KR20030054692A - Method for magnetic annealing non- oriented electrical steel sheet - Google Patents

Method for magnetic annealing non- oriented electrical steel sheet Download PDF

Info

Publication number
KR20030054692A
KR20030054692A KR1020010085083A KR20010085083A KR20030054692A KR 20030054692 A KR20030054692 A KR 20030054692A KR 1020010085083 A KR1020010085083 A KR 1020010085083A KR 20010085083 A KR20010085083 A KR 20010085083A KR 20030054692 A KR20030054692 A KR 20030054692A
Authority
KR
South Korea
Prior art keywords
magnetic field
steel sheet
less
oriented electrical
electrical steel
Prior art date
Application number
KR1020010085083A
Other languages
Korean (ko)
Other versions
KR100544750B1 (en
Inventor
차상윤
츄다코프이반보르세비치
김재관
장삼규
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010085083A priority Critical patent/KR100544750B1/en
Publication of KR20030054692A publication Critical patent/KR20030054692A/en
Application granted granted Critical
Publication of KR100544750B1 publication Critical patent/KR100544750B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: A method for magnetic annealing non-oriented electrical steel sheet is provided to reduce iron loss while increasing magnetic flux. CONSTITUTION: In a method for magnetic annealing non-oriented electrical steel sheet including the steps of reheating a steel slab comprising 0.01 wt.% or less of C, 3.5 wt.% or less of Si, 0.5 wt.% or less of Mn, 0.15 wt.% or less of P, 0.012 wt.% or less of S, 1.2 wt.% or less of Al, 0.006 wt.% or less of N, Sn 0.03 to 0.3 wt.%, Cr 0.05 to 1.0 wt.%, 0.001 to 0.010 wt.% of Ca or Ce, a balance of Fe and incidental impurities to the temperature range of 1100 to 1250°C, followed by hot rolling the steel slab; coiling the hot rolled steel sheet at 600 to 800°C, followed by pickling and cold rolling; and annealing the cold rolled steel sheet at 700 to 1050°C, the method is characterized in that magnetic field (wave length 10 to 40 ms, frequency 1 to 8 Hz and intensity 100 to 700 Oe) is applied to steel sheet over the temperature range of 720 to 200 deg.C in cooling process after final annealing in such a way that vertical magnetic field and horizontal magnetic field are alternatingly applied to the steel sheet.

Description

무방향성전기강판의 자장열처리방법{Method for magnetic annealing non- oriented electrical steel sheet}Magnetic field heat treatment method of non-oriented electrical steel sheet {Method for magnetic annealing non- oriented electrical steel sheet}

본 발명은 모터 등의 전기기기 철심으로 사용되는 무방향성 전기강판의 제조방법에 관한 것으로, 보다 상세하게는 수평자장과 수직자장을 순차적으로 인가하여 철손이 낮고 투자율이 높은 무방향성 전기강판의 자장열처리 방법에 관한 것이다.The present invention relates to a method for manufacturing non-oriented electrical steel sheet used as an iron core of an electric device such as a motor. More specifically, magnetic field heat treatment of a non-oriented electrical steel sheet having low iron loss and high permeability by sequentially applying horizontal and vertical magnetic fields. It is about a method.

모터와 변압기등의 전기기기에서 철심으로 사용되는 무방향성 전기강판은 전기적 에너지를 기계적 에너지로 바뀔 때 가장 에너지손실이 큰 부품이다. 따라서 철손이 낮은 전기강판을 사용하면 에너지 손실을 그 만큼 줄일 수 있게 된다. 최근 들어 에너지 손실외에 환경문제로 인하여 저손실소재를 사용하면 그 만큼 발전량을 줄일 수 있어서 발전소 건설을 억제할 수 있다는 측면에서 저손실소재에 대한 관심이 높아지고 있다. 전기손실을 10% 줄일 수 있다면 현재 국내 발전소 200기 기준으로 발전소 20개를 줄여도 된다는 계산이 나온다.Non-oriented electrical steel sheets used as iron cores in electric devices such as motors and transformers are the most energy-loss parts when electrical energy is converted into mechanical energy. Therefore, the use of low iron loss electrical steel sheet can reduce the energy loss by that much. Recently, the use of low-loss materials due to environmental problems, besides energy loss, can reduce the amount of power generation, and interest in low-loss materials is increasing in terms of suppressing power plant construction. If the power loss can be reduced by 10%, it is calculated that 20 power plants can be reduced based on 200 domestic power plants.

무방향성 전기강판에 있어서의 자기적인 특성으로는 자속밀도, 철손, 투자율 그리고 자기변형(magnetostriction)이 있다. 자속밀도와 투자율은 높을수록 좋으며, 철손과 자기변형은 낮을수록 좋은 제품이다. 자속밀도와 투자율이 우수하면 모터의 토-크(회전력)가 커져서 상대적으로 소형으로 가져갈 수 있으며, 철심에 감는 동선의 양을 저감할 수 있어 동선이 줄어든다. 자속밀도와 투자율을 높이기 위하여 많은 연구자들은 성분설계와 가공조건의 변화에 따른 집합조직을 연구해 오고 있다.Magnetic properties in non-oriented electrical steel sheets include magnetic flux density, iron loss, permeability, and magnetostriction. Higher magnetic flux density and permeability are better, and lower iron loss and magnetostriction are better products. If the magnetic flux density and permeability are good, the torque (rotational power) of the motor will increase, which will bring it to a relatively small size, and the amount of copper wire wound on the iron core can be reduced, thereby reducing the copper wire. In order to increase the magnetic flux density and permeability, many researchers have been studying the aggregate structure according to the change of component design and processing conditions.

무방향성 전기강판에 있어서 철손은 이력손실과 와류손실이 있다. 이력손실은 크게는 결정립의 크기와 강의 청정도에 의해 영향을 받는다. 와류손실은 주로 강판의 비저항, 두께, 결정립 크기에 영향을 받는다. 종래에 연구자들은 철손을 감소시키기 위하여, 제강에서 Si과 Al을 첨가하여 비저항을 증가시키거나, 냉간압연을 통하여 두께를 얇게 하는 방법을 주로 시도하고 있다. 그러나, 통상 Si 또는 Al을 첨가하는 방법은 철손은 낮아지지만 자속밀도를 떨어뜨리는 효과를 동시에 수반하게 된다. 자속밀도를 높이면서 철손을 낮추는 것은 이 두가지 특성이 상호 반대적이므로 매우 어렵다. 이를 위하여 무방향성 전기강판의 두께를 얇게 하는 기술이 있다. 강판의 두께를 얇게 가져가면 그에 비례하여 와류손이 줄어들어 철손이 낮아지며, 이때 자속밀도는 성분에 의하여 영향을 받으므로 자속밀도와 철손이 좋은 특성을 동시에 얻을 수 있다. 그러나, 강판의 두께를 얇게 하면 강판 제조사 입장에서는 생산량에 지대한 영향을 주게 된다. 두께를 얇게 할수록 즉 압하율을 많이 줄수록 재료가 경해지므로 만들기가 용이하지가 않다. 또한 두께를 더욱 얇게 하기 위하여 늘어난 압연 횟수만큼 생산량이 감소될 수 밖에 없다.Iron loss in non-oriented electrical steel sheet has hysteresis loss and eddy current loss. Hysteresis losses are largely affected by grain size and steel cleanliness. Vortex losses are mainly affected by the resistivity, thickness and grain size of the steel sheet. In order to reduce the iron loss, the researchers have mainly attempted to increase the specific resistance by adding Si and Al in steelmaking or to reduce the thickness through cold rolling. However, in general, the method of adding Si or Al is accompanied with the effect of lowering the magnetic flux density but lowering the iron loss. Lowering iron loss while increasing the magnetic flux density is very difficult because the two properties are mutually opposite. To this end, there is a technique for reducing the thickness of the non-oriented electrical steel sheet. If the thickness of the steel sheet is taken thin, the vortex loss is reduced in proportion to the iron loss, and the magnetic flux density is affected by the components, and thus the magnetic flux density and the iron loss can be obtained at the same time. However, thinning the steel sheet has a great influence on the production volume for the steel sheet manufacturer. The thinner the thickness, the lower the reduction ratio, the harder the material, so it is not easy to make. In addition, in order to make the thickness thinner, the number of rolls increases, which inevitably decreases the yield.

따라서, 강판의 두께를 얇게 하면서 철손과 자속밀도를 동시에 개선하는 기술은 그리 긍정적이지 않으며, 새로운 기술의 도입이 요구되고 있다. 이를 반영한 대표적인 기술이 한국 공개특허공보 2001-28403호로소, 강을 청정하게 하여 이력손실을 낮춤으로서 철손을 저감하고 있다. 즉, 불순물인 S, N의 함량을 가능한 줄이면서 결정립계에 편석하는 N을 막기 위하여 Sn, Cr을 첨가하고 있다. 구체적인 제조방법은, 중량%로, C: 0.01%이하, Si: 3.5%이하, Mn: 0.5%이하, P: 0.15%이하, S: 0.012%이하, Al: 1.2%이하, N: 0.006%이하, Sn: 0.03~0.3%, Cr: 0.05~1.0%, Ca 또는 Ce이 단독 또는 복합으로 0.001~0.010%, 나머지 Fe와 기타 불가피하게 첨가되는 불순물로 조성되는 슬라브를 1100~1250℃ 온도로 재가열하여 열간압연하고, 600~800℃ 온도로 권취한 다음, 산세 및 냉간압연하고, 700~1050℃ 온도에서 냉연판을 소둔하고 있다.Therefore, the technology for improving the iron loss and the magnetic flux density at the same time while reducing the thickness of the steel sheet is not very positive, and the introduction of a new technology is required. Korean Patent Publication No. 2001-28403 reflects this, and steel loss is reduced by reducing hysteresis loss. That is, Sn and Cr are added to prevent the N segregation at the grain boundary while reducing the content of impurities S and N as much as possible. Specific manufacturing methods are, by weight, C: 0.01% or less, Si: 3.5% or less, Mn: 0.5% or less, P: 0.15% or less, S: 0.012% or less, Al: 1.2% or less, N: 0.006% or less , Sn: 0.03 ~ 0.3%, Cr: 0.05 ~ 1.0%, Ca or Ce is 0.001 ~ 0.010% alone or in combination, and the slab composed of the remaining Fe and other unavoidable impurities is reheated to 1100 ~ 1250 ℃ It is hot rolled, wound up at a temperature of 600 to 800 ° C, then pickled and cold rolled, and annealed at cold temperature of 700 to 1050 ° C.

한편, 무방향성 전기강판의 자기적인 특성에서 중요한 자속밀도, 철손, 투자율에 대한 개선여지가 많기 때문에 자기변형에 대한 관심이 그리 높지 않다. 자기변형은 전기강판을 철심으로 가공하여 모터 등의 응용제품에서 사용할 때 발생하는 소음이 원인이 된다. 즉, 철심내부에서 자속방향의 변화로 철심의 길이변화가 일어나 소음이 발생하는데, 이를 자기변형이라 한다. 자기변형은 재료내부에서 자구의 회전으로 원자간 거리가 달라지게 되어 총체적으로 재료의 길이변화가 유발되어 생기는 것으로 알려져 있다.On the other hand, there is not much interest in magnetostriction because there is much room for improvement of magnetic flux density, iron loss, and permeability in magnetic properties of non-oriented electrical steel sheet. Magnetostriction causes noise generated when the steel sheet is processed with iron cores and used in applications such as motors. That is, the change of the magnetic core in the iron core in the length of the iron core causes a noise, which is called magnetostriction. Magnetostriction is known to be caused by the change of the length of the material as the distance between atoms is changed by the rotation of the magnetic domain in the material.

오랜 기간 동안 많은 연구자들이 재료내에 존재하는 자구를 조절하는데 있어서 자장열처리 방법을 이용하였다. 자장열처리는 1913년 Pender와 Jones에 의해 발견된 이후 여러 가지 재료에 응용되고 있다. 이는 큐리온도 이하에서 상온까지 냉각하는 동안에 자장을 부여하여 재료의 자구를 재배열함으로써 자화곡선을 변화시키는 것이다. 자장열처리는 자기이방성 에너지가 낮은 재료에서 자기적 특성을 향상시키기 위하여 주로 사용하고 있다. Physics of Ferromagnetism(S.Chikazumi. Oxford Press, NY, 1997)에서와 Introduction to Magnetic Materials(B.Cullity. A.Wesley Publ., London, 1972)에서는 열처리과정중 냉각을 포함하는 과정에서 자장을 자화용이축 방향 즉 압연방향으로 가하면서 열처리하는 것을 자장열처리로 그 의미를 설명하고 있다.For a long time, many researchers have used magnetic field heat treatment to control the magnetic domains present in the material. Magnetic field heat treatment has been applied to a variety of materials since it was discovered by Pender and Jones in 1913. This is to change the magnetization curve by rearranging the magnetic domain of the material by imparting a magnetic field while cooling to room temperature below the Curie temperature. Magnetic field heat treatment is mainly used to improve magnetic properties in materials with low magnetic anisotropy energy. In the Physics of Ferromagnetism (S. Chikazumi. Oxford Press, NY, 1997) and Introduction to Magnetic Materials (B.Cullity. A. Wesley Publ., London, 1972) The heat treatment while applying in the axial direction, that is, the rolling direction, has been explained by the magnetic field heat treatment.

그런데, 이러한 자장열처리기술은 주로 방향성 전기강판에 적용되었다. 1964년 V.A. ZAYKOVA등의 발표(Fiz. Metal. metalloved. 18, 349 (1964))를 효시로 하여 당시에 활발히 연구되었다. 그러나, 방향성전기강판의 결정자기 이방성에너지가 너무 큰 것으로 인하여 자장열처리로 강판의 자성을 변화시키기가 쉽지 않음을 알고, 이후 연구가 거의 이루어지지 않았다.However, this magnetic field heat treatment technology has been mainly applied to oriented electrical steel sheet. 1964 V.A. ZAYKOVA et al. (Fiz. Metal. Metalloved. 18, 349 (1964)) was actively studied at that time. However, it was found that it is not easy to change the magnetic properties of the steel sheet by magnetic field heat treatment because the crystal magnetic anisotropy energy of the grain-oriented electrical steel sheet is too large.

자장열처리를 방향성전기강판에 적용한 구체적인 기술로는 (1) 일본 특개평8-134543호, (2) 평8-134551 및 (3) 평7-197132호 등이 있다.Specific techniques for applying magnetic field heat treatment to a grain-oriented electrical steel sheet include (1) Japanese Patent Application Laid-open No. Hei 8-134543, (2) Hei 8-134551, and (3) Hei 7-197132.

(1) 일본 특개평8-134543에서는 자속밀도가 800A/m (B8)에서 1.93~1.94테스라(Tesla)인 재료를 이용하여 자장열처리의 적정온도와 냉각속도에 따른 자기변형 감소효과를 보여주고 있다. 여기서는 방향성전기강판을 이차재결정소둔후 코팅과 평탄화과정을 거쳐 냉각과정중에 자기변태점 바로 직상 온도에서 약350℃ 까지 25℃/초 이하의 속도로 냉각하며 이때 직류자장은 10 에르스텟(Oe) 정도 부여하는 것을 특징으로 한다.(1) Japanese Patent Application Laid-Open No. 8-134543 shows the effect of reducing the magnetostriction according to the proper temperature and cooling rate of the magnetic field heat treatment using a material having a magnetic flux density of 1.93 to 1.94 Tesla at 800 A / m (B 8 ). Giving. In this case, the oriented electrical steel sheet is subjected to secondary recrystallization annealing, followed by coating and flattening. It is characterized by.

(2) 일본 특개평8-134551에서는 자속밀도가 800A/m (B8)에서 1.94 테스라(Tesla)인 재료를 이용하여 700℃이하의 온도에서 400℃까지 강판의 폭방향으로 온도경사를 1.5℃/cm으로 하면서 동시에 강판에 인장응력을 신장률 0.30% 이상 또는 0.15% 이하로 하고, 직류자장을 50 에르스텟 이상으로 부여하여 철손과 자속밀도가 낮아지는 효과를 보여주고 있다.(2) In Japanese Patent Laid-Open No. 8-134551, a temperature gradient of 1.5 ° C in the width direction of the steel sheet from 700 ° C to 400 ° C was obtained using a material having a magnetic flux density of 800 A / m (B 8 ) of 1.94 Tesla. At the same time, the tensile stress of the steel sheet is 0.30% or more, or 0.15% or less, and the DC magnetic field is applied to 50 ersted or more, thereby reducing the iron loss and the magnetic flux density.

(3) 일본 특개평7-197132호에는 Si:1~10중량%을 함유하는 규소강판에 큐리온도미만의 영역에서, 유효자계 40A/m이상의 교번자계(사인파형, 삼각파형 및 사각파형 자장)를 인가하고, 이 자계중에서 400℃이하까지 냉각하는 방향성 전기강판의 제조방법이 개시되어 있다.(3) Japanese Patent Application Laid-Open No. 7-197132 shows an alternating magnetic field of more than 40 A / m in an effective magnetic field (sine wave, triangular wave and square wave magnetic fields) in a silicon steel sheet containing Si: 1 to 10% by weight in the region below the Curie temperature. A method for producing a grain-oriented electrical steel sheet is disclosed, which is cooled to 400 ° C. or lower in this magnetic field.

상기 선행기술들에서는 모두 자기적특성들이 우수한 고자속밀도 방향성전기강판(800A/m에서 자속밀도가 1.90 Tesla 이상) 또는 실질적으로 고규소(실리콘 함량이 4% 이상)강판을 이용하고 있다. 또한, 상기 (1)(2)(3)의 선행기술에서는 자장을 자화용이축 방향(강판의 압연방향을 향하여 자장부여)으로 가하는 자장열처리기술로서, (1)(2)에서는 직류자장을 (3)에서는 교류자장을 부여하고 있다.직류자장의 경우에는 자장세기에 따라 많은 전력이 필요하게 되어 높은 자장세기를 얻기가 매우 어려울 뿐 아니라 들어가는 전력에 비해 자장이 세기가 높지 않으므로 매우 비효율적이다. 또한, 교류자장은 자장세기에 따라 자기변형감소 효과가 좋고, 직류자장 보다 더 좋은 효과를 가지나 이 또한 높은 자장을 얻기에는 많은 전력을 필요로 하게 된다.In the above prior arts, high magnetic flux density oriented electrical steel sheets (magnetic flux density of 1.90 Tesla or more at 800 A / m) or substantially high silicon (silicon content of 4% or more) steel sheets are used. Further, in the prior art of (1) (2) (3), the magnetic field heat treatment technique of applying the magnetic field in the biaxial direction for magnetization (to impart the magnetic field in the rolling direction of the steel sheet), and in (1) (2), the direct current magnetic field ( In (3), AC magnetic field is given. In the case of DC magnetic field, much power is required according to magnetic field strength, so it is very difficult to obtain high magnetic field strength, and it is very inefficient because magnetic field is not high compared to power input. In addition, the alternating magnetic field has a good effect of reducing the magnetostriction according to the magnetic field strength, and has a better effect than the direct current magnetic field, but it also requires a lot of power to obtain a high magnetic field.

이상 살펴본 바와 같이, 무방향성 전기강판에 대해서 자장열처리를 통해 자성을 향상시키는 기술과 관련된 선행기술은 찾아보기 어려운데, 그 이유는 지금까지의 자장열처리는 자구를 일방향으로 배열하는 기술로 인식되어 있기 때문에 결정립들이 서로 다른 방위를 갖는 무방향성 전기강판에 대한 적용은 전혀 고려되지 않았다.As described above, the prior art related to the technique of improving the magnetic properties through magnetic field heat treatment for the non-oriented electrical steel sheet is difficult to find, because the magnetic field heat treatment so far is recognized as a technique for arranging magnetic domains in one direction. Application to non-oriented electrical steel sheets in which grains have different orientations was not considered at all.

본 발명에서는 한국 공개특허공보 2001-28403호에 제안된 무방향성 전기강판에 수평자장과 수직자장을 순차적으로 인가하여 철손이 낮고 투자율이 높은 무방향성 전기강판의 자장열처리 방법을 제공하는데, 그 목적이 있다.The present invention provides a magnetic field heat treatment method for a non-oriented electrical steel sheet having low iron loss and high permeability by sequentially applying horizontal and vertical magnetic fields to the non-oriented electrical steel sheet proposed in Korean Unexamined Patent Publication No. 2001-28403. have.

도 1는 자장방향에 따른 자장열처리의 개요도로서1 is a schematic diagram of a magnetic field heat treatment according to a magnetic field direction;

도 1(a)는 강판의 길이방향(압연방향)으로 자장부여하는 자장열처리(LDMA)의 개요도Fig. 1 (a) is a schematic diagram of magnetic field heat treatment (LDMA) for magnetically applying in the longitudinal direction (rolling direction) of the steel sheet.

도 1(b)는 강판의 폭방향(강판의 압연방향에 대한 수직방향)으로 자장부여하는 자장열처리(TDMA)의 개요도Fig. 1 (b) is a schematic diagram of magnetic field heat treatment (TDMA) for magnetically applying in the width direction (vertical direction to the rolling direction of the steel sheet) of the steel sheet;

도 2는 자장인가개시온도에 따른 자기변형개선율을 나타내는 그래프2 is a graph showing the magnetostriction improvement rate according to the magnetic field start temperature

도 3은 냉각속도에 따른 자기변형개선율을 나타내는 그래프3 is a graph showing the magnetostriction improvement rate according to the cooling rate

도 4는 자장열처리 장치의 개요도4 is a schematic diagram of a magnetic field heat treatment apparatus;

도 5는 자장세기에 따른 철손과 투자율의 변화를 나타내는 그래프5 is a graph showing the change in iron loss and magnetic permeability according to the magnetic field strength

도 6은 주파수에 따른 철손과 투자율의 변화를 나타내는 그래프6 is a graph showing changes in iron loss and permeability with frequency

도 7은 펄스폭에 따른 철손과 투자율의 변화를 나타내는 그래프7 is a graph showing changes in iron loss and permeability according to pulse widths.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1..전기강판 2… 열처리로1 .. electrical steel sheet 2.. Heat treatment furnace

20.. 수평자장발생수단 30..수직자장발생수단20 .. Horizontal magnetic field generating means 30. Vertical magnetic field generating means

40..전원공급기 50.. 제어부40. Power supply 50. Control unit

52.. 전원스위칭수단 60.. 오실로스코프52. Power switching means 60. Oscilloscope

상기 목적을 달성하기 위한 본 발명의 자장열처리방법은, 중량%로, C: 0.01%이하, Si: 3.5%이하, Mn: 0.5%이하, P: 0.15%이하, S: 0.012%이하, Al: 1.2%이하, N:0.006%이하, Sn: 0.03~0.3%, Cr: 0.05~1.0%, Ca 또는 Ce이 단독 또는 복합으로 0.001~0.010%, 나머지 Fe와 기타 불가피하게 첨가되는 불순물로 조성되는 슬라브를 1100~1250℃ 온도로 재가열하여 열간압연하고, 600~800℃ 온도로 권취한 다음, 산세 및 냉간압연하고, 700~1050℃ 온도에서 냉연판을 소둔하는 무방향성 전기강판의 제조방법에 있어서, 상기 최종소둔후 냉각과정의 720~200℃의 온도구간에서 폭 10~40ms, 주파수 1~8Hz의 자장을 100~700 Oe의 세기로서 수평자장과 수직자장을 순차적으로 인가하여 자장열처리하는 단계를 포함하여 구성된다.The magnetic field heat treatment method of the present invention for achieving the above object, in weight%, C: 0.01% or less, Si: 3.5% or less, Mn: 0.5% or less, P: 0.15% or less, S: 0.012% or less, Al: 1.2% or less, N: 0.006% or less, Sn: 0.03 to 0.3%, Cr: 0.05 to 1.0%, slab composed of 0.001 to 0.010% of Ca or Ce alone or in combination with other Fe and other unavoidable impurities In the method for producing a non-oriented electrical steel sheet which is reheated to 1100 ~ 1250 ℃ temperature, hot rolled, wound at 600 ~ 800 ℃ temperature, then pickled and cold rolled, annealing the cold rolled sheet at 700 ~ 1050 ℃ temperature, After the final annealing, in the temperature range of 720 ~ 200 ℃ during the cooling process, the magnetic field heat treatment by sequentially applying a horizontal magnetic field and a vertical magnetic field in the intensity of 10 ~ 40ms, frequency 1 ~ 8Hz as the intensity of 100 ~ 700 Oe It is configured by.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

무방향성 전기강판내에는 수 많은 결정립들이 존재하고 각 결정립들은 각기 서로 다른 방위들을 가지고 있으므로 그 속에 형성된 자구 또한 각기 서로 다른 방향을 향하고 있다. 모터가 회전시 철심내부의 임의의 지점에서의 자구는 일제히 외부에서 주어지는 자기장에 따라 회전 또는 자벽이동이 일어나게 된다. 이때 자벽의 운동이 쉽게 잘 일어나는 것일수록 철손실이 적다. 자벽의 운동이 외부자장에 따라 쉽게 움직이게 하기 위해서는 자기이방성에너지가 낮아야 한다.There are many grains in the non-oriented electrical steel sheet, and each grain has different orientations, so the domains formed therein also face different directions. When the motor rotates, the magnetic domain at any point inside the iron core rotates or moves the wall according to the magnetic field given from the outside at the same time. At this time, the better the movement of the magnetic wall is less iron loss. The magnetic anisotropy energy must be low in order for the movement of the magnetic wall to move easily according to the external magnetic field.

따라서, 본 발명자들은 자기이방에너지를 낮추면 서로 다른 방향으로 배열된 자구가 쉽게 회전하거나 또는 자벽이동이 되어 철손실이 낮출 수 있다라는 점에 착안하여 방향성 전기강판에서 자기이방에너지를 낮추는데 사용되던 자장열처리기술을 도입하는 실험을 진행하였다. 그러나, 지금까지의 자화용이축인 강판의 길이방향으로자장을 인가하는 수평자장(도 1a)을 한국 공개특허공보 2001-28403호에 제안된 무방향성 전기강판에 적용해 본 결과, 별다른 효과를 얻지 못하였다. 계속되는 연구과정에서 강판의 폭방향으로 자장을 인가하는 수직자장(도 1b)과 함께 수직자장과 수평자장을 순차적으로 적용해 본 결과, 자기이방성에너지가 현격히 낮아지는 결과를 확인하였다.Therefore, the present inventors realized that lowering the magnetic anisotropy energy could easily rotate the magnetic domains arranged in different directions or move the magnetic walls to lower the iron loss, thereby reducing the magnetic anisotropy energy in the oriented electrical steel sheet. An experiment was introduced to introduce the technology. However, as a result of applying the horizontal magnetic field (FIG. 1A) applying the magnetic field in the longitudinal direction of the steel sheet, which is a biaxial axis for magnetization, to the non-oriented electrical steel sheet proposed in Korean Laid-Open Patent Publication No. 2001-28403, no effect is obtained. I couldn't. In the ongoing research, the vertical magnetic field and the horizontal magnetic field were sequentially applied along with the vertical magnetic field (FIG. 1B) to apply the magnetic field in the width direction of the steel sheet. As a result, the magnetic anisotropy energy was significantly lowered.

본 발명에서는 무방향성 전기강판에 자장열처리기술을 새롭게 도입하면서, 수평자장과 수직자장을 순차적으로 적용하는데 특징이 있으며, 여기에 사용되는 자장열처리장치를 제안하는데도 특징이 있다. 따라서, 본 발명을 [1] 대상강판, [2] 자장열처리방법, [3] 자장열처리장치로 구분하여 설명한다.In the present invention, while introducing a new magnetic field heat treatment technology to the non-oriented electrical steel sheet, there is a feature to apply the horizontal magnetic field and vertical magnetic field in sequence, and also to propose a magnetic field heat treatment apparatus used here. Therefore, the present invention will be described by dividing it into [1] object steel plate, [2] magnetic field heat treatment method, and [3] magnetic field heat treatment apparatus.

[1] 대상강판[1] sheet steels

본 발명에서는 한국 공개특허공보 2001-28403호에 제안한 무방향성 전기강판을 대상강재로 한다. 이 대상강재는, 중량%로, C: 0.01%이하, Si: 3.5%이하, Mn: 0.5%이하, P: 0.15%이하, S: 0.012%이하, Al: 1.2%이하, N: 0.006%이하, Sn: 0.03~0.3%, Cr: 0.05~1.0%, Ca 또는 Ce이 단독 또는 복합으로 0.001~0.010%, 나머지 Fe와 기타 불가피하게 첨가되는 불순물로 조성되는 슬라브를 1100~1250℃ 온도로 재가열하여 열간압연하고, 600~800℃ 온도로 권취한 다음, 산세 및 냉간압연하고, 700~1050℃ 온도에서 냉연판을 소둔하여 제조한 것이다. 구체적인 강조성범위 한정이유와 최종소둔까지의 구체적인 제조조건은 한국 공개특허공보 2001-28403호에 자세히 기재되어 있어 여기서는 중복을 피하기 위하여 설명을 생략한다.In the present invention, the non-oriented electrical steel sheet proposed in Korean Unexamined Patent Publication No. 2001-28403 is used as the target steel. The target steel is, by weight, C: 0.01% or less, Si: 3.5% or less, Mn: 0.5% or less, P: 0.15% or less, S: 0.012% or less, Al: 1.2% or less, N: 0.006% or less , Sn: 0.03 ~ 0.3%, Cr: 0.05 ~ 1.0%, Ca or Ce is 0.001 ~ 0.010% alone or in combination, and the slab composed of the remaining Fe and other unavoidable impurities is reheated to 1100 ~ 1250 ℃ It is manufactured by hot rolling, winding at a temperature of 600 to 800 ° C, pickling and cold rolling, and annealing the cold rolled plate at a temperature of 700 to 1050 ° C. The specific manufacturing conditions up to the specific emphasis range and the final annealing are described in detail in Korean Patent Laid-Open Publication No. 2001-28403, and description thereof is omitted here to avoid duplication.

본 발명에서는 상기 최종소둔후의 냉각과정 또는 이 최종소둔재에 절연코팅을 하여 경화처리하는 냉각과정에서 자장열처리를 한다.In the present invention, the magnetic field heat treatment is performed in the cooling process after the final annealing or in the cooling process by performing an insulating coating on the final annealing material.

[2] 자장열처리방법[2] magnetic field heat treatment

본 발명에서는 최종소둔재 또는 최종소둔후의 냉각과정 또는 절연코팅하고 경화처리후의 냉각과정에 자장열처리한다. 자장열처리는 크게 자장인가개시온도와 냉각속도, 자장인가패턴, 인가자장의 조건을 최적화하여 자기이방성에너지를 낮추어 철손, 자속밀도, 자기변형의 개선을 도모한다.In the present invention, the magnetic field heat treatment is performed in the cooling process after the final annealing material or the final annealing or insulated coating and the cooling process after the hardening treatment. The magnetic field heat treatment greatly improves iron loss, magnetic flux density, and magnetic strain by lowering magnetic anisotropy energy by optimizing magnetic field start temperature, cooling speed, magnetic field application pattern, and magnetic field conditions.

·자장인가개시온도와 냉각속도 · Magnetic field-applied start temperature and cooling rate

무방향성 전기강판의 자기이방성에너지는 온도가 높을수록 급격히 낮아지기 때문에 높은 온도에서 자장을 가하는 것이 좋다. 그러나, 자장열처리 온도가 강판의 자기변태점(큐리온도, 약 720℃)에 가까이 갈수록 무방향성 전기강판의 투자율이 낮아져 자속이 약해지므로 너무 온도가 높아도 좋지 않으므로 자장열처리 온도는 720℃이하에서 행하는 것이 바람직하다. 따라서, 자장인가개시온도는 720℃이하에서 높을수록 좋다고 생각하는 것이 일반적이다. 그런데, 자장인가 개시온도를 350℃까지 낮추더라도 도 2에서 알 수 있듯이 자기변형개선율에는 차이가 크지 않다. 따라서, 열에너지를 소비하면서 굳이 높은 온도에서 자장열처리를 하지 않아도 된다는 사실을 알 수 있다. 따라서, 자장인가개시온도는 350~600℃로 하는 것이 바람직하다. 자장인가종료온도는 200℃이전으로 하는 것이 좋다. 도 2에 나타난 바와 같이, 200℃미만에서 자장인가는 별다른 효과가 없다.The magnetic anisotropy energy of non-oriented electrical steel sheet is rapidly lowered at higher temperature, so it is better to apply magnetic field at high temperature. However, as the magnetic field heat treatment temperature approaches the magnetic transformation point (Curie temperature, about 720 ° C) of the steel sheet, the magnetic permeability of the non-oriented electrical steel sheet decreases, so that the magnetic flux is weakened. Do. Therefore, it is common to think that the magnetic field application start temperature is higher at 720 degrees C or less. However, even if the magnetic field application start temperature is lowered to 350 ° C., as shown in FIG. 2, the magnetostriction improvement rate is not large. Therefore, it can be seen that it is not necessary to perform magnetic field heat treatment at a high temperature while consuming heat energy. Therefore, it is preferable to make the magnetic field application start temperature into 350-600 degreeC. The end of magnetic field application temperature is better than 200 ℃. As shown in Figure 2, applying the magnetic field at less than 200 ℃ has no effect.

또한, 자장을 인가하면서 강판을 냉각하는 속도는 30~120℃/sec로 하는 것이 바람직하다. 도 3에서 알 수 있듯이, 냉각속도가 느릴수록 자기변형개선에는 좋으나 냉각속도가 최대 약 120℃/sec까지 높이더라도 어느 정도의 자기변형개선효과가 있다. 따라서, 본 발명에서는 강판의 냉각속도를 30~120℃/sec로 하여 생산성과 함께 자기특성개선을 도모한다.Moreover, it is preferable to make the rate of cooling a steel plate 30-120 degreeC / sec, applying a magnetic field. As can be seen in Figure 3, the slower the cooling rate is better for the improvement of the magnetostriction, but even if the cooling rate is increased up to about 120 ℃ / sec, there is some degree of improvement in the magnetostriction. Therefore, in the present invention, the cooling rate of the steel sheet is set to 30 to 120 ° C / sec to improve the magnetic characteristics with productivity.

·자장인가패턴 · Magnetic field-applied pattern

무방향성 전기강판은 가공과 열처리를 거쳐 재결정이 이루어지는 동안 결정립들의 집합조직에 따라 자발자구가 형성된다. 이렇게 형성된 자발자구의 자기이방성에너지를 낮출 수 있는 방안으로 본 발명에서는 수직자장과 수평자장을 순차적으로 인가한다. 순차적으로 자장을 인가하는 방법을 도 4를 참고로 설명한다.In the non-oriented electrical steel sheet, spontaneous spheres are formed according to the texture of grains during recrystallization through processing and heat treatment. As a way to lower the magnetic anisotropy energy of the spontaneous sphere formed as described above, the vertical magnetic field and the horizontal magnetic field are sequentially applied. A method of sequentially applying a magnetic field will be described with reference to FIG. 4.

열처리에서 인출되는 가열강판에 먼저 제1수평자장인가수단(20a)을 통해 강판의 이송방향으로 수평자장을 인가한다. 이어 이 수평자장의 인가를 종료한 직후에 제1수직자장인가수단(30a)을 통해 강판의 이송방향으로 보아 강판의 우측에서 좌측으로 수직자장을 인가한다. 이어 제1수직자장인가수단(30a)을 통한 수직자장의 인가를 종료한 직후에 제2수평자장인가수단(20b)을 통해 강판의 이송방향의 역으로 수평자장을 인가한다. 이어 이 수평자장의 인가를 종료한 다음에 제2수직자장발생수단(30b)을 통해 강판의 이송방향으로 보아 좌측에서 우측으로 수직자장을 인가한다. 이러한 패턴으로 연속하여 수평자장과 수직자장을 인가한다. 물론, 이러한 순차적인 인가방향을 역으로 할 수도 있다. 그 인가패턴은 그 외의 여러가지 방법이 있을 수 있는데, 가능한 방법을 자장발생수단(20)(30)의 전원공급방법으로 표현하면 아래와 같다.The horizontal magnetic field is first applied to the heating steel sheet drawn out by the heat treatment through the first horizontal magnetic field applying means 20a. Then, immediately after the application of the horizontal magnetic field is applied, the vertical magnetic field is applied from the right side to the left side of the steel sheet in the conveying direction of the steel sheet through the first vertical magnetic field applying means 30a. Then, immediately after the application of the vertical magnetic field through the first vertical magnetic field applying means 30a, the horizontal magnetic field is applied in the reverse direction of the conveying direction of the steel sheet through the second horizontal magnetic field applying means 20b. Subsequently, the application of the horizontal magnetic field is terminated, and then the vertical magnetic field is applied from the left to the right through the second vertical magnetic field generating means 30b in the conveying direction of the steel sheet. In this pattern, horizontal and vertical magnetic fields are applied successively. Of course, this sequential application direction may be reversed. The application pattern may be any of various other methods. The possible method is expressed as the power supply method of the magnetic field generating means 20, 30 as follows.

(1)제1수평자장발생수단(20a)→제1수직자장발생수단(30a) →제2수평자장발생수단(20b) →제2수직자장발생수단(30b):순환(1) First horizontal magnetic field generating means 20a → First vertical magnetic field generating means 30a → Second horizontal magnetic field generating means 20b → Second vertical magnetic field generating means 30b: Circulation

(2)제1수평자장발생수단(20a)→제2수직자장발생수단(30b) →제2수평자장발생수단(20b) →제1수직자장발생수단(30a):순환(2) First horizontal magnetic field generating means 20a → Second vertical magnetic field generating means 30b → Second horizontal magnetic field generating means 20b → First vertical magnetic field generating means 30a: Circulation

(3)제1수평자장발생수단(20a)→제1수직자장발생수단(30a) →제1수평자장발생수단(20a) →제1수직자장발생수단(30a):순환(3) First horizontal magnetic field generating means (20a) → First vertical magnetic field generating means (30a) → First horizontal magnetic field generating means (20a) → First vertical magnetic field generating means (30a): Circulation

(4)제1수평자장발생수단(20a)→제2수직자장발생수단(30b) →제1수평자장발생수단(20a) →제2수직자장발생수단(30b):순환(4) First horizontal magnetic field generating means (20a) → Second vertical magnetic field generating means (30b) → First horizontal magnetic field generating means (20a) → Second vertical magnetic field generating means (30b): Circulation

(5)제2수평자장발생수단(20b)→제1수직자장발생수단(30a) →제2수평자장발생수단(20b) →제1수직자장발생수단(30a):순환(5) Second horizontal magnetic field generating means 20b → First vertical magnetic field generating means 30a → Second horizontal magnetic field generating means 20b → First vertical magnetic field generating means 30a: Circulation

(6)제1수평자장발생수단(20b)→제2수직자장발생수단(30b) →제1수평자장발생수단(20b) →제2수직자장발생수단(30b):순환(6) First horizontal magnetic field generating means (20b) → Second vertical magnetic field generating means (30b) → First horizontal magnetic field generating means (20b) → Second vertical magnetic field generating means (30b): Circulation

상기한 6가지 인가패턴에서 가장 바람직한 예가 (1)(2)이다. 인가패턴(1)(2)를 따라 무방향성 전기강판에 자장을 인가하는 경우에는 임의의 점에 있는 자구가 자장을 받아 회전하게 된다. 그리고, 강판의 진행속도는 강판의 임의의 부분이 적어도 1회 순환하는 자장의 영역에 있도록 조정하는 것이 필요하다. 이때 각 자장발생수단은 N극과 S 극을 교대로 하는 것이 아니라 도 4에 화살표로 나타낸 것처럼 한쪽방향의 자장을 인가하는 것이 바람직하다. 이는 강판내부의 자구를 회전시키는데 있어 매우 효과적이기 때문이다.The most preferable example in the above six application patterns is (1) (2). When the magnetic field is applied to the non-oriented electrical steel sheet along the application patterns (1) and (2), the magnetic domain at any point rotates in response to the magnetic field. And the traveling speed of the steel sheet needs to be adjusted so that any part of the steel sheet is in the region of the magnetic field circulating at least once. At this time, it is preferable that each magnetic field generating means applies a magnetic field in one direction as indicated by arrows in FIG. This is because it is very effective in rotating the magnetic domain inside the steel sheet.

·자장인가조건 · Conditions for magnetic field

본 발명에서는 인가하는 자장은 직류, 교류, 펄스중의 어느 하나가 이용될 수 있으나, 교류나 펄스를 이용하는 것이 좋다. 보다 바람직하게는 순간적으로 높은 자장을 가할 수 있는 펄스자장이 좋다. 펄스자장은 직류자장 또는 교류자장에 비하여 자장을 부여하는 시간을 매우 짧게 하는 것을 의미한다. 교류자장은 방형파, 삼각파, 반사인파가 적용될 수 있다. 이때의 자장인가조건은 조건은 펄스폭 10~40ms, 주파수 1~8Hz, 펄스세기 100~700 0e으로 하는 것이 좋다.In the present invention, the magnetic field to be applied may be any one of direct current, alternating current, and pulse, but it is preferable to use alternating current or pulse. More preferably, a pulse magnetic field capable of instantaneously applying a high magnetic field is preferable. Pulsed magnetic field means that the time for applying the magnetic field is very short compared to the direct or alternating magnetic field. The alternating magnetic field may be square, triangular, or reflected wave. The magnetic field application condition at this time is preferably a pulse width of 10 to 40 ms, a frequency of 1 to 8 Hz, and a pulse intensity of 100 to 700 0e.

즉, 자장의 세기는 도 5에 나타나 있듯이, 자장세기가 100 Oe이상일 때부터 철손이 현격히 감소하며 700 Oe 보다 커지더라도 자성개선효과가 둔화된다.That is, as shown in Figure 5, the magnetic field strength is significantly reduced when the magnetic field strength is more than 100 Oe, even if it exceeds 700 Oe, the magnetic improvement effect is slowed.

주파수는 도 6에 나타나 있듯이, 주파수가 커질수록 철손이 작아지는데, 1Hz이상 될 때 철손감소가 현격히 나타나며, 8Hz이상에서는 감소정도가 둔화된다.As shown in Fig. 6, the frequency decreases, the iron loss decreases as the frequency increases. When the frequency is higher than 1 Hz, the iron loss is remarkable, and the decrease is slowed down to 8 Hz or more.

펄스폭은 도 7에 나타나 있듯이, 10ms이상에서 철손감소가 현격히 나타나며, 40ms에 근접해가면 개선효과가 그다지 크지 않다는 것을 알 수 있다.As shown in FIG. 7, the iron loss is remarkably increased in 10 ms or more, and the improvement effect is not so great when the pulse width approaches 40 ms.

본 발명의 자장열처리 방법이 적용되는 자장열처리 장치가 도 4에 도시되어 있다. 이를 간략히 설명한다. 자장열처리는, 열처리로(2), 수평자장인가수단(20), 수직자장인가수단(30), 전원공급기(40), 전원스위칭수단(52), 제어부(50)으로 구성된다.The magnetic field heat treatment apparatus to which the magnetic field heat treatment method of the present invention is applied is shown in FIG. 4. This is briefly explained. The magnetic field heat treatment includes a heat treatment furnace 2, a horizontal magnetic field applying means 20, a vertical magnetic field applying means 30, a power supply 40, a power switching means 52, and a controller 50.

·열처리로(2) , The heat treatment furnace (2)

본 발명의 열처리로는 전기강판을 자장열처리온도로 가열하기 위한 것으로, 무방향성전기강판의 최종소둔로 또는 절연코팅의 경화로로 대체할 수 있다.The heat treatment furnace of the present invention is to heat the electrical steel sheet to the magnetic field heat treatment temperature, it can be replaced by the final annealing furnace of the non-oriented electrical steel sheet or the curing of the insulating coating.

·수평자장인가수단(20), And horizontal magnetic field applying means (20),

수평자장인가수단은 도 1과 같이 열처리의 후방에 설치되어 있으나, 열처리로내 전부 또는 일부를 배치할 수도 있다. 제1수직자장발생수단(20a)와 제2수직자장발생수단(20b)의 두개를 일정간격 이격하여 설치하고, 이 사이에 수직자장발생수단(30)이 설치된다.The horizontal magnetic field applying means is provided at the rear of the heat treatment as shown in FIG. 1, but may be disposed in whole or in part in the heat treatment furnace. Two of the first vertical magnetic field generating means (20a) and the second vertical magnetic field generating means (20b) are installed at regular intervals, and a vertical magnetic field generating means (30) is provided therebetween.

·수직자장발생수단(30), Means 30 generate a vertical magnetic field,

도 1에는 제1수직자장발생수단(30a)과 제2수직자장발생수단(30b)이 2개의 수평자장발생수단(20)의 사이에서 강판의 양측면에 각각 근접하게 설치된다.In Fig. 1, a first vertical magnetic field generating means 30a and a second vertical magnetic field generating means 30b are provided in close proximity to both side surfaces of the steel sheet between two horizontal magnetic field generating means 20, respectively.

상기한 수평자장발생수단(20)과 수직자장발생수단(30)은 솔레노이드, 헬름홀쯔코일, 전자석이 적용될 수 있다.The horizontal magnetic field generating means 20 and the vertical magnetic field generating means 30 may be a solenoid, a Helmholtz coil, or an electromagnet.

·전원공급기(40), · Power supply (40)

상기 자장발생수단에 전류를 공급하기 위한 전원공급기(40)기 구비된다. 전원은 직류, 교류, 펄스의 그룹에서 원하는 종류를 선택한다. 전원공급기에는 주파수, 폭, 세기를 조절할 수 있도록 파형제어기(미도시)를 구비하는 것이 바람직하다.A power supply 40 for supplying current to the magnetic field generating means is provided. Select a power source from the group of DC, AC and pulse. The power supply is preferably provided with a waveform controller (not shown) to adjust the frequency, width, and intensity.

·전원스위칭수단(52), , Power switching means 52,

상기 전원공급기(40)에서 공급되는 전류가 자장발생수단에 순차적으로 전달되도록 전원스위칭수단(52)을 구비한다. 전원스위칭수단에 의해 전원을 개방, 차단하여 상기한 (1)~(6)의 인가패턴을 구현한다.It is provided with a power switching means 52 so that the current supplied from the power supply 40 is sequentially transmitted to the magnetic field generating means. The application pattern of (1) to (6) is implemented by opening and shutting off the power by the power switching means.

·제어부(50) , The controller 50

제어부(50)는 상기 전원스위칭수단(52)를 제어하여 인가패턴(1)~(6) 또는 필요에 따라 여러가지 인가패턴을 구현한다. 인가패턴(1)을 예로 들어 제어부의 작용을 설명한다. 제어는 먼저,The controller 50 controls the power switching means 52 to implement the application patterns 1 to 6 or various application patterns as necessary. The operation of the controller will be described taking the application pattern 1 as an example. Control first,

제1전원스위칭수단(52a)를 개방하고 나머지 전원스위칭수단 (52b)(52c)(52d)는 차단하여 상기 제1수평자장인가수단(20a)에 전류를 공급하는 단계,Opening the first power source switching means 52a and blocking the remaining power source switching means 52b, 52c, 52d to supply current to the first horizontal field applying means 20a;

이어 제2전원스위칭수단(52b)를 개방하고, 나머지 전원스위칭수단(52a)(52c)(52d)는 차단하여 상기 제1수직자장인가수단(30a)에 전류를 인가하는 단계,Then, the second power source switching means 52b is opened, and the remaining power source switching means 52a, 52c, 52d are blocked to apply current to the first vertical magnetic field applying means 30a,

이어 제3전원스위칭수단(52c)를 개방하고 나머지 전원스위칭수단(52a)(52b)(52d)는Then, the third power source switching means 52c is opened and the remaining power source switching means 52a, 52b, 52d are

차단하여 상기 제2수평자장인가수단(20b)에 전류를 공급하는 단계,Supplying a current to the second horizontal magnetic field applying means (20b) by blocking;

이어 제4전원스위칭수단(52d)를 개방하고 나머지 전원스위칭수단(52a)(52b)(52c)는 차단하여 상기 제2수직자장인가수단(30b)에 전류를 공급하는 단계를 순차적으로 반복하여 가열된 무방향성 전기강판에 수평자장과 수직자장을 순차적으로 인가한다.Subsequently, the fourth power source switching means 52d is opened and the remaining power source switching means 52a, 52b, 52c are cut off to sequentially supply current to the second vertical magnetic field applying means 30b. The horizontal and vertical magnetic fields are sequentially applied to the non-oriented electrical steel sheet.

한편, 도 1에는 오실로스코프(60)이 도시되어 있다. 이 오스로스코프를 확대하여 나타낸 도 1의 하단부를 보면 순차적으로 펄스가 인가되는 것을 볼 수 있다.On the other hand, oscilloscope 60 is shown in FIG. In the lower part of FIG. 1, which is an enlarged view of the oscilloscope, pulses may be sequentially applied.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

본 발명의 실시예에서 대상강재는 다음과 같은 공정을 통해 제조한 것이다. 중량로, C: 0.003, Si: 2.15, Mn: 0.25, P: 0.011, S: 0.0015, Al: 0.45, N: 0.002, Sn: 0.09, Cr: 0.35, 및 Ce :0.0013이고 잔부 Fe 및 기타 불순물로 조성되는 슬라브를 1150℃ 로 가열한 후 2.0mm의 두께로 열간압연하고,700℃ 온도로 권취한 후 1050℃로 가열된 질소분위기의 상소둔로에 넣어서 1시간 유지한 후 로냉하였다. 로냉된열연판은 산세후 0.5mm 의 두께로 냉간압연하였다. 냉연판은 질소 80%, 수소20%의 건조한 분위기에서, 1000℃에서 2분간 소둔하였다.In the embodiment of the present invention, the target steel is manufactured through the following process. By weight, C: 0.003, Si: 2.15, Mn: 0.25, P: 0.011, S: 0.0015, Al: 0.45, N: 0.002, Sn: 0.09, Cr: 0.35, and Ce: 0.0013 and the balance Fe and other impurities The resulting slab was heated to 1150 ° C. and then hot rolled to a thickness of 2.0 mm, wound up to 700 ° C., and placed in an annealing furnace of a nitrogen atmosphere heated to 1050 ° C. for 1 hour, followed by quenching. The furnace cooled hot rolled plate was cold rolled to a thickness of 0.5 mm after pickling. The cold rolled sheet was annealed at 1000 ° C. for 2 minutes in a dry atmosphere of 80% nitrogen and 20% hydrogen.

소둔후 강판을 50℃/sec로 냉각하는 과정중에 600℃부터 200℃까지 자장을 부여하였다. 즉, 도 4의 자장열처리장치에서, 제1수평자장발생 솔레노이드(20a)→제1수직자장발생 솔레노이드(30a) →제2수평자장발생 솔레노이드(20b) →제2수직자장발생 솔레노이드(30b)을 계속 순차적으로 자장을 부여하였다. 강판이 가열부를 벗어나 자장부여 솔레노이드내로 들어올 때의 온도가 600℃이며, 여기에서 강판은 솔레노이드에서 순차적으로 발생되는 자장을 받고, 솔레노이드(20b) 이후로 빠져나갈 때는 200℃ 부근이 되게 하였다.After annealing, a magnetic field was applied from 600 ° C. to 200 ° C. while cooling the steel sheet at 50 ° C./sec. That is, in the magnetic field heat treatment apparatus of FIG. 4, the first horizontal magnetic field generating solenoid 20a → the first vertical magnetic field generating solenoid 30a → the second horizontal magnetic field generating solenoid 20b → the second vertical magnetic field generating solenoid 30b Continued to give a magnetic field sequentially. The temperature when the steel sheet enters the solenoid with the magnetic field out of the heating part is 600 ° C., where the steel plate receives the magnetic field generated sequentially from the solenoid, and is about 200 ° C. when it exits after the solenoid 20b.

도 5에 자장세기에 따른 철손의 변화를 나타내었다. 이때 주파수는 6Hz, 펄스폭은 20ms 였다. 도 6에 주파수에 따른 철손의 변화를 나타내었다. 이때 자장세기는 400Oe, 펄스폭은 20ms 였다. 도 7에 펄스폭에 따른 철손의 변화를 나타내었다. 이때 자장세기는 600Oe, 주파수는 4Hz 였다.Figure 5 shows the change in iron loss according to the magnetic field strength. The frequency was 6 Hz and the pulse width was 20 ms. Figure 6 shows the change in iron loss with frequency. The magnetic field strength was 400Oe and the pulse width was 20ms. 7 shows the change in iron loss according to the pulse width. The magnetic field strength was 600Oe and the frequency was 4Hz.

도 5, 6, 7에 나타난 바와 같이, 적정한 자장조건은 자장세기 100~700 Oe, 주파수 1~8Hz, 펄스폭 10~40ms 였다.As shown in Figs. 5, 6 and 7, the appropriate magnetic field conditions were magnetic field strengths of 100 to 700 Oe, frequency of 1 to 8 Hz, and pulse width of 10 to 40 ms.

상술한 바와 같이, 본 발명에 따르면 철손이 낮으면서 투자율은 높고 더불어 자기변형도 작은 무방향성 전기강판을 높은 생산성을 유지하면서 제공할 수 있는 유용한 효과가 있는 것이다.As described above, according to the present invention, there is a useful effect of providing a non-oriented electrical steel sheet having low iron loss and high permeability and small magnetic strain while maintaining high productivity.

Claims (5)

중량%로, C: 0.01%이하, Si: 3.5%이하, Mn: 0.5%이하, P: 0.15%이하, S: 0.012%이하, Al: 1.2%이하, N: 0.006%이하, Sn: 0.03~0.3%, Cr: 0.05~1.0%, Ca 또는 Ce이 단독 또는 복합으로 0.001~0.010%, 나머지 Fe와 기타 불가피하게 첨가되는 불순물로 조성되는 슬라브를 1100~1250℃ 온도로 재가열하여 열간압연하고, 600~800℃ 온도로 권취한 다음, 산세 및 냉간압연하고, 700~1050℃ 온도에서 냉연판을 소둔하는 무방향성 전기강판의 제조방법에 있어서,By weight%, C: 0.01% or less, Si: 3.5% or less, Mn: 0.5% or less, P: 0.15% or less, S: 0.012% or less, Al: 1.2% or less, N: 0.006% or less, Sn: 0.03 to 0.3%, Cr: 0.05 ~ 1.0%, Ca or Ce alone or in combination, 0.001 ~ 0.010%, Slab composed of remaining Fe and other unavoidable impurities, reheated to 1100 ~ 1250 ℃, hot rolled, 600 In the method for producing a non-oriented electrical steel sheet which is wound at a temperature of ~ 800 ℃, pickling and cold rolling, annealing the cold rolled sheet at a temperature of 700 ~ 1050 ℃, 상기 최종소둔후 냉각과정의 720~200℃의 온도구간에서 폭 10~40ms, 주파수 1~8Hz의 자장을 100~700 Oe의 세기로서 수평자장과 수직자장을 순차적으로 인가하여 자장열처리하는 단계를 포함하여 이루어지는 철손이 낮은 무방향성 전기강판의 자장열처리방법.After the final annealing, in the temperature range of 720 ~ 200 ℃ during the cooling process, the magnetic field heat treatment by sequentially applying a horizontal magnetic field and a vertical magnetic field in the intensity of 10 ~ 40ms, frequency 1 ~ 8Hz as the intensity of 100 ~ 700 Oe Magnetic field heat treatment method of non-oriented electrical steel sheet having low iron loss. 제 1항에 있어서, 상기 최종소둔후에 절연코팅을 하고 이 코팅층의 경화를 위한 냉각과정에서 상기 자장열처리를 행하는 것을 특징으로 하는 저철손 무방향성 전기강판의 제조방법.The method of manufacturing a low iron loss non-oriented electrical steel sheet according to claim 1, wherein the magnetic field heat treatment is performed after the final annealing and the coating is performed for cooling of the coating layer. 제 1항에 있어서, 상기 인가자장은 방형파, 삼각파, 반사인파의 그룹에서 선택된 1종의 교류자장 또는 펄스자장임을 특징으로 하는 자기적특성개선을 위한 저철손 무방향성 전기강판의 제조방법.The method of manufacturing a low iron loss non-oriented electrical steel sheet for improving magnetic properties according to claim 1, wherein the applied magnetic field is one alternating magnetic field or a pulsed magnetic field selected from the group consisting of square wave, triangular wave and reflected wave. 제 1항에 있어서, 상기 수평자장과 수직자장의 순차적 인가는,The method of claim 1, wherein the sequential application of the horizontal and vertical magnetic fields, 강판의 이송방향으로 수평자장을 인가하는 제1수평자장인가단계,A first horizontal magnetic field applying step of applying a horizontal magnetic field in a conveying direction of the steel sheet, 상기 제1수평자장인가를 종료하고, 이어 강판의 이송방향으로 보아 강판의 우측에서 좌측으로 수직자장을 인가하는 제1수직자장인가단계,Terminating the application of the first horizontal magnetic field, and then applying a vertical magnetic field from the right side to the left side of the steel sheet in the conveying direction of the steel sheet; 상기 제1수직자장인가를 종료하고, 이어 강판의 이송방향의 역방향으로 수평자장을 인가하는 제2수평자장인가 단계,Terminating the application of the first vertical magnetic field, and then applying a second horizontal magnetic field to apply a horizontal magnetic field in a direction opposite to the conveying direction of the steel sheet; 상기 제2수평자장인가를 종료하고, 이어 강판의 이송방향으로 보아 강판의 좌측에서 우측으로 수직자장을 인가하는 제2수직자장인가단계를 순차적으로 행하는 것을 포함하여 이루어지는 저철손 무방향성 전기강판의 제조방법.Finishing the application of the second horizontal magnetic field, and then sequentially performing a second vertical magnetic field applying step of applying a vertical magnetic field from the left side to the right side of the steel sheet in the conveying direction of the steel sheet manufacturing of low iron loss non-oriented electrical steel sheet Way. 제 1항에 있어서, 상기 자장인가는 350~600℃에서 행하고 30~120℃/sec의 속도로 냉각하는 것을 특징으로 하는 무방향성 전기강판의 자장열처리방법.The method of claim 1, wherein the magnetic field is applied at 350 to 600 ° C and cooled at a rate of 30 to 120 ° C / sec.
KR1020010085083A 2001-12-26 2001-12-26 Method for magnetic annealing non- oriented electrical steel sheet KR100544750B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010085083A KR100544750B1 (en) 2001-12-26 2001-12-26 Method for magnetic annealing non- oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010085083A KR100544750B1 (en) 2001-12-26 2001-12-26 Method for magnetic annealing non- oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
KR20030054692A true KR20030054692A (en) 2003-07-02
KR100544750B1 KR100544750B1 (en) 2006-01-24

Family

ID=32213430

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010085083A KR100544750B1 (en) 2001-12-26 2001-12-26 Method for magnetic annealing non- oriented electrical steel sheet

Country Status (1)

Country Link
KR (1) KR100544750B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2316978A1 (en) * 2008-07-24 2011-05-04 Nippon Steel Corporation Cast slab of non-oriented magnetic steel and method for producing the same
EP3569728A4 (en) * 2017-01-16 2020-06-03 Nippon Steel Corporation Non-oriented electromagnetic steel sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100345744B1 (en) * 1997-12-13 2002-09-18 주식회사 포스코 A manufacturing method of a grain oriented electrical steel having a low magnetostriction and a magnetic flux-heating treat-ment apparaturs used therein
JPH11340030A (en) * 1998-05-22 1999-12-10 Nippon Steel Corp High-performance iron core
JPH11341749A (en) * 1998-05-22 1999-12-10 Nippon Steel Corp Method of annealing iron core in magnetic field
KR100479991B1 (en) * 1999-09-21 2005-03-30 주식회사 포스코 A method for producing non-oriented silicon steel with low core loss
KR100345723B1 (en) * 1999-12-28 2002-07-27 주식회사 포스코 Method for manufacturing a grain oriented electrical steel sheet having a low magnetostriction and manufacturing apparaturs used therein

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2316978A1 (en) * 2008-07-24 2011-05-04 Nippon Steel Corporation Cast slab of non-oriented magnetic steel and method for producing the same
EP2316978A4 (en) * 2008-07-24 2014-04-30 Nippon Steel & Sumitomo Metal Corp Cast slab of non-oriented magnetic steel and method for producing the same
EP3569728A4 (en) * 2017-01-16 2020-06-03 Nippon Steel Corporation Non-oriented electromagnetic steel sheet
US11053574B2 (en) 2017-01-16 2021-07-06 Nippon Steel Corporation Non-oriented electrical steel sheet

Also Published As

Publication number Publication date
KR100544750B1 (en) 2006-01-24

Similar Documents

Publication Publication Date Title
CN108660295A (en) A kind of low iron loss orientation silicon steel and its manufacturing method
JPH0211728A (en) Ultrahigh speed annealing of unoriented electric iron plate
US4545828A (en) Local annealing treatment for cube-on-edge grain oriented silicon steel
Honma et al. Development of non-oriented and grain-oriented silicon steel
JP2000017334A (en) Production of grain-oriented and nonoriented silicon steel sheet having low core loss and high magnetic flux density and continuous annealing equipment
KR100544750B1 (en) Method for magnetic annealing non- oriented electrical steel sheet
SU1744128A1 (en) Method of producing anisotropic electrical steel
KR100544751B1 (en) Method for magnetic annealing non- oriented electrical steel sheet
KR100345722B1 (en) Method for manufacturing a grain oriented electrical steel sheet having a low magnetostriction and manufacturing apparaturs used therein
KR100544742B1 (en) Method for manufacturing non- oriented electrical steel sheet
KR100544640B1 (en) Method for magnetic annealing non- oriented electrical steel sheet to improve magnetic properties and magnetic annealing apparatus used therein
KR100544741B1 (en) Method for manufacturing non- oriented electrical steel sheet having low iron loss
JPS60258414A (en) Production of non-oriented electrical iron sheet having high magnetic flux density
KR100345701B1 (en) A Method for Manufacturing Non-Oriented Electrical Steel Sheets
Capdevila Electrical Steels
JPS6227126B2 (en)
JP2009127073A (en) Method for manufacturing double oriented silicon steel sheet
KR100544641B1 (en) Method of manufacturing grain-oriented electrical steel sheet having low magnetostriction and superior magnetic property
KR100544642B1 (en) Method for Magnetic annealing high permeability grain oriented electrical steel with low magnetostriction
KR100940721B1 (en) Method of magnetic flux-heating treatment FOR electrical steel sheet
KR100544740B1 (en) Method for manufacturing grain oriented electrical steel sheet having low magnetostriction
KR100544643B1 (en) Method for magnetic annealing grain oriented electrical steel sheet manufactured at low reheating tempreature and simultaneous decarburization-nitriding
KR100544739B1 (en) Method for manufacturing grain oriented electrical steel sheet having low magnetostriction
KR100530062B1 (en) Method for grain oriented electrical steel sheet with low magnetostriction by controlling magnetic field-heating treatment
JPS599123A (en) Manufacture of nondirectional electrical steel sheet having high dc magnetic permeability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150108

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160111

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170109

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180110

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200110

Year of fee payment: 15