으며 합판 제조시험에 용이하도록 200mm×200mm로 제단하였다. 단판의 함수율은 105℃의 항온건조기에서 24시간 건조하였으며, 함수율은 표판이 6.7%, 중판이 6.1%였다.The single piece for the manufacture of the adhesion test to measure the adhesive strength of plywood was used for the re-Kana Guinea hardwood Solarium (Canarium spp.) Of the air dry average specific gravity from 0.50 to 0.65. Single plates were sold by domestic plywood manufacturers. The plate thickness was 1.0mm on the front and back, and 2.4mm on the judgment plate, and it was cut into 200mm × 200mm to facilitate the plywood manufacturing test. The moisture content of the single plate was dried for 24 hours in a constant temperature dryer at 105 ℃, the moisture content of the plate was 6.7%, the middle plate was 6.1%.

1.2. 접착시험용 합판 제조1.2. Manufacture Plywood for Adhesion Test

접착시험용 합판을 아래와 같은 조건으로 제조하였다. 접착제 도포량은 기존의 접착력 시험 기준 사용량(120∼170g/㎡(편면도포), 표준임업연구실시요령(임산)제3장 제10절 2항)과 접착제 내수분함량이 1%이하인 점을 고려하여 도포량은 150g/㎡(편면기준 도포)이며 롤러로 도포하였다.Adhesion test plywood was prepared under the following conditions. Considering the amount of adhesive applied based on the existing adhesive test standard usage (120 ~ 170g / m2 (one side coating), standard forestry research guideline (forest) chapter 3, section 10, paragraph 2) and the moisture content of adhesive is less than 1% The coating amount was 150 g / m 2 (single side application) and applied with a roller.

열압은 수동유압식 냉 ·열압기(Carver, model 2731, 2단식, 미국제, ram ø 5.69cm)를 이용하였다. 이때 카울과 목질판상재의 금속부착현상을 고려하여 PP(polypropylene, melting point 170∼180℃)필름을 삽입시켰다.Heat pressure was used by a manual hydraulic cold and heat press (Carver, model 2731, two-stage, made in the USA, ram ø 5.69cm). At this time, PP (polypropylene, melting point 170 ~ 180 ℃) film was inserted in consideration of the metal adhesion phenomenon of cowl and wood plate material.

합판제조조건Plywood Manufacturing Conditions

1.3 함수율과 접착력 시험1.3 Moisture and Adhesion Test

함수율은 시험편을 100mm×100mm로 제재한 후 측정하였다. 함수율은 105±2℃의 건조기내에서 24시간 건조시킨 후 시편의 무게를 측정하여 식 1로 측정하였다.The moisture content was measured after the test piece was cut into 100 mm x 100 mm. The water content was measured by Equation 1 by measuring the weight of the specimen after drying for 24 hours in a 105 ± 2 ℃ dryer.

접착 시험편으로부터 75mm×25mm의 크기로 절단하여 접착력 시편 B형으로 제조하였다. 준비된 시편으로 상태시험, 내수시험, 반복끓임시험으로 구분하여 측정하였다.The adhesive test piece was cut into a size of 75 mm × 25 mm to prepare an adhesive force specimen type B. The prepared specimens were measured and divided into condition test, water test, and repeated boiling test.

상태시험은 상온상태에서 접착력을 측정하였고, 내수시험은 시험편을 60±3℃의 온수에 3시간을 담근 후 상온의 물 속에서 식혀서 젖은 상태로 접착력을 조사하였다. 반복끓임시험은 시험편을 끓는 물에서 4시간 삶은 후 60±3℃의 건조기에서 20시간 건조하고 다시 끓는 물에서 4시간 삶은 후, 상온의 물 속에서 식히고 젖은 상태로 접착력을 조사하였다.In the state test, the adhesion was measured at room temperature, and in the water resistance test, the specimen was immersed in warm water at 60 ± 3 ° C. for 3 hours, cooled in water at room temperature, and examined for adhesion in the wet state. In the repeated boiling test, the test pieces were boiled in boiling water for 4 hours, dried in a dryer at 60 ± 3 ° C. for 20 hours, and boiled again in boiling water for 4 hours, cooled in water at room temperature, and examined for adhesion in a wet state.

접착력 시험은 만능재료시험기(영국 Hounsfield H 50K-S)를 이용하였으며 크로스헤드 상승속도는 2mm/min로 측정하였다. 접착력은 아래 식 3에 의하여 산출하였다.The adhesion test was carried out using a universal testing machine (Hunsfield H 50K-S, UK) and the crosshead ascent rate was measured at 2 mm / min. Adhesive force was computed by following formula 3.

실시예 1.Example 1.

1000 mL 삼구 플라스크에 16.14 g의 글리신에 계면활성제를 이용, 유화가 용이하도록 하였다. 계면활성제는 접착제 양의 8 wt%를 첨가하여 교반속도 1,000rpm으로 10분간 혼합하였다. 혼합물에 113 g의 물 넣고 혼합시 wax emulsion을 투입하였으며 wax emulsion은 접착제 고형분의 1wt%을 투입하여 30분 동안 혼합하였다. 혼합 후 136.88g의 폴리메틸렌비스페닐이소시아네이트 (PMDI)를 넣고 동일한 교반속도로 15분 동안 교반 후 즉시 사용하였다.Emulsification was facilitated using a surfactant in 16.14 g glycine in a 1000 mL three neck flask. The surfactant was added by 8 wt% of the adhesive amount and mixed for 10 minutes at a stirring speed of 1,000 rpm. 113 g of water was added to the mixture, and the wax emulsion was added during mixing. The wax emulsion was mixed for 30 minutes by adding 1wt% of the adhesive solids. After mixing, 136.88 g of polymethylenebisphenylisocyanate (PMDI) was added thereto, followed by stirring for 15 minutes at the same stirring speed and immediately used.

실시예 2-6.Example 2-6.

표1에서 보는 바와 같이 글리신의 양을 폴리메틸렌비스페닐이소시아네이트 (PMDI)에 대하여 1.2, 1.7, 2.2, 2.7, 3.2 당량을 혼합하여 실시예 1와 동일한 방법으로 실시하였다.As shown in Table 1, the amount of glycine was carried out in the same manner as in Example 1 by mixing 1.2, 1.7, 2.2, 2.7 and 3.2 equivalents with respect to polymethylenebisphenylisocyanate (PMDI).

실시예 7.Example 7.

1000 mL 삼구 플라스크에 18.94 g의 아스파라진에 계면활성제를 이용, 유화가 용이하도록 하였다. 계면활성제는 접착제 양의 8 wt%를 첨가하여 교반속도 1,000rpm으로 10분간 혼합하였다. 혼합물에 378.8 g의 물 넣고 혼합시 wax emulsion을 투입하였으며 wax emulsion은 접착제 고형분의 1wt%을 투입하여 30분 동안 혼합하였다 혼합 후 136.82g의 폴리메틸렌비스페닐이소시아네이트 (PMDI)를 넣고 동일한 교반속도로 15분 동안 교반 후 즉시 사용하였다.Emulsification was facilitated using a surfactant in 18.94 g of asparagine in a 1000 mL three neck flask. The surfactant was added by 8 wt% of the adhesive amount and mixed for 10 minutes at a stirring speed of 1,000 rpm. 378.8 g of water was added to the mixture, and a wax emulsion was added at the time of mixing. The wax emulsion was mixed with 1 wt% of an adhesive solid for 30 minutes. After mixing, 136.82 g of polymethylene bisphenyl isocyanate (PMDI) was added and the mixture was stirred at the same stirring speed. It was used immediately after stirring for minutes.

실시예 8-12.Example 8-12.

표2에서 보는 바와 같이 아스파라진의 양을 폴리메틸렌비스페닐이소시아네이트 (PMDI)에 대하여 1.2, 1.7, 2.2, 2.7, 3.2 당량을 혼합하여 실시예 7와 동일한 방법으로 실시하였다.As shown in Table 2, the amount of asparagine was mixed with 1.2, 1.7, 2.2, 2.7, and 3.2 equivalents of polymethylenebisphenylisocyanate (PMDI) in the same manner as in Example 7.

실시예 13.Example 13.

1000 mL 삼구 플라스크에 15.06 g의 세린에 계면활성제를 이용, 유화가 용이하도록 하였다. 계면활성제는 접착제 양의 8 wt%를 첨가하여 교반속도 1,000rpm으로 10분간 혼합하였다. 혼합물에 301.2 g의 물 넣고 혼합시 wax emulsion을 투입하였으며 wax emulsion은 접착제 고형분의 1wt%을 투입하여 30분 동안 혼합하였다. 혼합 후 136.79g의 폴리메틸렌비스페닐이소시아네이트 (PMDI)를 넣고 동일한 교반속도로 15분 동안 교반 후 즉시 사용하였다.In a 1000 mL three-necked flask, 15.06 g of serine was used as a surfactant to facilitate emulsification. The surfactant was added by 8 wt% of the adhesive amount and mixed for 10 minutes at a stirring speed of 1,000 rpm. 301.2 g of water was added to the mixture, and a wax emulsion was added at the time of mixing. The wax emulsion was mixed for 30 minutes by adding 1 wt% of an adhesive solid. After mixing, 136.79 g of polymethylenebisphenylisocyanate (PMDI) was added thereto, followed by stirring for 15 minutes at the same stirring speed and immediately used.

실시예 14-18.Example 14-18.

표3에서 보는 바와 같이 세린의 양을 폴리메틸렌비스페닐이소시아네이트 (PMDI)에 대하여 1.2, 1.7, 2.2, 2.7, 3.2 당량을 혼합하여 실시예 13와 동일한 방법으로 실시하였다.As shown in Table 3, the amount of serine was mixed with 1.2, 1.7, 2.2, 2.7, and 3.2 equivalents of polymethylenebisphenylisocyanate (PMDI) in the same manner as in Example 13.

실시예 19.Example 19.

1000 mL 삼구 플라스크에 24.79 g의 아르기닌에 계면활성제를 이용, 유화가 용이하도록 하였다. 계면활성제는 접착제 양의 8 wt%를 첨가하여 교반속도 1,000rpm으로 10분간 혼합하였다. 혼합물에 424.5 g의 물 넣고 혼합시 wax emulsion을 투입하였으며 wax emulsion은 접착제 고형분의 1wt%을 투입하여 30분 동안 혼합하였다. 혼합 후 136.83g의 폴리메틸렌비스페닐이소시아네이트 (PMDI)를 넣고 동일한 교반속도로 15분 동안 교반 후 즉시 사용하였다.In a 1000 mL three-necked flask, 24.79 g of arginine was used as a surfactant to facilitate emulsification. The surfactant was added by 8 wt% of the adhesive amount and mixed for 10 minutes at a stirring speed of 1,000 rpm. 424.5 g of water was added to the mixture, and the wax emulsion was added at the time of mixing. The wax emulsion was mixed for 30 minutes by adding 1wt% of the adhesive solids. After mixing, 136.83 g of polymethylenebisphenylisocyanate (PMDI) was added thereto, followed by stirring for 15 minutes at the same stirring speed and immediately used.

실시예 20-24.Example 20-24.

표4에서 보는 바와 같이 아르기닌의 양을 폴리메틸렌비스페닐이소시아네이트 (PMDI)에 대하여 1.2, 1.7, 2.2, 2.7, 3.2 당량을 혼합하여 실시예 13와 동일한 방법으로 실시하였다.As shown in Table 4, the amount of arginine was mixed with 1.2, 1.7, 2.2, 2.7, and 3.2 equivalents of polymethylenebisphenylisocyanate (PMDI) in the same manner as in Example 13.

실시예 25.Example 25.

1000 mL 삼구 플라스크에 23.54 g의 라이신에 계면활성제를 이용, 유화가 용이하도록 하였다. 계면활성제는 접착제 양의 8 wt%를 첨가하여 교반속도 1,000rpm으로 10분간 혼합하였다. 혼합물에 117.7 g의 물 넣고 혼합시 wax emulsion을 투입하였으며 wax emulsion은 접착제 고형분의 1wt%을 투입하여 30분 동안 혼합하였다. 혼합 후 136.84g의 폴리메틸렌비스페닐이소시아네이트 (PMDI)를 넣고 동일한 교반속도로 15분 동안 교반 후 즉시 사용하였다.Emulsification was facilitated by using a surfactant in 23.54 g of lysine in a 1000 mL three neck flask. The surfactant was added by 8 wt% of the adhesive amount and mixed for 10 minutes at a stirring speed of 1,000 rpm. 117.7 g of water was added to the mixture, and a wax emulsion was added during mixing. The wax emulsion was mixed for 30 minutes by adding 1 wt% of an adhesive solid. After mixing, 136.84 g of polymethylenebisphenylisocyanate (PMDI) was added thereto, followed by stirring for 15 minutes at the same stirring speed and immediately used.

실시예 26-30.Example 26-30.

표5에서 보는 바와 같이 라이신의 양을 폴리메틸렌비스페닐이소시아네이트 (PMDI)에 대하여 1.2, 1.7, 2.2, 2.7, 3.2 당량을 혼합하여 실시예 13와 동일한 방법으로 실시하였다.As shown in Table 5, the amount of lysine was carried out in the same manner as in Example 13, by mixing 1.2, 1.7, 2.2, 2.7, and 3.2 equivalents with respect to polymethylenebisphenylisocyanate (PMDI).

비교예 1-3.Comparative Example 1-3.

표1에서 보는 바와 같이 글리신의 양을 폴리메틸렌비스페닐이소시아네이트 (PMDI)에 대하여 3.7, 4.0, 4.3당량을 혼합하여 실시예 1와 동일한 방법으로 실시하였다.As shown in Table 1, the amount of glycine was carried out in the same manner as in Example 1 by mixing 3.7, 4.0, and 4.3 equivalents with respect to polymethylenebisphenylisocyanate (PMDI).

비교예 4-6.Comparative Example 4-6.

표2에서 보는 바와 같이 아스파라진의 양을 폴리메틸렌비스페닐이소시아네이트 (PMDI)에 대하여 3.7, 4.0, 4.3 당량을 혼합하여 실시예 1와 동일한 방법으로 실시하였다.As shown in Table 2, the amount of asparagine was mixed in the same manner as in Example 1 by mixing 3.7, 4.0, and 4.3 equivalents with respect to polymethylenebisphenylisocyanate (PMDI).

비교예 7-9.Comparative Example 7-9.

표3에서 보는 바와 같이 세린의 양을 폴리메틸렌비스페닐이소시아네이트 (PMDI)에 대하여 3.7, 4.0, 4.3 당량을 혼합하여 실시예 1와 동일한 방법으로 실시하였다.As shown in Table 3, the amount of serine was carried out in the same manner as in Example 1 by mixing 3.7, 4.0, and 4.3 equivalents with respect to polymethylenebisphenylisocyanate (PMDI).

비교예 10-12.Comparative Example 10-12.

표4에서 보는 바와 같이 아르기닌의 양을 폴리메틸렌비스페닐이소시아네이트 (PMDI)에 대하여 3.7, 4.0, 4.3 당량을 혼합하여 실시예 1와 동일한 방법으로 실시하였다.As shown in Table 4, the amount of arginine was performed in the same manner as in Example 1 by mixing 3.7, 4.0, and 4.3 equivalents with respect to polymethylenebisphenylisocyanate (PMDI).

비교예 13-15.Comparative Example 13-15.

표5에서 보는 바와 같이 라이신의 양을 폴리메틸렌비스페닐이소시아네이트 (PMDI)에 대하여 3.7, 4.0, 4,3 당량을 혼합하여 실시예 1와 동일한 방법으로 실시하였다.As shown in Table 5, the amount of lysine was carried out in the same manner as in Example 1 by mixing 3.7, 4.0, 4,3 equivalents with respect to polymethylenebisphenylisocyanate (PMDI).

표 1. 글리신의 반응조건 및 반응 결과Table 1. Reaction conditions and reaction results of glycine

- MDI : 유화제 : 아미노산 용해액 = 100 : 8 : 100 비율-MDI: Emulsifier: Amino Acid Solution = 100: 8: 100 Ratio

표 2. 아스파라진의 반응조건 및 반응 결과Table 2. Reaction Conditions and Result of Asparagine

표 3. 세린의 반응조건 및 반응 결과Table 3. Reaction Condition and Result of Serine

표 4. 아르기닌의 반응조건 및 반응 결과Table 4. Reaction Conditions and Result of Arginine

표 5. 라이신의 반응조건 및 반응 결과Table 5. Reaction conditions and results of lysine

본 발명은 아미노산 또는 단백질과 폴리메틸렌비스페닐이소시아네이트 (PMDI)을 이용하여 상업적으로 유용한 산업자재용 접착제를 개발하였다. 다양한 접착제의 합성은 새로운 환경 친화적인 열경화형 소재로 이용할 수 있는 유용한 방법이라 할 수 있다. 일반적으로 단백질은 반응을 할 수 있는 아미노기와 카르복시산을 지니고 있으며, 또한 자연분해를 할 수 있는 아마이드를 지니고 있어 환경 친화형 소재로 사용할 수 있다. 본 발명의 특징은 기존의 아미노산 및 단백질를 이용한 환경 친화형 접착제의 합성과 산업자재중 목재용으로 포름알데이드가 전혀 포함되지 않은 무독성 접착제를 제조하는데 있다.The present invention has developed commercially useful industrial materials adhesives using amino acids or proteins and polymethylenebisphenylisocyanates (PMDI). Synthesis of various adhesives is a useful method that can be used as a new environmentally friendly thermosetting material. In general, proteins have amino groups and carboxylic acids that can react, and also have amides that can decompose naturally and can be used as environmentally friendly materials. A feature of the present invention is the synthesis of environmentally friendly adhesives using existing amino acids and proteins and the production of non-toxic adhesives that do not contain any formaldehyde for wood in industrial materials.

Claims (5)

모든 아미노산 또는 단백질을 폴리메틸렌비스페닐이소시아네이트 (PMDI)와 반응시켜 얻은 화합물로 목재 산업용 코팅제 또는 접착제로 응용되는 것을 특징으로 한다.A compound obtained by reacting all amino acids or proteins with polymethylenebisphenylisocyanate (PMDI), characterized in that it is applied as a coating or adhesive for the wood industry. 모든 아미노산 또는 단백질을 가수분해하여 얻은 카르복시산과 아미노산 구조를 지닌 화합물과 폴리메틸렌비스페닐이소시아네이트 (PMDI)를 반응하여 얻은 화합물이며, 아미노산과 PMDI의 당량비율은 3:1에서 1:3영역을 포함한다.A compound obtained by reacting a carboxylic acid obtained by hydrolysis of all amino acids or proteins with a compound having an amino acid structure and polymethylenebisphenyl isocyanate (PMDI), and the equivalence ratio of amino acids and PMDI is in the range of 3: 1 to 1: 3. . 청구범위 1과 2에서 얻은 화합물은 폴리우레탄 또는 폴리우레아 구조로 이루어진 화합물이다.The compounds obtained in claims 1 and 2 are compounds consisting of polyurethane or polyurea structures. 청구범위 1과 2항에서 사용한 폴리메틸렌비스페닐이소시아네이트 (PMDI)는 이소시아네니트기를 1당량에서 5당량까지 함유하는 단물질 또는 고분자량의 화합물이며 그 구조는 다음과 같다.Polymethylenebisphenylisocyanate (PMDI) used in claims 1 and 2 is a mono- or high molecular weight compound containing isocyanine group from 1 equivalent to 5 equivalents and its structure is as follows. n은 0에서 10까지 포함한다.n contains 0 to 10. 위에서 얻어진 모든 화합물을 이용하여 산업용 접착제 또는 코팅제에 응용되는 모든 영역으로 한다.All the compounds obtained above are used to make all the areas applied to industrial adhesives or coatings.
KR1020020006612A 2002-02-05 2002-02-05 Development of adhesive by using amino acids KR20030066253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020006612A KR20030066253A (en) 2002-02-05 2002-02-05 Development of adhesive by using amino acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020006612A KR20030066253A (en) 2002-02-05 2002-02-05 Development of adhesive by using amino acids

Publications (1)

Publication Number Publication Date
KR20030066253A true KR20030066253A (en) 2003-08-09

Family

ID=32220621

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020006612A KR20030066253A (en) 2002-02-05 2002-02-05 Development of adhesive by using amino acids

Country Status (1)

Country Link
KR (1) KR20030066253A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100540796B1 (en) * 2002-12-09 2006-01-11 학교법인 건국대학교 Polyurethane-amide Adhesive using Glycerol and Fatty acid
KR101875478B1 (en) * 2017-12-08 2018-08-02 소남우 Preparation Method of Cork Chips and Floor Construction Method Using the Same
CN111234761A (en) * 2020-03-17 2020-06-05 北京华腾新材料股份有限公司 Single-component solvent-free polyurethane adhesive and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141371A (en) * 1980-04-04 1981-11-05 Sugiyama Sangyo Kagaku Kenkyusho Water-resistant adhesive
JPS5761074A (en) * 1980-10-01 1982-04-13 Hohnen Oil Co Ltd Adhesive for resinous wood
JPH07102236A (en) * 1993-10-06 1995-04-18 Aica Kogyo Co Ltd Adhesive for woody plate
JPH10140124A (en) * 1996-11-12 1998-05-26 Mitsui Chem Inc Adhesive composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141371A (en) * 1980-04-04 1981-11-05 Sugiyama Sangyo Kagaku Kenkyusho Water-resistant adhesive
JPS5761074A (en) * 1980-10-01 1982-04-13 Hohnen Oil Co Ltd Adhesive for resinous wood
JPH07102236A (en) * 1993-10-06 1995-04-18 Aica Kogyo Co Ltd Adhesive for woody plate
JPH10140124A (en) * 1996-11-12 1998-05-26 Mitsui Chem Inc Adhesive composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100540796B1 (en) * 2002-12-09 2006-01-11 학교법인 건국대학교 Polyurethane-amide Adhesive using Glycerol and Fatty acid
KR101875478B1 (en) * 2017-12-08 2018-08-02 소남우 Preparation Method of Cork Chips and Floor Construction Method Using the Same
WO2019112272A1 (en) * 2017-12-08 2019-06-13 주식회사 에이로드 Method for manufacturing processed cork chip and method for constructing floor using same
US11920038B2 (en) 2017-12-08 2024-03-05 A-Road Co. Method for manufacturing processed cork chip and method for constructing floor using same
CN111234761A (en) * 2020-03-17 2020-06-05 北京华腾新材料股份有限公司 Single-component solvent-free polyurethane adhesive and preparation method thereof

Similar Documents

Publication Publication Date Title
RU2123014C1 (en) Moldings containing cellulose acetate-based binding material and reinforcing natural cellulose fibers, and method of production thereof
CN101708614B (en) High-intensity wood plastic composite board and fabrication method thereof
Singha et al. Fabrication and study of lignocellulosic hibiscus sabdariffa fiber reinforced polymer composites
AU742095B2 (en) A process for manufacturing, by molding non-resinous organic and inorganic compositions
Li et al. Preparation of a high bonding performance soybean protein-based adhesive with low crosslinker addition via microwave chemistry
CN101885231A (en) Preparation method of fully-degradable polymer wood plastic composite
CN102936476A (en) Heat transfer printing adhesion agent, heat transfer printing film and heat transfer printing method
Alexy et al. Poly (vinyl alcohol)–collagen hydrolysate thermoplastic blends: II. Water penetration and biodegradability of melt extruded films
Zhou et al. Design of tough, strong and recyclable plant protein-based adhesive via dynamic covalent crosslinking chemistry
CN104844971A (en) Preparation methods of anti-aging wood-plastic composite and light stabilizer
Padinjakkara et al. Biopolymers and Biomaterials
Deng et al. Properties and biodegradability of water-resistant soy protein/poly (ɛ-caprolactone)/toluene-2, 4-diisocyanate composites
KR20030066253A (en) Development of adhesive by using amino acids
CN101486889B (en) Monomer copolymerization modified soy protein adhesive and preparation thereof
CN109867863A (en) A kind of Wood-plastic composite environmentally-friendly material and preparation method thereof
Yang et al. Environmental effects and economic analysis of adhesives: a review of life cycle assessment (LCA) and techno-economic analysis (TEA)
Li et al. Development of a strong and multifunctional soy protein-based adhesive with excellent coating and prepressing in wet state by constructing a radical polymerization and organic-inorganic mineralization bionic structure
Chowdhury et al. A review on biodegradable polymeric materials derived from vegetable oils for diverse applications
CN110003416B (en) Emulsifiable isocyanate, preparation method and emulsification method thereof
Wu et al. An environmentally friendly bio-based wood adhesive prepared via a green and mild method inspired by insect cuticle
Pelita et al. Analysis physical properties of composites polymer from cocofiber and polypropylene plastic waste with maleic anhydrate as crosslinking agent
CN102190770A (en) Production method for urea resin
CN109503786A (en) A kind of Lauxite and preparation method thereof and degradable mulch prepared therefrom
US20210310185A1 (en) Biodegradable synthetic leather produced from recycled material
KR101169938B1 (en) Polyethylene/wood flour/clay nanocomposite

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application