KR101169938B1 - Polyethylene/wood flour/clay nanocomposite - Google Patents

Polyethylene/wood flour/clay nanocomposite Download PDF

Info

Publication number
KR101169938B1
KR101169938B1 KR1020090065281A KR20090065281A KR101169938B1 KR 101169938 B1 KR101169938 B1 KR 101169938B1 KR 1020090065281 A KR1020090065281 A KR 1020090065281A KR 20090065281 A KR20090065281 A KR 20090065281A KR 101169938 B1 KR101169938 B1 KR 101169938B1
Authority
KR
South Korea
Prior art keywords
polyethylene
clay
wood
wood powder
hdpe
Prior art date
Application number
KR1020090065281A
Other languages
Korean (ko)
Other versions
KR20110007703A (en
Inventor
김대수
박병섭
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Priority to KR1020090065281A priority Critical patent/KR101169938B1/en
Publication of KR20110007703A publication Critical patent/KR20110007703A/en
Application granted granted Critical
Publication of KR101169938B1 publication Critical patent/KR101169938B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

열안정성 및 치수안정성이 개선된 친환경적 HDPE/목분/점토 나노복합체가 개시된다. 본 발명에 의하면, 인터널믹서에 폴리에틸렌과 상용화제를 투입하여 용융혼합한 다음 점토를 투입하고 용융시킨 후 목분을 첨가하여 용융혼합하여서 제조되는 HDPE/목분/점토 나노복합체를 제공하므로서 그 목적이 달성된다.An environmentally friendly HDPE / wood flour / clay nanocomposite with improved thermal and dimensional stability is disclosed. According to the present invention, the purpose is achieved by providing an HDPE / wood powder / clay nanocomposite prepared by melt mixing by adding polyethylene and a compatibilizer to an internal mixer, then mixing and melting clay, and then adding wood powder. do.

Description

폴리에틸렌/목분/점토 나노복합체 제조방법{Polyethylene/wood flour/clay nanocomposite}Polyethylene / wood flour / clay nanocomposite manufacturing method {Polyethylene / wood flour / clay nanocomposite}

본 발명은 열안정성 및 치수안정성이 개선된 환경친화적 HDPE/목분/점토 나노복합체 제조방법 관한 것으로서, 보다 상세하게는 열안정성 및 치수안정성이 취약한 폴리올레핀/목분 복합체 제조에 새로운 가공방법(재료)의 도입으로 나노클레이(Nanoclay)의 분산성을 향상시켜 종래 기술보다 더욱 우수한 열안정성 및 치수안정성을 발현하는 환경친화적 HDPE/목분/점토 나노복합체 제조방법에 관한 것이다.The present invention relates to a method for manufacturing environmentally friendly HDPE / wood powder / clay nanocomposites with improved thermal stability and dimensional stability, and more particularly, to introduce a new processing method (material) for the production of polyolefin / wood powder composites having poor thermal stability and dimensional stability. The present invention relates to a method for producing environmentally friendly HDPE / wood powder / clay nanocomposites, which improves the dispersibility of nanoclay and thus exhibits better thermal stability and dimensional stability than the prior art.

최근 들어, 전 세계적으로 환경 및 자원에 대한 인식의 변화로 다양한 종류의 천연필러(natural filler)로 보강된 열가소성 플라스틱 산업이 큰 관심을 받고 있다. 특히 WPCs(Wood Plastic Composites)산업은 PP, HDPE, LDPE, PVC 등의 열가소성수지와 목분 등의 천연섬유질을 적절한 비율로 혼합하여 제조한 복합 소재로서, 건축자재 등의 여러 산업 분야에 널리 쓰이고 있다. WPC는 건축재로 사용했던 폐목재 및 원목을 가공하는 관정에서 발생되는 많은 양의 톱밥을 환경 친화적으로 재활용하기 위하여 연구 및 개발되어 왔으며 목분을 열가소성 수지에 넣어 용융블렌딩하는 가공법이 가장 많이 연구 되고 있다. In recent years, the thermoplastic plastics industry, which is reinforced with various kinds of natural fillers due to a change in environmental and resource awareness, has received great attention. In particular, the WPCs (Wood Plastic Composites) industry is a composite material manufactured by mixing a suitable ratio of thermoplastic resins such as PP, HDPE, LDPE, PVC and natural fiber such as wood powder, and is widely used in various industrial fields such as building materials. WPC has been researched and developed to recycle environmentally friendly amount of sawdust from waste wood and solid wood used as building materials, and the processing method of melt blending wood powder into thermoplastic resin is studied.

산업이 고도로 발전함에 따라 고분자의 수요는 급격히 증가하고 있으며 특히 건축 및 일반 생활용품 재료에 널리 이용되고 있다. 이러한 플라스틱 재료는 주로 목재를 대체하는 용도로 사용되기 시작하였으며 그 후로 많은 양의 플라스틱 재료는 건축재뿐만 아니라 가구제조 등의 목재 사용분야에도 널리 사용되고 있다. 천연재료인 목재는 가격이 비쌀 뿐만 아니라 수급도 불안정하며 또한 최근의 전 세계적인 관심사인 지구 온난화라는 환경측면에서도 바람직하지 않기 때문에 기존에 목재가 사용되던 많은 부분을 플라스틱 및 그 복합체가 대체해 가고 있다.As the industry develops highly, the demand for polymers is increasing rapidly, especially in construction and general household materials. These plastic materials are mainly used as a substitute for wood, and since then, a large amount of plastic materials have been widely used not only for building materials but also for wood use such as furniture manufacturing. Wood, a natural material, is not only expensive but unstable in supply and demand, and is also unfavorable in terms of environmental protection such as global warming, which is a recent global concern. Therefore, plastics and their composites are replacing many parts of wood.

WPC는 목분과 열가소성 수지의 복합체로서 주로 외부의 건축자재로서 사용되어 지고 있다. 따라서 외부의 수분, 주위 온도, 자외선, 균, 곤충 등의 의해서 그 제품의 물성이 감소 될 수 있다. 그 중 온도에 의해서 영향을 많이 받는 치수안정성은 물체에 열을 가했을 때, 즉 온도를 높여 주었을 때 원래 물체가 가지고 있는 치수의 변형률의 크고 작음에 따라 판단하게 되는데, 주로 외부에서 사용되는 건축자재들은 온도변화에 따른 치수의 변형률이 작아 치수 안정성이 좋아야 한다. 건축재는 주위의 온도 환경이 변화함에 따라 팽창과 수축을 반복하게 되는데 이로 인해 뒤틀림, 갈라짐 등이 발생할 수 있다. 그리고 유기재료인 플라스틱은 금속 및 무기재료에 비해 비중이 낮고, 가공성이 용이한 장점이 있지만, 대부분 탄소, 수소, 산소로 구성된 유기물질로 불에 쉽게 연소되기 쉬운 성질을 가지고 있어 열적 안정성 및 내연소성 등의 취약함을 가지고 있다. 따라서 플라스틱 연소로 인하여 초래되는 인명 및 재산 피해를 줄이고, 연소 가스나 공정과정에 파생되는 환경적인 문제의 해결에 대한 관심이 높아지고 있다. 이러한 복합체의 취약한 난연 특성의 보강을 위해 단순히 난연제를 혼합하는 것은 난연성 향상에는 효과가 있으나 성능이 우수한 할로겐계 난연제의 경우 고온가공 또는 화재 시 부식성이 큰 다량의 할로게수소를 생성시킬 뿐만 아니라 산소가 없는 조건하에서 연소시킬 경우 인체에 매우 해로운 맹독성의 발암 물질을 발생시켜 현재 환경오염 및 인체유해 물질로 유럽을 중심으로 규제되고 있다. 또한 난연제의 첨가는 고분자 수지 자체의 기계적 물성을 저하시키는 결과를 초래한다. 본 발명에서는 PE 기반 WPC 복합체의 열안정성 및 치수안정성 향상을 위해 나노필러로 점토를 도입하여 HDPE/목분/점토 나노복합체를 제작함으로써 치수안정성 및 열안정성 뿐만 아니라 난연성 문제도 같이 해결하고자 한다. 뿐만 아니라 HDPE/목분/점토 나노복합체 제작에 사용되는 HDPE와 상용화제를 사용하여 용융된 HDPE 수지에 나노클레이를 분산시키고, 목분을 순차적으로 용융 혼합하는 방법을 사용하여 위에서 제기된 문제점을 해결하고자 하였다.WPC is a composite of wood flour and thermoplastic resin, and is mainly used as an external building material. Therefore, the physical properties of the product may be reduced by external moisture, ambient temperature, ultraviolet light, bacteria, insects, and the like. The dimensional stability, which is affected by temperature, is judged by the large and small strain of the original object when the object is heated, that is, when the temperature is increased. Dimensional stability should be good due to the small strain rate of dimension due to temperature change. Building materials will repeatedly expand and contract as the ambient temperature changes, which can lead to warpage and cracking. Plastics, which are organic materials, have lower specific gravity and easier processability than metals and inorganic materials, but most of them are organic materials composed of carbon, hydrogen, and oxygen, and are easily burned by fire. It has a weak back. Therefore, there is a growing interest in reducing human and property damage caused by plastic combustion and solving environmental problems derived from combustion gas or process. In order to reinforce the fragile flame retardant properties of these composites, simply mixing the flame retardant is effective in improving the flame retardancy, but the halogen-based flame retardant having high performance not only generates a large amount of highly corrosive halogens in high temperature processing or fire, but also oxygen Combustion under unfavorable conditions generates highly toxic carcinogens that are very harmful to the human body, and are currently regulated around Europe as environmental and human hazards. In addition, the addition of the flame retardant results in a decrease in the mechanical properties of the polymer resin itself. In the present invention, to improve the thermal stability and dimensional stability of the PE-based WPC composite by introducing a clay as a nano-filler to prepare HDPE / wood powder / clay nanocomposites to solve not only dimensional stability and thermal stability but also flame retardancy problems. In addition, HDPE / wood flour / clay nanocomposites were used to disperse nanoclays in molten HDPE resin using HDPE and compatibilizers, and to solve the problems raised above by sequentially melt-mixing wood powder. .

본 발명은 상기와 같은 문제점을 해결하고자 친수성인 목분과 친유성인 고분자 수지의 계면결합력을 높이고, 나노클레이의 삽입 및 분산성을 향상시키는 상용화제인 Maleic anhydride grafted PE (MA-g-PE)를 사용하였다. 또한 고분자 매트릭스에 Nanoclay의 분산성을 높이기 위한 최적의 PE 선택을 통하여 열안정성 및 치수안정성이 향상된 WPC복합 건축재를 개발함에 그 목적이 있다.The present invention uses maleic anhydride grafted PE (MA-g-PE), which is a compatibilizer to increase the interfacial bonding force of hydrophilic wood flour and lipophilic polymer resin and improve the insertion and dispersibility of nanoclays. It was. In addition, the objective is to develop a WPC composite building material with improved thermal stability and dimensional stability through the optimal PE selection to increase nanoclay dispersibility in polymer matrix.

따라서, 본 발명은 기존의 특허 (WPC 환경친화적 폴리올레핀/목분 복합체)에서 사용된 방법을 사용하였으나 재료에서는 종래의 여러 종류의 폴리올레핀 계열이 아닌 High density polyethylene을 사용하여 용융된 HDPE 수지에 나노클레이를 분산시키고, 목분을 순차적으로 용융 혼합하는 방법을 사용하여 종래기술의 문제점을 극복하고자 하였다.Therefore, the present invention uses the method used in the existing patent (WPC environmentally friendly polyolefin / wood powder composite), but the nanodispersion in the melted HDPE resin using high density polyethylene, not a variety of conventional polyolefin-based material in the material In order to overcome the problems of the prior art using a method of melt mixing the wood powder sequentially.

상기와 같은 본 발명의 목적을 달성하기 위하여 폴리에틸렌 60 중량부 ; 목분 40 중량부 ; 상용화제(MA-g-PE) 3 중량부 ; 점토는 PE/목분/상용화제(MA-g-PE) 총량의 1중량부로 이루어진 폴리에틸렌/목분/점토 나노복합체를 제공하는데, 바람직하게는 인터널믹서에 HDPE와 상용화제를 넣고 약 150℃, 60rpm의 블렌딩 조건에서 혼합한 후 점토를 투입하여 용융시킨 다음 목분을 첨가해 용융혼합하여 제조되는 폴리에틸렌/목분/점토 나노복합체 제조방법을 제공한다.60 parts by weight of polyethylene in order to achieve the object of the present invention as described above; Wood flour 40 parts by weight; 3 parts by weight of a compatibilizer (MA-g-PE); Clay provides polyethylene / wood flour / clay nanocomposites consisting of 1 part by weight of total PE / wood flour / commercial agent (MA-g-PE), preferably HDPE and compatibilizer in an internal mixer at about 150 ° C., 60 rpm. The present invention provides a method for producing polyethylene / wood powder / clay nanocomposites prepared by melting and mixing clay after mixing under blending conditions, followed by melting by adding wood powder.

본 발명에 의해 제조되는 HDPE/목분/점토 나노복합체는 주로 건축내외장재로 사용될 수 있으며 기계적 강도, 열안정성 및 치수안정성이 우수하고 친환경적이다. HDPE/목분/점토 나노복합체는 목분을 다량 함유하므로 폐목이나 천연목재 가공 시 발생하는 자투리 목재 및 경제성 없는 잡목 등을 이용할 수 있으므로 친환경적일 뿐만 아니라 공정상 재료의 개선으로 재료확보가 쉬울 것이다. 국제적으로 환경의 중요성이 대두되면서 새집증후군, 환경호르몬의 등장으로 소비자들의 친환경 제품에 대한 관심은 무척 높아졌다. 이로 인해 HDPE/목분/점토 나노복합체 또한 그 수요가 증가하고 있다. 이와 같이 폐기 시 발생되는 비용뿐만 아니라 마구 버려지는 폐목을 이용할 수 있는 측면에서 환경 친화적이다. HDPE/목분/점토 나노복합체의 경우 나무와 비슷한 질감과 외관을 가지고 있고 가공성이 천연목재보다 좋아 건축내외장재뿐만 아니라 다양한 분야에 제품으로 이용할 수 있다. 따라서 본 발명에 의한HDPE/목분/점토 나노복합체는 소비자의 선호도를 만족 시킬 뿐만 아니라 천연 목재와 플라스틱의 장점을 겸비한 제품을 제공할 수 있다.The HDPE / wood powder / clay nanocomposites produced by the present invention can be mainly used as interior and exterior building materials, and are excellent in mechanical strength, thermal stability, and dimensional stability, and are environmentally friendly. Since HDPE / wood flour / clay nanocomposites contain a large amount of wood powder, it can be used as waste wood or natural wood, which are not economical, and it is easy to secure materials by improving materials in process. As the importance of the environment has risen internationally, with the emergence of sick house syndrome and environmental hormones, consumers' interest in eco-friendly products has increased. This is driving the demand for HDPE / wood flour / clay nanocomposites. In this way, in addition to the costs incurred in the disposal, it is environmentally friendly in that waste wood can be used. HDPE / wood powder / clay nanocomposites have a texture and appearance similar to wood and have better processability than natural wood. Therefore, the HDPE / wood powder / clay nanocomposites according to the present invention can provide a product that not only satisfies consumer preferences, but also combines the advantages of natural wood and plastics.

이하에서는 바람직한 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments.

[실시예 1]Example 1

본 실시예에서 사용된 폴리에틸렌(HDPE)는 (주)SK 에너지의 HDPE(JH-910, melt flow index = 8.5g/10min, 밀도 = 0.963g/cm3)를 주재로 사용하였고, 70~150㎛ 크기의 목분(J. Retenmaier & Sohne Co.의 Lignocel C-120) 40part를 100℃의 오븐에서 1시간 수분을 제거한 후 사용하였으며, 상용화제(MA-g-PE)는 Dupont사의 상용화제(Fusabond MB100D, maleci anhydride contents=1wt%, melt flow index = 2.0g/10min)를 첨가하였고, 층상 무기물인 점토는 몬모릴로나이트(montmorillonite, MMT)로 미국 Nanoclay사의 Cloisite 20A(dimethyl dihydrogenated tallow 2-ethylhexyl ammonium으로 개질된 MMT)를 1중량부 사용하였다. Polyethylene (HDPE) used in the present Example was used as the main material of SK Energy's HDPE (JH-910, melt flow index = 8.5g / 10min, density = 0.963g / cm 3 ), 70 ~ 150 40 parts of wood flour of size (Lignocel C-120 from J. Retenmaier & Sohne Co.) were used after removing water from an oven at 100 ° C for 1 hour. , maleci anhydride contents = 1wt%, melt flow index = 2.0g / 10min), and the layered mineral clay is montmorillonite (MMT), and modified MMT modified with Cloisite 20A (dimethyl dihydrogenated tallow 2-ethylhexyl ammonium from Nanoclay, USA). ) 1 part by weight was used.

폴리에틸렌/목분/점토 나노복합체 시편은 인터널 믹서(internal mixer) 안으로 HDPE, 상용화제(MA-g-PE)를 투입한 후 150℃, 60rpm의 용융블렌딩 조건에서 4분간 혼합 후 나노클레이를 투입한 다음 20분간 충분히 용융시킨 다음 목분 투입, 6 분간 용융 혼합한 물질을 인터널 믹서로부터 꺼내어 핫 프레스(hot press) 사이에 위치시킨 후 컴프레션 몰딩(compression molding)에 의해 패널을 제작하였다. 열분석(TMA 및 TGA) 시험을 위한 시편은 패널을 절단하여 제작하였다. 각각의 재료들은 오븐에서 건조 시킨 후 인터널 믹서에 투입하였다.For polyethylene / wood powder / clay nanocomposite specimens, HDPE and a compatibilizer (MA-g-PE) were added into an internal mixer, followed by mixing for 4 minutes at 150 ° C and 60 rpm in melt blending conditions. Then, the mixture was sufficiently melted for 20 minutes, and then the wood powder was added and melt mixed for 6 minutes from the internal mixer, placed between hot presses, and the panel was manufactured by compression molding. Specimens for thermal analysis (TMA and TGA) tests were made by cutting panels. Each material was dried in an oven and placed in an internal mixer.

[비교예 1]Comparative Example 1

실시예 1과 비교하기 위하여 점토가 배제된 폴리에틸렌/목분 WPC를 제조하였다. 실시예 1과 마찬가지로 폴리에틸렌(HDPE)는 (주)SK 에너지의 HDPE (JH-910, melt flow index = 8.5g/10min, 밀도 = 0.963g/cm3)를 주재료로 사용하였고, 70~150㎛ 크기의 목분(J. Retenmaier & Sohne Co.의 Lignocel C-120) 40중량부를 100℃의 오븐에서 1시간 수분을 제거한 후 사용하였으며, 상용화제(MA-g-PE)는 듀폰사의 상용화제(Fusabond MB100D, maleci anhydride contents=1wt%, melt flow index = 2.0g/10min)를 첨가하였고 점토는 사용하지 않았다. Clay-free polyethylene / wood flour WPC was prepared for comparison with Example 1. As in Example 1, polyethylene (HDPE) was used as the main material of SK Energy's HDPE (JH-910, melt flow index = 8.5 g / 10 min, density = 0.963 g / cm 3 ) as a main material. 40 parts by weight of wood flour (Lignocel C-120 from J. Retenmaier & Sohne Co.) was used after removing water for 1 hour in an oven at 100 ° C. , maleci anhydride contents = 1wt%, melt flow index = 2.0g / 10min), but no clay.

폴리에틸렌/목분 WPC 시편은 인터널 믹서(internal mixer) 안으로 HDPE, 상용화제(MA-g-PE)를 투입한 후 150℃, 60rpm의 용융블렌딩 조건에서 토오크가 안정화될 때까지 충분히 혼합한 후, 목분을 넣고 실시예 1과 같은 6분간 용융혼합을 한다. 이 용융혼합물을 인터널 믹서로부터 꺼내어 핫 프레스 사이에 위치시킨 후 컴프레션 몰딩에 의해 패널을 제작하였다. 열분석(TMA 및 TGA) 시험을 위한 시편은 패널을 절단하여 제작하였다. 각각의 재료들은 오븐에서 건조 시킨 후 인터널 믹서에 투입하였다. Polyethylene / wood powder WPC specimens were mixed with HDPE and a compatibilizer (MA-g-PE) in an internal mixer and mixed well until the torque was stabilized under melt blending conditions at 150 ° C and 60 rpm. Insert and melt-mix for 6 minutes as in Example 1. The molten mixture was removed from the internal mixer and placed between hot presses to produce panels by compression molding. Specimens for thermal analysis (TMA and TGA) tests were made by cutting panels. Each material was dried in an oven and placed in an internal mixer.

실시예 1의 폴리에틸렌/목분/점토 나노복합체 (도면 1, 2, 3, 4의 WPC+Closites20A) 및 비교예 1의 폴리에틸렌/목분 WPC 복합체 (도면 1, 2, 3, 4의 WPC)의 기계적 강도 분석은 UTM을 이용하여 측정하였으며 도면 1에 그 결과를 나타내었다. 그리고 열안정성은 열분석기(TGA)를 이용하여 측정하였으며 도면 2에 그 결과를 나타내었고, 치수안정성은 열분석기(TMA)를 이용하여 측정하였으며 도면 3와 4 에 그 결과를 나타내었다. 실시예 1의 폴리에틸렌/목분/점토 나노복합체의 기계적 강도 그리고 열안정성 및 치수안정성이 비교예 1의 폴리에틸렌/목분 WPC 복합체의 기계적 강도 그리고 열안정성 및 치수안정성 보다 훨씬 더 우수함을 알 수 있다. 그리고 실시예 1의 폴리에틸렌/목분/점토 나노복합체 (도면 1, 2, 3, 4의 WPC+Closites20A)의 제조에는 비교예 1의 폴리에틸렌/목분 WPC 복합체 (도면 1, 2, 3, 4의 WPC) 제조와 비교해 나노 크기의 점토를 사용하였으며 도면 1, 2, 3, 4에 그 결과를 나타내었다. 실시예 1이 비교예 1의 기계적 강도 그리고 열안정성 및 치수안정성이 보다 더 우수함을 알 수 있었다. Mechanical strengths of the polyethylene / wood flour / clay nanocomposites (WPC + Closites20A in figures 1, 2, 3 and 4) of Example 1 and the polyethylene / wood flour WPC composites (WPC of figures 1, 2, 3 and 4) of Comparative Example 1 The analysis was measured using UTM and the results are shown in FIG. 1. Thermal stability was measured using a thermal analyzer (TGA) and the results are shown in FIG. 2, and dimensional stability was measured using a thermal analyzer (TMA), and the results are shown in FIGS. 3 and 4. It can be seen that the mechanical strength and thermal stability and dimensional stability of the polyethylene / wood flour / clay nanocomposites of Example 1 are much better than the mechanical strength, thermal stability and dimensional stability of the polyethylene / wood flour WPC composite of Comparative Example 1. In addition, the preparation of the polyethylene / wood flour / clay nanocomposite of Example 1 (WPC + Closites20A of FIGS. 1, 2, 3, and 4) was performed in the polyethylene / wood flour WPC composite of Comparative Example 1 (WPC of FIGS. 1, 2, 3, and 4). Compared to the production of nano-sized clay was used and the results are shown in Figures 1, 2, 3, 4. It can be seen that Example 1 is more excellent in mechanical strength, thermal stability and dimensional stability of Comparative Example 1.

즉, 도 1은 비교예 1의 폴리에틸렌/목분(WPC)과 실시예 1의 폴리에틸렌/목분/점토(WPC + Closites20A) 나노복합체 샘플에 대한 기계적강도 실험(UTM, Universal testing machine )결과 그래프로서 나노 점토 유?무에 따른 굴곡강도를 나타내고 있는데, 본 발명에 따른 폴리에틸렌/목분/점토(WPC+Closites20A) 나노복합체의 플렉슈얼 스트렌스(Flexsural strength), 플렉슈얼 모듈러스(Flexsural modulus)가 비교예 1의 폴리에틸렌/목분(WPC)보다 높은 값을 보임을 알 수 있으며 이로부터 나노 크기 점토의 도입으로 기계적 강도가 향상됨을 알 수가 있었다.That is, FIG. 1 is a graph of mechanical strength test (UTM, Universal testing machine) results of polyethylene / wood flour (WPC) of Comparative Example 1 and polyethylene / wood flour / clay (WPC + Closites20A) nanocomposite sample of Example 1 Flexural strength according to the present invention is shown, the flexural strength of the polyethylene / wood powder / clay (WPC + Closites20A) nanocomposite according to the present invention, the flexural modulus (Flexsural modulus) of the polyethylene of Comparative Example 1 It can be seen that the value is higher than / wood powder (WPC), from which the mechanical strength is improved by the introduction of nano-sized clay.

또한, 도 2는 비교예 1의 폴리에틸렌/목분(WPC)과 실시예 1의 폴리에틸렌/목분/점토(WPC + Closites20A) 나노복합체 샘플에 대한 열분석실험(TGA, Thermogravimetric Analysis)결과 그래프로서 온도변화에 따른 무게감소를 나타내고 있는데, 본 발명에 따른 폴리에틸렌/목분/점토(WPC+Closites20A) 나노복합체의 온도변화에 따른 무게감소가 비교예 1의 폴리에틸렌/목분(WPC)보다 높은 온도에서 일어남을 알 수 있으며 이로부터 나노 크기 점토의 도입으로 열안정성이 향상됨을 알 수 있다.2 is a graph of thermal analysis (TGA, Thermogravimetric Analysis) results for the polyethylene / wood powder (WPC) of Comparative Example 1 and the polyethylene / wood powder / clay (WPC + Closites20A) nanocomposite sample of Example 1 It shows the weight loss according to the weight loss of the polyethylene / wood powder / clay (WPC + Closites20A) nanocomposite according to the present invention can be seen that occurs at a higher temperature than the polyethylene / wood powder (WPC) of Comparative Example 1 From this it can be seen that the thermal stability is improved by the introduction of nano-sized clay.

도 3은 비교예 1인 폴리에틸렌/목분(WPC)과 실시예 1인 폴리에틸렌/목분/점토(WPC + Closites20A) 나노복합체 샘플에 대한 열분석실험(TMA, Thermomecanical Analysis)결과 그래프로서 온도변화에 따른 치수 변화를 나타낸 것으로, 본 발명에 따른 폴리에틸렌/목분/점토(WPC+Closites20A) 나노복합체의 온도 변화에 따른 치수의 변화가 비교예 1의 폴리에틸렌/목분(WPC)보다 작음을 알 수 있으며 이로부터 나노 크기 점토의 도입으로 치수안정성이 크게 향상됨을 알 수 있다.FIG. 3 is a graph of thermal analysis (TMA, Thermomecanical Analysis) results of polyethylene / wood flour (WPC) of Comparative Example 1 and polyethylene / wood flour / clay (WPC + Closites20A) nanocomposite sample of Example 1 As a change, it can be seen that the change of the dimension according to the temperature change of the polyethylene / wood powder / clay (WPC + Closites20A) nanocomposite according to the present invention is smaller than the polyethylene / wood powder (WPC) of Comparative Example 1 from this nano-size It can be seen that the dimensional stability is greatly improved by the introduction of clay.

또한 도 4는 비교예 1의 폴리에틸렌/목분(WPC)과 실시예 1의 폴리에틸렌/목분/점토(WPC + Closites20A) 나노복합체의 열분석실험결과 그래프(도 2)로부터 얻은 열팽창계수 및 치수변화를 정리한 테이블로서, 테이블을 보면 점토를 도입함으로써 열팽창계수의 경우에 -30℃ 에서는 76.1㎛/m℃(비교예 1) 에서 66.9㎛/m℃(실시예 1)로, 40℃에서는 124㎛/m℃(비교예 1)에서 81.8㎛/m℃(실시예 1) 크게 줄어든 것을 알 수 있으며, -30℃와 40℃에서의 치수변화의 경우에는 0.81%(비교예 1)에서 0.73%(실시예 1)로 크게 줄어든 것으로 보아 점토를 도입함으로써 치수안정성 이 크게 향상되었음을 알 수가 있다. In addition, Figure 4 summarizes the thermal expansion coefficient and dimensional change obtained from the thermal analysis experiment results of the polyethylene / wood powder (WPC) of Comparative Example 1 and polyethylene / wood powder / clay (WPC + Closites20A) nanocomposite of Example 1 (Fig. 2) As a table, when looking at the table, the clay was introduced to obtain a thermal expansion coefficient of 76.1 µm / m ° C (Comparative Example 1) at -30 ° C to 66.9 µm / m ° C (Example 1), and 40 ° C at 124 µm / m. It can be seen that 81.8 μm / m ° C. (Example 1) was greatly reduced at ℃ (Comparative Example 1), and in the case of dimensional change at −30 ° C. and 40 ° C., 0.81% (Comparative Example 1) to 0.73% (Example As a result, the dimensional stability was greatly improved by introducing clay.

따라서 HDPE 기반 WPC 나노복합체의 기계적 강도 그리고 열안정성 및 치수안정성에 영향을 주는 변수로는 HDPE의 용융흐름지수(melt flow index), 목분의 함량 및 종류, 첨가제의 함량 및 용융흐름지수, 작업 온도, 압출기내의 머무름 시간, 점토의 유?무 및 함량 등이 있을 수 있으나 기존의 특허와 같은 방법을 사용 하였으나 환경친화적 난연제의 의미보다 기계적 강도 및 열안정성, 치수안정성에 영향을 주는 변수로써 나노 크기의 점토의 유?무가 가장 큰 영향을 줄 것으로 보인다. 층상 무기화합물인 점토를 열가소성 수지 매트릭스 내에서 잘 분산시켜 층이 박리된 나노복합체를 제조하여 사용하면 치수안정성이 더욱 더 향상될 것이다.Therefore, variables affecting the mechanical strength, thermal stability and dimensional stability of HDPE-based WPC nanocomposites include melt flow index, wood powder content and type, additive content and melt flow index, working temperature, There may be the retention time in the extruder, the presence and absence of clay, and the content, but the same method as the existing patent is used, but the nano-sized clay is a variable that affects the mechanical strength, thermal stability, and dimensional stability rather than the environmentally friendly flame retardant. The presence or absence of the most likely to have the biggest impact. The dimensional stability will be further improved when clay, which is a layered inorganic compound, is well dispersed in a thermoplastic resin matrix to prepare a nanocomposite in which the layer is separated.

도 1은 비교예와 본 발명 복합체의 기계적 강도실험결과 그래프.1 is a graph of the mechanical strength test results of the comparative example and the present invention composite.

도 2는 비교예와 본 발명 복합체의 열분석 실험결과 그래프(무게감소).Figure 2 is a graph of the thermal analysis experiment results of the comparative example and the present invention (weight reduction).

도 3은 비교예와 본 발명 복합체의 열분석 실험결과 그래프(치수변화).Figure 3 is a graph (dimension change) of the thermal analysis experiment results of the comparative example and the present invention composite.

도 4는 도 2로부터 얻은 열팽창계수 및 치수변화정리 테이블.4 is a coefficient of thermal expansion and dimensional change theorem obtained from FIG.

Claims (1)

폴리에틸렌(HDPE)/목분/점토 나노복합체 제조방법으로서, 인터널 믹서에 멜트 플로우 인덱스(melt flow index)가 8.5g/10분인 폴리에틸렌 60중량부와 멜트 플로우 인덱스가 2.0g/분인 상용화제(MA-g-PE)3 중량부를 투입한 후 150℃, 60rpm의 용융블렌딩 조건에서 4시간 혼합한 다음, 사용되는 폴리에틸렌/목분/상용화제 총량의 1 중량부인 나노 점토를 투입하고 20분간 용융시킨 후, 70~150㎛의 크기이며 100℃에서 1시간 수분을 제거한 목분 40중량부를 투입한 다음 6분간 용융혼합함을 특징으로 하는 폴리에틸렌/목분/점토 나노복합체 제조방법.Polyethylene (HDPE) / wood powder / clay nanocomposite manufacturing method, the internal mixer 60 parts by weight of the melt flow index (8.5 g / 10 minutes) polyethylene and a compatibilizer (melt flow index 2.0 g / min) 3 parts by weight of g-PE) was mixed for 4 hours at a melt blending condition of 150 ° C. and 60 rpm. Then, 1 part by weight of nano clay, which was 1 part by weight of the total amount of polyethylene / wood powder / compatibility agent, was added and melted for 20 minutes. Polyethylene / wood powder / clay nanocomposite manufacturing method, characterized in that the size of ˜150㎛ and 40 parts by weight of wood powder removed from water for 1 hour at 100 ° C., followed by melt mixing for 6 minutes.
KR1020090065281A 2009-07-17 2009-07-17 Polyethylene/wood flour/clay nanocomposite KR101169938B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090065281A KR101169938B1 (en) 2009-07-17 2009-07-17 Polyethylene/wood flour/clay nanocomposite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090065281A KR101169938B1 (en) 2009-07-17 2009-07-17 Polyethylene/wood flour/clay nanocomposite

Publications (2)

Publication Number Publication Date
KR20110007703A KR20110007703A (en) 2011-01-25
KR101169938B1 true KR101169938B1 (en) 2012-08-06

Family

ID=43614082

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090065281A KR101169938B1 (en) 2009-07-17 2009-07-17 Polyethylene/wood flour/clay nanocomposite

Country Status (1)

Country Link
KR (1) KR101169938B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190074076A (en) 2017-12-19 2019-06-27 동국대학교 산학협력단 Wood plastic composites including nanomaterials, waste wood flour and general wood flour, and method of munufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101580228B1 (en) * 2011-05-16 2015-12-24 충북대학교 산학협력단 A wood/plastic composite for mobile phone cases
CN105906921A (en) * 2016-06-29 2016-08-31 桂林舒康建材有限公司 Halogen-free flame-retardant wood-plastic composite material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100681333B1 (en) * 2006-06-30 2007-02-09 김대수 A wood plastic composites

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100681333B1 (en) * 2006-06-30 2007-02-09 김대수 A wood plastic composites

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190074076A (en) 2017-12-19 2019-06-27 동국대학교 산학협력단 Wood plastic composites including nanomaterials, waste wood flour and general wood flour, and method of munufacturing the same

Also Published As

Publication number Publication date
KR20110007703A (en) 2011-01-25

Similar Documents

Publication Publication Date Title
JP7305718B2 (en) Cellulose composite material containing wood pulp and process for producing same
Jordá-Vilaplana et al. Development and characterization of a new natural fiber reinforced thermoplastic (NFRP) with Cortaderia selloana (Pampa grass) short fibers
CN102924939B (en) Waste tire rubber powder-filled plastic wood profile and preparation method thereof
Suffo et al. A sugar-beet waste based thermoplastic agro-composite as substitute for raw materials
AU2017200990A1 (en) Thermoplastic Starch Composition Derives From Agricultural Waste
Bashir et al. Recent developments in biocomposites reinforced with natural biofillers from food waste
CN101967288A (en) Wood flour filled polypropylene composite material and preparation method thereof
KR20110058124A (en) Environment friendly resin composition for hollow molding product and hollow molding product using the same
EP2247658A2 (en) Reinforcing additives for composite materials
CN106479132B (en) A kind of degradation of plastic film master batch and the preparation method and application thereof
KR100681333B1 (en) A wood plastic composites
Khanjanzadeh et al. Long term hygroscopic characteristics of polypropylene based hybrid composites with and without organo-modified clay
KR101169938B1 (en) Polyethylene/wood flour/clay nanocomposite
Arjmandi et al. Rice husk and kenaf fiber reinforced polypropylene biocomposites
Martins et al. Structure-properties correlation in PP/thermoplastic starch blends containing sustainable compatibilizer agent
Elgharbawy et al. A comprehensive review of the polyolefin composites and their properties
Jawaid Characterisation and biodegradation of poly (lactic acid) blended with oil palm biomass and fertiliser for bioplastic fertiliser composites
WO2019150907A1 (en) Cellulose fiber master batch, cellulose fiber-containing resin composition, method for producing cellulose fiber master batch, method for producing cellulose fiber-containing resin composition, and molded body of cellulose fiber-containing resin composition
Obasi et al. Biodegradability and mechanical properties of low density polyethylene/waste maize cob flour blends
Ayswarya et al. HDPE‐ash nanocomposites
KR20110000879A (en) Eco-friendly polyethlene/wood flour/clay nanocomposites with good thermal and dimensional stability and a method of thereof
JP5226947B2 (en) Fly ash reinforced thermoplastic resin
KR100990127B1 (en) Improved Thermal stability of environment-friendly polyolefin/wood flour/clay nanocomposites
Dokmai et al. Improved mechanical, thermal, and flame-retardant properties of hybrid composites with different recycled plastics
KR101208689B1 (en) Eco-friendly nontoxic-PVC/wood flour/clay nanocomposites with good dimensional stability

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150714

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160721

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee