KR20030053105A - Device for measuring doppler shift using fiber - Google Patents

Device for measuring doppler shift using fiber Download PDF

Info

Publication number
KR20030053105A
KR20030053105A KR1020010083143A KR20010083143A KR20030053105A KR 20030053105 A KR20030053105 A KR 20030053105A KR 1020010083143 A KR1020010083143 A KR 1020010083143A KR 20010083143 A KR20010083143 A KR 20010083143A KR 20030053105 A KR20030053105 A KR 20030053105A
Authority
KR
South Korea
Prior art keywords
doppler shift
scattered light
optical fiber
separator
sensor
Prior art date
Application number
KR1020010083143A
Other languages
Korean (ko)
Inventor
임충수
박형국
오기장
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020010083143A priority Critical patent/KR20030053105A/en
Publication of KR20030053105A publication Critical patent/KR20030053105A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02023Indirect probing of object, e.g. via influence on cavity or fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12111Fibre

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE: An apparatus for measuring Doppler shift by using an optical fiber is provided to measure correctly the Doppler shift regardlessly of the external vibration by improving the sensitivity of a sensor. CONSTITUTION: A Doppler shift measurement apparatus includes a collecting lens(10), a Doppler shift sensor(20), and a beam detector(36). The collecting lens is used for collecting the scattered light generated from a laser beam. The Doppler shift sensor receives the scattered light from the collecting lens and analyzes the multiple reflection of the scattered light and the frequency of the scattered light. The beam detector is connected to the Doppler shift sensor. The Doppler shift sensor includes an inlet portion(22) for receiving the scattered light, an optical fiber coupler(24) formed at a rear portion of the inlet portion, an optical fiber splitter(28) for splitting the scattered light, and a circulation portion for circulating partially the scattered light.

Description

광섬유를 이용한 도플러 편이 측정장치{Device for measuring doppler shift using fiber}Doppler shift measuring device using optical fiber {Device for measuring doppler shift using fiber}

본 발명은 광섬유를 이용한 도플러 편이 측정장치에 관한 것으로서, 보다 상세하게는 소형이며 외부진동에 무관하고 별도의 광소자 정렬작업이 불필요한 광섬유 결합기를 이용한 도플러 편이 측정장치에 관한 것이다.The present invention relates to a Doppler shift measurement device using an optical fiber, and more particularly, to a Doppler shift measurement device using an optical fiber coupler that is compact and independent of external vibration and does not require a separate optical device alignment operation.

일반적으로, 제한적이진 않지만 초음파를 측정하기 위해 레이저빔을 측정대상(1)의 표면에 조사하면, 그 초음파에 의해 측정대상의 표면이 진동한다. 이와 같이, 초음파에 의해 측정 대상의 표면이 진동하면, 레이저 산란광의 주파수가, 일명 도플러 편이라 칭하는 작용에 의해 주파수 편이가 발생하게 되며 이를 이용하여 초음파를 측정하고 있다. 이와 같은 도플러 편이의 측정에는 편이 간섭계(Fabry-Perot interferometer)를 이용하고 있다.Generally, although not limited, when a laser beam is irradiated to the surface of the measurement object 1 for measuring an ultrasonic wave, the surface of the measurement object vibrates by the ultrasonic wave. As described above, when the surface of the measurement target vibrates by the ultrasonic waves, the frequency of the laser scattered light is caused by the action of what is called a Doppler shift, and the ultrasonic waves are measured using this. In the measurement of such Doppler shift, a Fabry-Perot interferometer is used.

이와 같은, 통상적인 도플러 편이 간섭계는, 도 1에 도시된 바와 같이, 측정물(1)에 대해 레이저빔(2)을 조사한 후 그로부터 발생되는 초음파(3)를 포집하기 위한 포집렌즈(4)와, 일정한 반사율을 갖는 두개의 구면거울(5,6)을 구비한다. 이 간섭계에서 통과한 빛의 세기는 두 구면거울(5,6) 사이의 거리(L)와 구면거울의 반사율 및 빛의 주파수에 따라 결정된다. 이에 따라, 초음파에 의해 간섭계로 입사하는 산란광의 주파수가 변하면, 도플러 편이 간섭계를 통과한 빛의 세기가 변하며 이 빛의 세기를 광검출기(7)로 측정함으로써 초음파의 측정이 가능한 것이다.Such a conventional Doppler shift interferometer, as shown in Figure 1, and a collecting lens (4) for collecting the ultrasonic wave 3 generated therefrom after irradiating the laser beam (2) to the workpiece (1) Two spherical mirrors 5 and 6 having constant reflectance. The intensity of light passing through this interferometer is determined by the distance L between the two spherical mirrors 5 and 6, the reflectance of the spherical mirror and the frequency of the light. Accordingly, when the frequency of the scattered light incident on the interferometer is changed by the ultrasonic wave, the intensity of the light passing through the Doppler shift interferometer changes, and the ultrasonic wave can be measured by measuring the intensity of the light with the photodetector 7.

그러나 안정적인 초음파 측정을 위해서는 간섭계 내부에서 빛이 동일한 경로로 계속적인 다중반사를 하여야 하므로 구면 거울이 정확히 정렬되어 있어야 하며, 또한 두 구면 거울 사이의 거리도 항시 일정하게 유지해야 하는 문제점이 있다.However, in order to make stable ultrasonic measurement, since the light must be continuously reflected by the same path in the interferometer, the spherical mirrors must be exactly aligned, and the distance between the two spherical mirrors must be kept constant at all times.

또한, 이와 같은 정렬상의 곤란함으로 인해 외부적 진동에 매우 민감하여 열악한 환경의 산업현장에서는 적용이 매우 곤란한 문제점이 있다.In addition, due to such a difficult alignment, there is a problem that is very sensitive to external vibrations, the application is very difficult in industrial sites of poor environment.

더욱이, 종래의 간섭계는 두 구면거울 사이의 거리가 커질수록 측정효율이 증가하므로 고정밀도의 측정을 요구하는 현장에서는 간섭계의 크기가 대형화되어야 하는 단점이 있다.In addition, the conventional interferometer has a disadvantage that the size of the interferometer should be enlarged in the field requiring a high-precision measurement because the measurement efficiency increases as the distance between the two spherical mirrors increases.

이에 본 발명은 상술된 문제점들을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 소형으로 형성될 수 있고, 외부적 진동에 민감하게 반응하지 않으며, 유지 및 보수가 용이한 광섬유를 이용한 도플러 편이 측정장치를 제공하는데 있다.Accordingly, the present invention has been made to solve the above-described problems, the object of the present invention can be formed compact, do not react sensitively to external vibration, Doppler shift measurement device using an optical fiber that is easy to maintain and repair To provide.

본 발명의 다른 목적은, 산업현장에서의 적용성이 우수한 도플러 편이 측정장치를 제공하는데 있다.Another object of the present invention is to provide a Doppler shift measuring device having excellent applicability in industrial sites.

도 1은 종래의 도플러 편이 간섭계를 보여주는 개략도.1 is a schematic diagram showing a conventional Doppler shift interferometer.

도 2는 본 발명에 따른 광섬유를 이용한 도플러 편이 측정장치를 보여주는 구성도.Figure 2 is a block diagram showing an apparatus for measuring Doppler shift using the optical fiber according to the present invention.

도 3은 도 2의 도플러 편이 측정장치에 적용한 비대칭 X:Y 광섬유 결합기를 상세히 보여주는 구성도.Figure 3 is a schematic diagram showing in detail the asymmetric X: Y optical fiber coupler applied to the Doppler shift measurement device of FIG.

♣ 도면의 주요 부분에 대한 부호의 설명 ♣♣ Explanation of symbols for the main parts of the drawing ♣

10: 포집렌즈20: 도플러 편이 센서10: collection lens 20: Doppler shift sensor

22: 유입부24: 광섬유 결합기22: inlet 24: optical fiber coupler

26: 연결부28: 광섬유 분리기26: connection portion 28: optical fiber separator

30: 제1분리부32: 제2분기부30: first separator 32: second branch

34: 배출부36: 광검출기34: discharge part 36: photodetector

38: 분할부38: division

이 같은 목적들은, 측정 대상물에 조사되는 레이저빔에 의해 발생되는 산란광을 포집하기 위한 포집렌즈; 그 포집렌즈로부터 산란광을 수신하여 산란광의 다중반사 및 이를 통한 산란광의 주파수 분석을 행하며, 광섬유로 형성되는 도플러 편이 센서; 및 그 도플러 편이 센서에 연결되는 광검출기를 포함하는 도플러 편이 측정장치에 의해 달성될 수 있다.Such objects include a collecting lens for collecting scattered light generated by a laser beam irradiated to a measurement object; A Doppler shift sensor configured to receive scattered light from the collecting lens and perform multi-reflection of the scattered light and frequency analysis of the scattered light through the scattered light; And a photodetector coupled to the Doppler shift sensor.

이하, 본 발명에 따른 바람직한 실시예를 첨부도면을 참조로 하여 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

먼저, 도 2를 참조하면, 본 발명에 따른 광섬유를 이용한 도플러 편이 측정장치는 측정 대상물(M)에 조사되는 레이저빔(B)에 의해 발생되는 초음파를 포집하기 위한 포집렌즈(10)를 구비한다. 포집렌즈(10)는 일반적으로 볼록렌즈로 형성되는 것이 바람직하다.First, referring to FIG. 2, a Doppler shift measuring apparatus using an optical fiber according to the present invention includes a collecting lens 10 for capturing ultrasonic waves generated by a laser beam B irradiated onto a measurement object M. FIG. . The collecting lens 10 is generally formed of a convex lens.

포집렌즈(10)후방에는 그 포집렌즈로부터 산란광의 도플러 편이를 감지하기 위한 센서(20)가 설치된다. 그 도플러 편이 센서(20)는 광섬유로 형성되는 것이 바람직하다. 보다 상세히 설명하면, 도플러 편이 센서(20)는 포집렌즈(10)로부터 의 산란광이 유입되는 일정길이의 유입부(22)를 포함한다. 유입부(22)의 후방에는 광섬유 결합기(24)가 구비된다. 광섬유 결합기(24)는 비대칭형으로 형성되는 것이 바람직하다. 즉, 광섬유 결합기(24)는 유입부(22)와 상세히 후술되는 순환부가 결합되어 상호 비대칭을 이루는 것이다.Behind the collecting lens 10, a sensor 20 for detecting the Doppler shift of the scattered light from the collecting lens is provided. The Doppler shift sensor 20 is preferably formed of an optical fiber. In more detail, the Doppler shift sensor 20 includes an inflow portion 22 having a predetermined length through which scattered light from the collection lens 10 flows. Behind the inlet 22 is provided with an optical fiber coupler (24). The optical fiber coupler 24 is preferably formed asymmetrically. That is, the optical fiber coupler 24 is asymmetrical by combining the inlet 22 and the circulation unit described later in detail.

광섬유 결합기(24)에는 연결부(26)에 의해 광섬유 분리기(28)가 연결된다. 광섬유 분리기(28)는 제1분기부(30)와 제2분기부(32)로 이루어져 있다. 이에 따라 연결부(26)를 통과한 산란광은 제1분기부(30)와 제 2분기부(32)로 분리된다. 광섬유 분리기(28)의 배분율은 그 분리기의 제작시 조절이 가능하다. 예컨대, 도 3에 도시된 바와 같이, X:Y 광섬유 분리기 방식의 광섬유 분리기(28)에 대해 상세히 설명하면, 이 비대칭 광섬유 분리기에서의 배분율은 결합기 제작시 조절이 가능한 바, X:Y 광섬유 분리기의 2개의 분기부(30,32)는 하나의 지점에서 상호 융합된 것으로서, 상호간의 융합조건에 따라 레이저빔의 분리율(splitting ratio)은 상호 다르게 된다. 즉, 제1분기부(30)의 본래의 직경은 연결부(26)의 직경(D)과 동일하였지만, 융합후에는 직경(D1)으로 되며, 제2분기부(32)는 직경(D2)으로 된다. 이 같은 구조에 따라, 예컨대 연결부(26)를 통해 레이저 빔이 광섬유분리기(28)의 융합부에 도달하면, 레이저빔의 분리율은 융합 후 각각의 분기부(30;32)의 직경(D1;D2)에 비례하게 된다. 이에 따라, 제1분기부(30)의 레이저빔의 분기율은 D1/D로 되는 반면, 제2분기부(32)의 레이저빔의 분기율은 D2/D로 된다.The optical fiber combiner 24 is connected to the optical fiber separator 28 by a connection portion 26. The optical fiber separator 28 includes a first branch portion 30 and a second branch portion 32. Accordingly, the scattered light passing through the connecting portion 26 is separated into the first branch portion 30 and the second branch portion 32. The distribution ratio of the optical fiber separator 28 can be adjusted at the time of manufacturing the separator. For example, as shown in FIG. 3, the optical splitter 28 of the X: Y optical fiber splitter type will be described in detail. The distribution ratio in the asymmetric optical fiber splitter can be adjusted when fabricating the combiner. The two branches 30 and 32 are fused to each other at one point, and the splitting ratio of the laser beam is different depending on the fusion conditions. That is, the original diameter of the first branch portion 30 was the same as the diameter (D) of the connecting portion 26, but after the fusion becomes a diameter (D1), the second branch portion 32 is a diameter (D2) do. According to this structure, for example, when the laser beam reaches the fusion portion of the optical fiber separator 28 through the connecting portion 26, the separation rate of the laser beam is the diameter (D1; D2) of each branch 30; 32 after the fusion. Is proportional to). Accordingly, the branching ratio of the laser beam of the first branch part 30 is D1 / D, while the branching ratio of the laser beam of the second branch part 32 is D2 / D.

2개의 분기부(30,32) 중 제 1분기부(30)에는 그로부터 광을 배출시키기 위한 배출부(34)가 형성된다. 물론, 배출부(34)의 단부에는 그로부터 배출되는 광을 검출하기 위한 광검출기(36)가 연결된다. 반면에, 제2분기부(32)는 곡선형으로 형성된 순환부(38)에 의해 광섬유결합기(24)에 다시 결합된다.The first branch portion 30 of the two branch portions 30 and 32 has a discharge portion 34 for emitting light therefrom. Of course, the photodetector 36 for detecting the light emitted therefrom is connected to the end of the discharge portion 34. On the other hand, the second branch 32 is coupled back to the optical fiber coupler 24 by the circulation portion 38 formed in a curved shape.

이하, 전술된 바와 같이 구성된 측정장치를 이용한 도플러 편이 측정방식에 대해 상세히 설명한다.Hereinafter, the Doppler shift measurement method using the measurement device configured as described above will be described in detail.

먼저, 작업자 또는 실험자가 측정 대상물(M)에 레이저빔(B)을 조사하면, 그 대상물에는 산란광이 발생되며 이와 같이 발생된 산란광은 포집렌즈(10)에 의해 포집되어 유입부(22)를 통해 센서(20)로 유입된다. 이와 같이 유입된 산란광은 광섬유 결합기(24)를 지나 연결부(26)를 통해 광섬유 분리기(28)로 향한다. 광섬유 분리기(28)로 유입된 레이저빔은 사전에 설정된 분기율에 따라 일부는 제1분기부(30)를 통해 광검출기(36)로 공급되어 그 레이저빔의 도플러 편이가 검출되는 반면, 나머지의 레이저빔은 제2분기부(32)를 통해 순환부(38)를 통해 다시 광섬유 결합기(24)로 유입되어 전술된 바와 같은 과정이 반복되는 것이다.First, when the operator or the experimenter irradiates the laser beam (B) to the measurement object (M), the scattered light is generated in the object and the scattered light generated in this way is collected by the collecting lens 10 through the inlet 22 Flows into the sensor 20. The scattered light thus introduced passes through the optical fiber coupler 24 and is directed to the optical fiber separator 28 through the connection portion 26. The laser beam introduced into the optical fiber separator 28 is partially supplied to the photodetector 36 through the first branch part 30 according to a preset branching rate so that the Doppler shift of the laser beam is detected, while The laser beam is introduced into the optical fiber coupler 24 through the circulation portion 38 through the second branch portion 32 and the process as described above is repeated.

전술된 바와 같은 광섬유 결합기 와 광섬유 분리기에 의한 레이저빔의 순환을 통한 레이저빔의 배분율은 전술된 바와 같은 간섭계에서의 미러에 의한 반사율에 해당하게 됨으로써, 정확한 도플러 편이를 측정할 수 있는 것이다.The distribution ratio of the laser beam through the circulation of the laser beam by the optical fiber combiner and the optical fiber separator as described above corresponds to the reflectance by the mirror in the interferometer as described above, so that accurate Doppler shift can be measured.

물론, 센서를 플렉시블하고 곡선적으로 형성할 수 있으므로, 공간적 또는 위치적 제약을 받지 않게 되어 그 적용성이 제고됨은 물론 외부의 진동에 무관하게 도플러 편이를 측정할 수 있는 것이다.Of course, since the sensor can be formed in a flexible and curved form, it is not subject to spatial or positional constraints, thereby improving its applicability and measuring Doppler shift regardless of external vibration.

결과적으로, 본 발명에 따른 광섬유를 이용한 도플러 편이 측정장치에 의하면, 간섭계와 동일한 작용을 하는 반면 소형이며 외부적 진동에 무관하고 별도의 광소자 정렬작업이 불필요한 센서를 구비하므로 적용성이 향상되는 효과가 있다.As a result, according to the Doppler shift measurement device using the optical fiber according to the present invention, while having the same function as the interferometer, it is small and independent of the external vibration and has a sensor that does not require a separate optical device alignment work is improved the applicability There is.

또한, 센서의 크기를 작게 하는 반면 광섬유의 길이를 길게 할 수 있으므로 센서의 감도 및 측정도를 현저히 높게 할 수 있어 도플러 편이의 측정의 정확성이 향상되는 장점이 있다In addition, since the size of the sensor can be reduced while the length of the optical fiber can be increased, the sensitivity and the measurement degree of the sensor can be significantly increased, thereby improving the accuracy of the measurement of the Doppler shift.

이상에서 본 발명에 따른 바람직한 실시예에 대해 설명하였으나, 본 기술분야의 당업자라면 첨부된 특허청구범위를 벗어남이 없이 다양한 변형예 및 수정예를 실시할 수 있을 것으로 이해된다.While a preferred embodiment according to the present invention has been described above, it will be understood by those skilled in the art that various modifications and changes can be made without departing from the scope of the appended claims.

Claims (4)

측정 대상물에 조사되는 레이저빔에 의해 발생되는 산란광을 포집하기 위한 포집렌즈;A collecting lens for collecting the scattered light generated by the laser beam irradiated to the measurement object; 상기 포집렌즈로부터 산란광을 수신하여 산란광의 다중반사 및 이를 통한 산란광의 주파수 분석을 행하며, 광섬유로 형성되는 도플러 편이 센서; 및A Doppler shift sensor configured to receive scattered light from the collection lens and perform multi-reflection of the scattered light and frequency analysis of the scattered light through the scattered light; And 상기 도플러 편이 센서에 연결되는 광검출기를 포함하는 광섬유를 이용한 도플러 편이 측정장치.Doppler shift measurement device using an optical fiber including a photo detector connected to the Doppler shift sensor. 제1항에 있어서, 상기 도플러 편이 센서는 상기 포집렌즈로부터의 산란광이 유입되는 유입부와, 상기 유입부의 후방에 형성되는 광섬유 결합기와, 상기 광섬유 결합기에 연결부에 의해 일체로 연결되어 그로부터 산란광을 수용하여 예정된 배분율로 분리하기 위한 광섬유 분리기와, 상기 광섬유 분리기에서 분리된 산란광의 일부를 순환시키기 위한 링형의 순환부를 포함하는 것을 특징으로 하는 광섬유를 이용한 도플러 편이 측정장치.The doppler shift sensor of claim 1, wherein the Doppler shift sensor is integrally connected by an inflow portion into which scattered light from the collecting lens flows, an optical fiber coupler formed at a rear side of the inflow portion, and a connection portion to the optical fiber coupler, and receives scattered light therefrom. Doppler shift measurement device using an optical fiber, characterized in that it comprises a optical fiber separator for separating at a predetermined ratio, and a ring-shaped circulation for circulating a part of the scattered light separated from the optical fiber separator. 제 1항 또는 2항에 있어서, 상기 광섬유 결합기에는 상기 순환부가 결합되어 비대칭형으로 형성되는 광섬유를 이용한 도플러 편이 측정장치.The Doppler shift measurement apparatus according to claim 1 or 2, wherein the circulation unit is coupled to the optical fiber coupler to form an asymmetrical shape. 제 1항 또는 2항에 있어서, 상기 광섬유 분리기는 상기 광검출기에 연결되는제1분리부와, 상기 순환부에 연결되는 제2분리부를 포함하는 것을 특징으로 하는 광섬유를 이용한 도플러 편이 측정장치.The Doppler shift measuring apparatus according to claim 1 or 2, wherein the optical fiber separator includes a first separator connected to the photodetector and a second separator connected to the circulation unit.
KR1020010083143A 2001-12-22 2001-12-22 Device for measuring doppler shift using fiber KR20030053105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010083143A KR20030053105A (en) 2001-12-22 2001-12-22 Device for measuring doppler shift using fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010083143A KR20030053105A (en) 2001-12-22 2001-12-22 Device for measuring doppler shift using fiber

Publications (1)

Publication Number Publication Date
KR20030053105A true KR20030053105A (en) 2003-06-28

Family

ID=29577717

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010083143A KR20030053105A (en) 2001-12-22 2001-12-22 Device for measuring doppler shift using fiber

Country Status (1)

Country Link
KR (1) KR20030053105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200450441Y1 (en) * 2008-07-05 2010-10-04 (주)메가포인트 Writing instrument with a clip having liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200450441Y1 (en) * 2008-07-05 2010-10-04 (주)메가포인트 Writing instrument with a clip having liquid

Similar Documents

Publication Publication Date Title
RU2007115154A (en) OPTICAL MEASURING DEVICE FOR MEASURING CHARACTERISTICS OF MULTIPLE SURFACES OF THE OBJECT OF MEASUREMENT
JP2911877B2 (en) Fiber detector for detecting scattered light or fluorescence of suspension
US20070229853A1 (en) Nanometer contact detection method and apparatus for precision machining
JPH09166485A (en) Optical device
JPH09292334A (en) Surface plasmon sensor
US20020171028A1 (en) Focus error correction method and apparatus
KR20030053105A (en) Device for measuring doppler shift using fiber
JP2004309428A (en) Method and device for measuring lens focal position of microchemical system, the microchemical system, and method for positioning lens of the microchemical system
GB2379011A (en) Apparatus for measuring the thickness of materials using the focal length of a lensed fibre
JP2599463Y2 (en) Laser focus position fluctuation measurement device
JPS58169008A (en) Optical position measuring device
JPH08334317A (en) Measuring microscope
JPH0875433A (en) Surface form measuring device
JPH05281130A (en) Foreign-matter inspection apparatus
JP2019023593A (en) Laser displacement meter and laser ultrasonic inspection device using the same
JPH0231103A (en) Apparatus for detecting three-dimensional shape of pattern
KR20040090666A (en) A device for measuring ultrasonics using optical fiber
JP2007147369A (en) Laser length-measuring apparatus
JPH074909A (en) Laser sensor apparatus
JP3955400B2 (en) Dimensional measuring device
KR100334764B1 (en) Apparatus for measuring refractive index profile of an optical fiber
KR100352939B1 (en) Apparatus for measuring surface profile by using confocal constant-distance maintaining apparatus
JP2593727Y2 (en) Displacement detector
JPH03238307A (en) Outer-diameter measuring apparatus
JP3325648B2 (en) Displacement measuring device

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination