KR20030055595A - Manufacturing Method of Large crystalline Diamond Electrode by Microwave Plasma CVD - Google Patents

Manufacturing Method of Large crystalline Diamond Electrode by Microwave Plasma CVD Download PDF

Info

Publication number
KR20030055595A
KR20030055595A KR1020010085610A KR20010085610A KR20030055595A KR 20030055595 A KR20030055595 A KR 20030055595A KR 1020010085610 A KR1020010085610 A KR 1020010085610A KR 20010085610 A KR20010085610 A KR 20010085610A KR 20030055595 A KR20030055595 A KR 20030055595A
Authority
KR
South Korea
Prior art keywords
diamond
thin film
microwave
plasma cvd
substrate
Prior art date
Application number
KR1020010085610A
Other languages
Korean (ko)
Other versions
KR100459531B1 (en
Inventor
박수길
아키라후지시마
야스아키에이나가
Original Assignee
박수길
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박수길 filed Critical 박수길
Priority to KR10-2001-0085610A priority Critical patent/KR100459531B1/en
Publication of KR20030055595A publication Critical patent/KR20030055595A/en
Application granted granted Critical
Publication of KR100459531B1 publication Critical patent/KR100459531B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/279Diamond only control of diamond crystallography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: A manufacturing method of large crystalline pure diamond thin film having large area by using microwave plasma CVD is provided. CONSTITUTION: In a method for forming a diamond thin film(22) on substrate using microwave plasma CVD, the manufacturing method of large crystalline diamond thin film by microwave plasma CVD comprises the process of impressing power ranging from 1,000 to 5,000 W to microwave in the state that substrates(20) are stacked so that the surface of the substrates(20) is maintained to the temperature range of 750 to 1,100 deg.C, wherein the surface of the substrate(20) is preferably maintained to the temperature range of 750 to 1,100 deg.C when forming the diamond thin film(22) by performing microwave plasma CVD treatment in the state that the substrates(20) are stacked, diamond crystal is not grown well in case that temperature of the surface of the substrates(20) is lower than 750 deg.C while growing of the diamond crystal is impossible due to melting of substrate Si in case that temperature of the surface of the substrates(20) is higher than 1,100 deg.C, output of microwave applied when forming the diamond thin film(22) is preferably in the range of 1,000 to 5,000 W, and growing of the diamond crystal is very unstable as formation of hydrogen plasma is not complete in case that output of microwave is less than 1,000 W while apparatus is overloaded due to output of microwave more than required in case that output of microwave exceeds 5,000 W.

Description

마이크로웨이브 플라즈마 씨브이디에 의한 대결정 다이아몬드 박막의 제조방법{Manufacturing Method of Large crystalline Diamond Electrode by Microwave Plasma CVD}Manufacturing Method of Large Crystalline Diamond Electrode by Microwave Plasma CVD

본 발명은 마이크로웨이브 플라즈마 CVD를 이용하여 다이아몬드 박막을 제조하는 방법에 관한 것으로, 보다 상세하게는 대결정 및 대면적의 순수한 다이아몬드 박막을 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method for producing a diamond thin film using microwave plasma CVD, and more particularly to a method capable of producing a large crystal and large area pure diamond thin film.

현재 채광장비(mining mit), 절단기(cutter), 절단용 날(saw wheel), 레이저 다이오드(laser diode), 그리고 표면 탄성파 장치(SAW device) 등 다양한 분야에 걸쳐 다이아몬드의 뛰어난 물리적·화학적 특성을 이용하는 산업분야가 날로 증가하는 추세이다. 그러나 이들 대부분의 상업적인 다이아몬드 박막 및 결정들은 순수한 다이아몬드라기 보다는 DLC(diamond like carbon)라고 할 수 있다.Today, diamond's excellent physical and chemical properties are used in a variety of applications, including mining mit, cutters, saw wheels, laser diodes, and surface acoustic wave devices. The industrial sector is increasing day by day. However, most of these commercial diamond films and crystals are diamond-like carbon (DLC) rather than pure diamond.

다이아몬드의 합성방법은 크게 고온고압(HPHT:high pressure high temperature, 이하,'HPHT'라 한다.)에 의한 방법과 화학진공증착(CVD:chemical vapor deposition, 이하, 'CVD'라 한다.)법으로 구분된다.The synthesis method of diamond is largely by high pressure high temperature (HPHT) and chemical vapor deposition (CVD). Are distinguished.

우선 탄소(C)을 철(Fe), 코발트(Co), 니켈(Ni) 등 용융금속에 유입시킴으로써 다이아몬드를 얻는 방법은 미국의 제네럴 일렉트릭사(General Electrics社)와 남아프리카 공화국의 드 비어사(De Beers社)에서 처음으로 양산 하기 시작하였다.First, the method of obtaining diamond by injecting carbon (C) into molten metals such as iron (Fe), cobalt (Co), and nickel (Ni) is obtained by General Electrics of the United States and De Beer of South Africa. Beers started mass production for the first time.

또한 CVD에 의한 다이아몬드의 합성방법이 1950년대에 미국의 GE에 의해 HPHT방법과 병행하여 보고되었다. 이 외에도 1953년에 에버졸(Eversole) 등에 의해 900∼1000℃의 온도에서 메탄과 몇몇의 기체를 유입시켜 저압 다이아몬드 합성방법이 비공식적으로 발표되었으며, 1956년에는 러시아의 데자긴(Derjaguin) 등에 의해 CBr4를 탄소원으로 사용하여 CVD 다이아몬드의 성공적인 합성, 그리고 미국의 앵거스(Angus) 등에 의해 다이아몬드 파우더를 사용하고 탄소원으로 메탄을 사용하여 약 1000℃에서의 다이아몬드의 합성에 대한 보고 등이 있다. 그 외에도 다이아몬드의 합성방법은 핫 필라멘트(Hot filament) CVD, 직류 플라즈마(DC plasma) CVD, 불꽃 연소법(combustion flame metod) 등 매우 다양한 다이아몬드 합성방법이 보고되어 있다.In addition, a method of synthesizing diamond by CVD was reported by GE of the United States in parallel with the HPHT method in the 1950s. In addition, in 1953, a low pressure diamond synthesis method was informally announced by the introduction of methane and some gases at a temperature of 900 to 1000 ° C by Eversole et al., And in 1956, CBr4 by Dejaguin of Russia. Reports on the successful synthesis of CVD diamond using as a carbon source, and the synthesis of diamond at about 1000 ° C. using diamond powder by Angus et al. And methane as the carbon source. In addition, a variety of diamond synthesis methods, such as hot filament CVD, DC plasma CVD, and combustion flame metod, have been reported.

현재 보고되고 있는 다이아몬드의 합성방법을 보면, 대결정의 다이아몬드를 합성하기 위해서는 고온(2000℃이상) 및 고압을 필요로 한다. 따라서 고온 및 고압에 견딜 수 있는 장치를 필요로 하며, 처리 결과 합성되어지는 다이아몬드의 면적 또한 상대적으로 작은 단점이 있다.According to the currently reported method of synthesizing diamond, high temperature (more than 2000 ° C.) and high pressure are required to synthesize large crystal diamond. Therefore, a device capable of withstanding high temperature and high pressure is required, and the area of diamond synthesized as a result of treatment is also relatively small.

이와는 반대로 대면적의 다이아몬드를 얻기 위해서는 주로 저압법을 사용하는데, 이 방법에서 얻어지는 다이아몬드의 결정은 그 크기가 매우 작은(10∼20㎛이하) 단점이 있다.On the contrary, in order to obtain a large-area diamond, the low pressure method is mainly used. The diamond crystal obtained in this method has a disadvantage that the size of the diamond is very small (10-20 µm or less).

또한 위의 두 가지 방법 공히 순수한 다이아몬드의 합성보다는 불순물이 다량 함유되어 있거나 다이아몬드라기보다는 DLC(diamond-like carbon)이라고 할 수 있다.In addition, the above two methods contain more impurities than pure diamond synthesis or diamond-like carbon (DLC) rather than diamond.

이에 본 발명에서는 상기한 다이아몬드 제조상의 문제점들을 해결하여 대결정이면서 대면적 그리고 불순물이 없는 순수한 다이아몬드 박막을 제조하기 위한 방법을 제공함을 목적으로 한다.Accordingly, an object of the present invention is to provide a method for manufacturing a pure diamond thin film having a large crystal, a large area, and no impurities by solving the above-described problems in diamond manufacturing.

도1은 일반적인 마이크로웨이브 플라즈마 CVD 장치의 개략도.1 is a schematic diagram of a typical microwave plasma CVD apparatus.

도2(a)는 기존의 방법에 의한 다이아몬드 박막의 생성상태를 나타낸 도면.Figure 2 (a) is a view showing a state of producing a diamond thin film by the conventional method.

도2(b)는 본 발명의 방법에 의한 다이아몬드 박막의 생성상태를 나타낸 도면.Figure 2 (b) is a view showing the production state of the diamond thin film by the method of the present invention.

도3(a)는 기존의 방법에 의한 다이아몬드 박막의 전자현미경 사진.Figure 3 (a) is an electron micrograph of a diamond thin film by the conventional method.

도3(b)는 본 발명의 방법에 의한 다이아몬드 박막의 전자현미경 사진.Figure 3 (b) is an electron micrograph of a diamond thin film by the method of the present invention.

도4(a)는 기존의 방법에 의한 다이아몬드 박막을 라만(Raman) 분석하고 그 결과를 나타낸 그래프.Figure 4 (a) is a Raman (Raman) analysis of the diamond film by the conventional method and a graph showing the results.

도4(b)는 본 발명의 방법에 의한 다이아몬드 박막을 라만(Raman) 분석하고 그 결과를 나타낸 그래프.Figure 4 (b) is a graph showing Raman (Raman) analysis of the diamond film by the method of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10. 챔버 11. 플라즈마 코어10. Chamber 11. Plasma Core

12. 컨트롤러 13. 석영 창(quartz window)12. Controller 13. Quartz window

14. 가스 흐름 제어기(Mass flow controller)14. Mass flow controller

15. 마그네트론 16. 튜너15. Magnetron 16. Tuner

17. 혼합관(Mixing manifold)17. Mixing manifold

20. 기판 21,22. 다이아몬드 박막20. Substrate 21,22. Diamond thin film

상기한 바와 같은 본 발명은 기판상에 다이아몬드 박막을 생성시킬 때 기판을 다층으로 적층 하므로써 달성된다.The present invention as described above is achieved by stacking a substrate in multiple layers when producing a diamond thin film on the substrate.

본 발명은 마이크로웨이브 플라즈마 CVD를 이용하여 기판상에 다이아몬드 박막을 형성시킬 때 마이크로웨이브의 파워를 1000W 내지 5000W 범위로 하고 기판을 적층하여 그 표면 온도가 750℃ 내지 1100℃의 온도 범위가 되도록 하는 것을 특징으로 한다.According to the present invention, when forming a diamond thin film on a substrate by using microwave plasma CVD, the power of the microwave is in the range of 1000W to 5000W and the substrates are laminated so that the surface temperature is in the temperature range of 750 ° C to 1100 ° C. It features.

이하, 본 발명에 대하여 도면을 참고하여 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.

본 발명에서는 기판(20)을 적층시킨 상태로 마이크로웨이브 플라즈마 CVD 처리를 하여 다이아몬드 박박(22)을 생성시키게 되는데, 이때 기판(20)의 표면온도가 750℃ 내지 1100℃의 온도 범위가 되도록 하는것이 바람직하다. 그 이유는 기판(20)의 표면온도가 750℃ 보다 낮을 경우에는 다이아몬드의 결정이 잘 성장되지 않는다는 문제점이 있으며, 1100℃ 보다 높을 경우에는 기질인 Si가 녹아서 다이아몬드 결정의 성장이 불가능한 문제점이 있기 때문이다.In the present invention, the diamond film 22 is generated by microwave plasma CVD in a state in which the substrates 20 are stacked, wherein the surface temperature of the substrate 20 is in a temperature range of 750 ° C to 1100 ° C. desirable. The reason is that when the surface temperature of the substrate 20 is lower than 750 ° C., the crystals of diamond do not grow well. When the surface temperature of the substrate 20 is higher than 1100 ° C., there is a problem that diamond crystals cannot be grown because the substrate Si is melted. to be.

이와 같이 다이아몬드 박막(22)을 생성시킬때 가해지는 마이크로웨이브의 출력은 1000W 내지 5000W의 범위가 되도록 함이 바람직한데, 그 이유는 1000W 미만일경우에는 수소 플라즈마의 형성이 완전하지 못하여 다이아몬드 결정 성장이 매우 불안정하다는 문제점이 있고, 5000W를 초과할 경우에는 필요 이상의 마이크로 웨이브의 출력으로 인해 기기에 무리가 간다는 문제점이 있기 때문이다.As described above, it is preferable that the output of the microwave applied when generating the diamond thin film 22 is in the range of 1000 W to 5000 W. When the diamond thin film 22 is less than 1000 W, the formation of hydrogen plasma is not complete and diamond crystal growth is very high. This is because there is a problem of instability, and if it exceeds 5000W, there is a problem that the device is overwhelmed by the output of microwaves more than necessary.

본 발명에서는 기판(20)을 적층시켜 그 표면에 다이아몬드 박막(22)을 형성시킬때 상기한 온도 조건 및 마이크로웨이브 출력조건을 제외한 다른 조건 및 처리 방법은 일반적인 마이크로웨이브 플라즈마 CVD를 이용한 박막 생성에서의 경우와 동일하다.In the present invention, when the substrate 20 is laminated to form the diamond thin film 22 on its surface, other conditions and processing methods except for the above-described temperature conditions and microwave output conditions are used in the production of thin films using general microwave plasma CVD. Same as the case.

이하, 실시예를 통하여 본 발명에 대하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

도1과 같은 개략적인 형태를 갖는 마이크로웨이브 플라즈마 CVD에 탄소원으로 9:1의 부피비를 갖는 아세톤(acethone)/메탄올(methanol)(9:1,v/v)을 사용하며, 플라즈마원 및 캐리어 가스로는 99.99%의 수소가스를 사용하며, 마이크로웨이브의 출력은 5KW, 챔버(10)의 압력은 약 112 Torr이며, 기판(20)으로는 Si 및 Mo를 사용하였다. 또한 붕소원으로는 B2O3를 사용하였으며, 기판(20)을 배치할 때 2가지 형태로 배치하고 실험하였다. 즉, 도2의 (a)와 같은 일반적인 배치방법과 도2의 (b)와 같은 본 발명의 방법으로 배치하였다.Acetone / methanol (9: 1, v / v) having a volume ratio of 9: 1 as a carbon source is used for the microwave plasma CVD having the schematic form as shown in FIG. Is 99.99% hydrogen gas, the microwave output is 5KW, the pressure of the chamber 10 is about 112 Torr, Si and Mo were used as the substrate 20. In addition, B 2 O 3 was used as the boron source, and when the substrate 20 was disposed, it was arranged and tested in two forms. That is, the arrangement is made by the general arrangement method as shown in Fig. 2A and the method of the present invention as shown in Fig. 2B.

위와 같이 마이크로웨이브 플라즈마 CVD 장치를 구성하여 동작시킨 후 기판(20)의 표면 온도를 광고온계(optical pyrometer)를 이용하여 측정 하였다. 그 결과 일반적인 전극배치 방법인 도2(a)의 경우에는 기판(20)의 표면온도가 약 750℃인데 반해 본 발명에 의한 방법인 도2(b)의 경우에는 전극배치에 따른 기판(20)의 표면온도가 약 1080℃임을 확인하였다. 이와 같이 본 발명의 방법에 의한 전극배치 시 기판(20) 표면의 온도가 높은 것은 기판(20)을 중첩시킴으로써 기판(20)의 높이를 상승시키고, 이에 따라서 플라즈마 코어(11,plasma core)와의 거리가 가까워지고 결과적으로는 기판(20)의 표면온도가 상승하게 되기 때문이다.After constructing and operating the microwave plasma CVD apparatus as described above, the surface temperature of the substrate 20 was measured using an optical pyrometer. As a result, in the case of FIG. 2 (a) which is a general electrode arrangement method, the surface temperature of the substrate 20 is about 750 ° C, whereas in FIG. 2 (b) which is the method according to the present invention, the substrate 20 according to the electrode arrangement is used. It was confirmed that the surface temperature of about 1080 ℃. As such, the high temperature of the surface of the substrate 20 when the electrode is disposed by the method of the present invention increases the height of the substrate 20 by overlapping the substrate 20, and thus the distance from the plasma core 11. This is because the surface temperature of the substrate 20 rises as a result of the proximity of the substrate 20.

또한, 위와 같이 기판(20) 표면이 온도차를 갖는 도2(a) 및 도2(b)의 경우에 대하여 생성된 다이아몬드 박막(21,22)의 결정구조를 주사전자현미경(SEM)을 이용하여 확인하고 그 결과를 도3(a)및 도3(b)에 나타냈으며, 생성된 다이아몬드 박막(21,22)의 결정구조에 대하여 라만 분석(Raman analysis)을 행하고 그 결과를 도4(a)및 도4(b)에 나타내었다.In addition, the crystal structure of the diamond thin films 21 and 22 produced in the case of FIGS. 2 (a) and 2 (b) in which the surface of the substrate 20 has a temperature difference as described above is obtained by using a scanning electron microscope (SEM). 3 (a) and 3 (b), the Raman analysis was performed on the crystal structure of the resulting diamond thin films 21 and 22, and the result was shown in Fig. 4 (a). And (b).

도3에 나타난 바와 같이, 도3의 (a)를 보면 다이아몬드 박막(21)의 결정의 크기가 매우 작고 형태도 매우 불규칙한 반면, 그림 3의 (b)의 다이아몬드 박막(22)의 결정의 크기는 약 60㎛으로 도3의 (a)보다 상대적으로 매우 큰 것을 알 수 있다. 그리고 그 결정의 모양도 매우 정형화된 피라미드형의 결정임을 알 수 있다.As shown in FIG. 3, when the crystal of the diamond thin film 21 is very small in size and irregular in shape, the crystal of the diamond thin film 22 of FIG. It can be seen that it is relatively larger than about (a) of FIG. And it can be seen that the crystal shape is also a very crystallized pyramidal crystal.

도4에 나타난 바와 같이, 다이아몬드 박막(21,22)의 라만 측정 결과, 도4의 (a),(b)두 샘플 모두 결정성 다이아몬드의 피크(peak)가 확인되었으나, 도4(a)의 경우 약 1500cm-1부터 약간 상승되는 경향을 나타내는데, 이것은 비(非)다이아몬드 성분인 SP2탄소 즉, 그라파이트(graphite)에서 확인되는 성분의 피크가 약간 검출되나, 도4(b)의 경우는 매우 깨끗한 피크가 확인되어 순수한 다이아몬드가 생성되어졌음을 알 수 있다.As shown in FIG. 4, as a result of the Raman measurement of the diamond thin films 21 and 22, peaks of the crystalline diamond were confirmed in both samples (a) and (b) of FIG. 4. In this case, it tends to rise slightly from about 1500 cm -1, which indicates that the peak of the non-diamond component SP 2 carbon, that is, the component found in graphite, is slightly detected, but in the case of FIG. Clear peaks were identified, indicating that pure diamonds were produced.

이상에서 알 수 있는 바와 같이, 본 발명의 다이아몬드 박막은 종래의 마이크로웨이브 플라즈마 CVD법에 의해 합성된 다이아몬드 박막에서 얻어진 결정의 크기 제한을 극복할 수 있는 효과가 있다.As can be seen from the above, the diamond thin film of the present invention has an effect that can overcome the size limitation of the crystal obtained in the diamond thin film synthesized by the conventional microwave plasma CVD method.

또한 본 발명의 다이아몬드 박막은 대결정을 얻기 위해 고온 및 고압이 필요 없으며, 저압에서 손쉽게 대결정 및 대면적의 다이아몬드를 합성할 수 있는 효과가 있다.In addition, the diamond thin film of the present invention does not need high temperature and high pressure to obtain a large crystal, there is an effect that can easily synthesize a large crystal and a large area of diamond at low pressure.

또한, 본 발명에서는 DLC가 아닌 순수한 다이아몬드 성분을 갖는 다이아몬드 박막을 얻음으로써 기존에 합성된 다이아몬드보다 더욱 우수한 물리적 및 화학적 성질을 지닌 견고한 다이아몬드의 합성이 가능한 효과가 있다.In addition, in the present invention, by obtaining a diamond thin film having a pure diamond component other than DLC, it is possible to synthesize a solid diamond having better physical and chemical properties than the conventionally synthesized diamond.

Claims (1)

마이크로웨이브 플라즈마 CVD를 이용하여 기판상에 다이아몬드 박막(22)을 형성시키는 방법에 있어서, 마이크로웨이브의 파워를 1000W 내지 5000W 범위로 하고 기판(20)을 적층하여 그 표면 온도가 750℃ 내지 1100℃의 온도 범위가 되도록 하는 것을 포함하여 이루어지는 것을 특징으로 하는 마이크로웨이브 플라즈마 CVD에 의한 대결정 다이아몬드 박막의 제조방법.In the method of forming the diamond thin film 22 on a substrate by using microwave plasma CVD, the microwave power is in the range of 1000W to 5000W, and the substrates 20 are laminated and the surface temperature is 750 ° C to 1100 ° C. A method for producing a large-crystalline diamond thin film by microwave plasma CVD, comprising the temperature range.
KR10-2001-0085610A 2001-12-27 2001-12-27 Manufacturing Method of Large crystalline Diamond Electrode by Microwave Plasma CVD KR100459531B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0085610A KR100459531B1 (en) 2001-12-27 2001-12-27 Manufacturing Method of Large crystalline Diamond Electrode by Microwave Plasma CVD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0085610A KR100459531B1 (en) 2001-12-27 2001-12-27 Manufacturing Method of Large crystalline Diamond Electrode by Microwave Plasma CVD

Publications (2)

Publication Number Publication Date
KR20030055595A true KR20030055595A (en) 2003-07-04
KR100459531B1 KR100459531B1 (en) 2004-12-04

Family

ID=32213859

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0085610A KR100459531B1 (en) 2001-12-27 2001-12-27 Manufacturing Method of Large crystalline Diamond Electrode by Microwave Plasma CVD

Country Status (1)

Country Link
KR (1) KR100459531B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894529A (en) * 2015-05-19 2015-09-09 西安交通大学 A preparing method of a diamond film used for secondary electron emission

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054996A (en) * 1983-09-07 1985-03-29 Natl Inst For Res In Inorg Mater Synthesis of diamond
US5271971A (en) * 1987-03-30 1993-12-21 Crystallume Microwave plasma CVD method for coating a substrate with high thermal-conductivity diamond material
DE3927136A1 (en) * 1989-08-17 1991-02-21 Philips Patentverwaltung METHOD FOR PRODUCING POLYCRYSTALLINE DIAMOND LAYERS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894529A (en) * 2015-05-19 2015-09-09 西安交通大学 A preparing method of a diamond film used for secondary electron emission

Also Published As

Publication number Publication date
KR100459531B1 (en) 2004-12-04

Similar Documents

Publication Publication Date Title
KR940009659B1 (en) Polycrystalline diamond tool and method of producting polycrystalline diamond tool
US7201886B2 (en) Single crystal diamond tool
JP4613314B2 (en) Single crystal manufacturing method
JPH03232796A (en) Synthetic diamond product and manufacture thereof
WO1996029441A2 (en) High growth rate homoepitaxial diamond film deposition at high temperatures by microwave plasma-assisted chemical vapor deposition
JPH1067596A (en) Transparent diamond thin film and its production
AU2009324921A1 (en) Production of single crystal CVD diamond rapid growth rate
JPH0288497A (en) Production of single crystal diamond grain
WO2006048957A1 (en) Single-crystal diamond
JPS62103367A (en) Synthesizing method for carbon film
JP4294140B2 (en) Diamond thin film modification method, diamond thin film modification and thin film formation method, and diamond thin film processing method
US8158011B2 (en) Method of fabrication of cubic boron nitride conical microstructures
Bachmann et al. Diamond thin films: preparation, characterization and selected applications progress report
Tang et al. High rate growth of nanocrystalline diamond films using high microwave power and pure nitrogen/methane/hydrogen plasma
US5201986A (en) Diamond synthesizing method
KR100459531B1 (en) Manufacturing Method of Large crystalline Diamond Electrode by Microwave Plasma CVD
CA2527124A1 (en) Process for producing extremely flat microcrystalline diamond thin film by laser ablation method
Schreck Growth of single crystal diamond wafers for future device applications
JPH0361369A (en) Manufacture of diamond like carbon film
JP4480192B2 (en) Method for synthesizing high purity diamond
Chai et al. Epitaxial growth of diamond films on the {221} and {100} surfaces of c‐BN with microstructures full of (100) facets
JPS63265890A (en) Production of thin diamond film or thin diamond-like film
JPS60186500A (en) Method for synthesizing diamond from vapor phase
Park et al. Low temperature growth of CVD nanocrystalline diamond thin film by designed SWP-CVD with various working pressures
JPH0393695A (en) Polycrystal diamond and production thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111114

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20121114

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee