KR20030052199A - Manufacturing method of retained austenite contained cold rolled steel sheets with good ductility - Google Patents

Manufacturing method of retained austenite contained cold rolled steel sheets with good ductility Download PDF

Info

Publication number
KR20030052199A
KR20030052199A KR1020010082105A KR20010082105A KR20030052199A KR 20030052199 A KR20030052199 A KR 20030052199A KR 1020010082105 A KR1020010082105 A KR 1020010082105A KR 20010082105 A KR20010082105 A KR 20010082105A KR 20030052199 A KR20030052199 A KR 20030052199A
Authority
KR
South Korea
Prior art keywords
steel sheet
cooling
temperature
cooling rate
cold rolled
Prior art date
Application number
KR1020010082105A
Other languages
Korean (ko)
Other versions
KR100530071B1 (en
Inventor
진광근
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-2001-0082105A priority Critical patent/KR100530071B1/en
Publication of KR20030052199A publication Critical patent/KR20030052199A/en
Application granted granted Critical
Publication of KR100530071B1 publication Critical patent/KR100530071B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: A manufacturing method of residual austenite contained cold rolled steel sheet having better ductility compared to existing method by controlling cooling of the annealed steel sheet after titrating chemical constituents of high strength cold rolled steel sheet having 50 to 80 kg/mm¬2 class tensile strength and annealing the steel sheet is provided. CONSTITUTION: The method comprises a process of hot rolling a steel slab under the condition that finish rolling temperature is A3 transformation point or more, wherein the steel slab comprises 0.05 to 0.20 wt.% of C, 0.7 to 1.5 wt.% of Si, 1.5 to 1.8 wt.% of Mn, 0.005 wt.% or less of S, 0.003 to 0.007 wt.% or less of N, 0.01 to 0.1 wt.% of Mo, 0.0005 to 0.002 wt.% of B, 0.01 to 0.1 wt.% of P, 0.02 to 0.5 wt.% of Al, 0.02 to 0.10 wt.% of Cr, 0.1 to 0.5 wt.% of Ni and a balance of Fe and inevitable impurities, and Si, P, Al, Cr and Ni satisfy the following relational expression: Si%+9.5P%+0.45Al%+0.3Cr%+0.6Ni%>=1.0; a process of cold rolling the coiled steel slab to a reduction ratio of 30 to 80% after coiling the hot rolled steel slab at a temperature of 630 to 680 deg.C; a process of maintaining the cold rolled steel sheet at a temperature of 780 to 810 deg.C for 5 to 180 seconds; and annealing process comprising the steps of first cooling the steel sheet to a temperature of 620 to 680 deg.C at a cooling rate of 5 deg.C/sec or less, second cooling the first cooled steel sheet to a temperature of 350 to 450 deg.C, maintaining the second cooled steel sheet at a constant temperature for 1 to 20 minutes and cooling the resulting steel sheet to an ordinary temperature, wherein an average cooling rate (CRtot) of the first and second cooling rates in the annealing process satisfies the following relational expression: CRmax£3.0-(Mn+0.3Si%+2.7P%)|>=log(CRtot, deg.C/sec)>=CRmin£2.5-(Mn+0.3Si%+2.7P%)|, where the CRmax is the maximum cooling rate, the CRtot is the total cooling rate, and the CRmin is the minimum cooling rate.

Description

연성이 우수한 잔류 오스테나이트 함유 냉연강판 제조방법{Manufacturing method of retained austenite contained cold rolled steel sheets with good ductility}Manufacturing method of retained austenite contained cold rolled steel sheets with good ductility}

본 발명은 자동차 판넬 및 구조용 부품에 사용되는 냉연강판의 제조방법에 관한 것으로, 보다 상세하게는 인장강도 50-80kg/ mm2급 고강도 냉연강판에서 화학성분을 적정화하고 소둔후 냉각을 제어함으로써 기존의 방법에 비하여 연성이 우수한 잔류 오스테나이트 함유 냉연강판 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a cold rolled steel sheet used in automotive panels and structural components, and more particularly, by optimizing the chemical composition in the tensile strength 50-80kg / mm 2 high strength cold rolled steel sheet and controlling the cooling after annealing It relates to a method for producing residual austenite-containing cold rolled steel sheet excellent in ductility compared to the method.

자동차의 연비 향상과 배가스 방출량 감소를 위하여 차체 경량화가 추진되고 있으며 또한 승객의 안전도를 높이기 위하여 판넬 또는 구조부재에 사용되는 강판의 강도 증가가 요구되고 있다. 통상 강판의 강도가 증가하면 가공성이 저하하기 때문에 종래의 고강도 강판은 판넬이나 구조부재에 요구되는 가공성을 만족하지 못하였다.In order to improve fuel efficiency and reduce exhaust gas emissions of automobiles, weight reduction of the vehicle body is being promoted, and in order to increase the safety of passengers, it is required to increase the strength of steel sheets used in panels or structural members. In general, when the strength of the steel sheet increases, the workability is lowered, and thus the conventional high strength steel sheet does not satisfy the workability required for a panel or a structural member.

한편 고강도 강판의 연성을 높이기 위하여 잔류 오스테나이트의 변태 유기소성을 활용한 강종이 제안되었다. 일본 특개소 61-157625호 공보에는 0.4-1.8%Si와 0.2-2.5%Mn외에 필요하면 P,Ni,Cu,Cr,Ti,Nb,V 및 Mo를 1종 또는 2종이상 함유한 강판을 소둔후 냉각도중 500-350℃에서 30초-30분간 유지하는 것으로 잔류 오스테나이트 함유 강판을 제조하는 방법을 제시하였다. 또한, 일본 특공소 62-35461호에는 0.7-2.0%Si과 0.5-2.0%Mn을 함유한 강판을 소둔후 냉각과정에서 650-450℃사이에서 10-50초간 유지하여 마르텐사이트 혹은 베이나이트 중에 10%이상의 페라이트와 잔류 오스테나이트를 가지는 강판을 제시하였다. 그러나 이 방법들은 소둔후 냉각과정에서의베이나이트 변태를 고려하지 않았다.Meanwhile, in order to increase the ductility of high strength steel sheets, steel grades using transformation organic plasticity of retained austenite have been proposed. Japanese Unexamined Patent Publication No. 61-157625 discloses annealing steel sheets containing one or two or more of P, Ni, Cu, Cr, Ti, Nb, V, and Mo, in addition to 0.4-1.8% Si and 0.2-2.5% Mn. After cooling for 30 seconds to 30 minutes at 500-350 ℃ to provide a method for producing a retained austenite-containing steel sheet. In addition, Japanese Special Office No. 62-35461 has an annealing steel sheet containing 0.7-2.0% Si and 0.5-2.0% Mn, and then maintains it for 10-50 seconds at 650-450 ℃ during cooling. A steel sheet having more than% ferrite and retained austenite was presented. However, these methods did not consider the bainite transformation during cooling after annealing.

또한, 일본 특개평 1-230715호 공보 및 특개평 2-217425호 공보등에는 0.2%C이하의 저탄소강에 Si,Mn을 적당량 첨가하여 2상역 소둔후 마르텐사이트 변태온도 직상에서 세멘타이트 무석출 베이나이트 변태를 일으키게 하면 잔류 오스테나이트를 다량 함유한 강판을 제조하는 방법이 제안되었으며 이미 실용화되어 일부 자동차에 적용되고 있다. 그러나, 일본 특개평 1-230715호 공보 및 특개평 2-217425호 공보등에서 나타낸 강판은 소둔후 냉각속도에 대해서는 베이나이트 변태를 제어할 필요를 제시하였지만 근거가 충분하지 않고, 잔류 오스테니아트를 얻기 위해서 적정량의 Si첨가와 베이나이트 온도 영역에서 엄격한 제어를 필요로 하였지만 Si, P, Al, Cr등의 다른 성분이 엄격한 제어에 미치는 영향에 대해서는 언급하지 않았다.In addition, Japanese Unexamined Patent Application Publication Nos. 1-230715 and 2-217425 disclose that cementite-free bays are added directly above martensitic transformation temperature after two-phase annealing by adding an appropriate amount of Si and Mn to a low carbon steel below 0.2% C. A method of producing a steel sheet containing a large amount of retained austenite when a nit transformation occurs is proposed and has already been put to practical use in some automobiles. However, the steel sheets shown in Japanese Patent Application Laid-Open Nos. 1-230715 and 2-217425 have suggested the need to control bainite transformation with respect to the cooling rate after annealing, but the evidence is not sufficient, and the residual austenite is obtained. To this end, the addition of an appropriate amount of Si and strict control in the bainite temperature range was required, but the effect of other components such as Si, P, Al, and Cr on the strict control was not mentioned.

또한 일본 특개평 6-145788호 공보에는 용융도금설비에서 제조하기 위하여 Si함량을 저감하고 C와 Si의 양을 고려하여 Al,Mo을 첨가하는 방법이 제안되었다. 그러나, 이 기술에 의해 제조된 강판의 경우도 냉각속도는 퍼얼라이트 변태를 억제할 수 있을 정도 이상으로 근거를 제시하였으며 베이나이트 변태 노이즈(nose)와의 관계에 대해서는 언급하지 않았다.Also, Japanese Unexamined Patent Application Publication No. 6-145788 proposes a method of reducing Si content and adding Al and Mo in consideration of the amounts of C and Si for manufacturing in a hot dip plating facility. However, even in the case of the steel sheet produced by this technique, the cooling rate is more than enough to suppress the pearlite transformation and does not mention the relationship with the bainite transformation noise.

한편 일본 특개평 5-271857호 공보에는 베이나이트 변태를 억제하기 위해 Si,Al의 효과를 설명하고 관계식을 제시하였으며 P를 0.1%첨가하였지만 P에 의한 잔류 오스테나이트 안정화 효과는 언급하지 않고 관계식에도 포함되지 않았다. 또한 질소를 0.01%이하로 제한하였는데 이는 질소가 Al을 강중에서 AlN으로 소모하는 것을 방지하기 위함이었다. 또한 이 방법에서는 소둔후 냉각속도를 제시하지 않았다.Japanese Unexamined Patent Publication No. 5-271857 describes the effect of Si and Al to suppress bainite transformation and presents a relational formula. Although 0.1% of P was added, the effect of stabilizing austenite by P is not included. It wasn't. In addition, nitrogen was limited to 0.01% or less to prevent nitrogen from using Al as AlN in the steel. Also, this method did not suggest the cooling rate after annealing.

본 발명에서는 상기의 문제를 해결하고 연성이 우수한 잔류 오스테나이트를 함유한 강판을 안정적으로 제조하기 위하여 베이나이트 안정화와 관련한 성분을 Si등가식으로 나타내어 일정한 범위로 제한하고 화학성분에 따라 냉각속도를 제어함으로써 350-450℃온도영역에서 신속한 세멘타이트 무석출 베이나이트 변태가 일어나게 하고 동시에 탄소가 오스테나이트로 빠르게 이동하도록 함으로써 연성이 우수한 잔류 오스테나이트를 함유한 고강도 냉연강판의 제조방법을 제공하는데, 그 목적이 있다.In the present invention, in order to solve the above problems and to stably produce a steel sheet containing residual austenite having excellent ductility, components related to bainite stabilization are represented by a Si equivalent equation, limited to a certain range, and cooling rates are controlled according to chemical components. The present invention provides a method for producing a high strength cold rolled steel sheet containing residual austenite having excellent ductility by causing rapid cementite-free precipitation of bainite transformation in the temperature range of 350-450 ° C. and simultaneously moving carbon to austenite. There is this.

상기 목적을 달성하기 위한 본 발명의 냉연강판 제조방법은, 중량%로 C:0.05-0.20%, Si: 0.7-1.5%, Mn:1.5-1.8%, S:0.005%이하, N:0.003-0.007%이하, Mo: 0.01-0.1%, B:0.0005-0.002%, P:0.01-0.1%, Al:0.02-0.5%, Cr:0.02-0.10%, Ni:0.1-0.5%, 상기 Si, P, Al, Cr, Ni이 다음의 조건, Si%+9.5P%+0.45Al%+0.3Cr%+0.6Ni% ≥1.0 을 만족하고, 나머지 Fe와 불가피한 불순물로 조성되는 강슬라브를 마무리압연온도 A3변태점 이상의 조건으로 열간압연하고, 630-680℃의 온도에서 권취한 다음, 30-80%의 압하율로 냉간압연한 후, 780-810℃에서 5-180초동안 유지한 다음 620-680℃까지 5℃/초 이하로 1차 냉각하고 다시 350-450℃까지 2차 냉각하여 1-20분동안 항온유지후 상온으로 냉각하는 소둔에서 상기 1차냉각속도와 2차냉각속도의 평균냉각속도(CRtot)가 다음의 조건, CRmax[3.0- (Mn+0.3Si%+2.7P%)] ≥log(CRtot,℃/초) ≥ CRmin[2.5-(Mn+ 0.3Si%+ 2.7P%)] 를 만족하는 것을 포함하여 구성된다.Cold rolled steel sheet manufacturing method of the present invention for achieving the above object, by weight% C: 0.05-0.20%, Si: 0.7-1.5%, Mn: 1.5-1.8%, S: 0.005% or less, N: 0.003-0.007 % Or less, Mo: 0.01-0.1%, B: 0.0005-0.002%, P: 0.01-0.1%, Al: 0.02-0.5%, Cr: 0.02-0.10%, Ni: 0.1-0.5%, Said Si, P, Steel slab made of Al, Cr and Ni satisfying the following conditions, Si% + 9.5P% + 0.45Al% + 0.3Cr% + 0.6Ni% ≥1.0 and composed of the remaining Fe and unavoidable impurities. Hot-rolled under the above conditions, wound at a temperature of 630-680 ° C, cold-rolled at a reduction ratio of 30-80%, and then maintained at 780-810 ° C for 5-180 seconds and then up to 620-680 ° C. The average cooling rate (CRtot) of the primary cooling rate and the secondary cooling rate in the annealing of the first cooling to less than ℃ / sec, the second cooling to 350-450 ℃ again and the constant temperature for 1-20 minutes and then cooled to room temperature Where CRmax [3.0- (Mn + 0.3Si% + 2.7P%)] ≥log (CRtot, ° C / sec) ≥ CRmin [2.5- (Mn + 0.3Si% + 2.7P%)] It is configured to include that group.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 종래의 연속소둔에 의한 소성유기변태강의 제조법에 비하여 화학성분을 냉각속도와 오스템퍼링 과정에서 탄소가 최대한 오스테나이트로 농화과정과 관련하여 제한함으로써 작업성이 뛰어나고 안정된 재질을 얻을 수 있는 연성이 우수한 50-80 kg/mm2급 고강도 냉연강판을 제조하는데, 특징이 있다.The present invention is superior to the conventional manufacturing method of plastic organic transformation steel by continuous annealing by limiting the chemical composition in relation to the thickening process to the austenite as much as possible in the cooling rate and the ostampering process ductility can be obtained excellent workability and stable material This excellent 50-80 kg / mm2 grade high strength cold rolled steel sheet is produced, characterized by.

·C:0.05~0.20% · C: 0.05 ~ 0.20%

C는 소둔온도역에서 오스테나이트의 분율을 결정하고 또한 균열과정과 350-450℃에서 유지되는 동안 오스테나이트로 이동하여 오스테나이트를 안정화시킴으로써 상온에서 오스테나이트가 잔류하는 양을 증가시켜 연성을 향상시키는 역활을 하는 성분으로 0.05%미만이면 오스테나이트 분율이 작아 강도확보가 곤란하고 연성에 기여할 수 있는 3%이상의 잔류 오스테나이트가 얻어지지 않고, 0.20%초과하면 용접성을 악화시키기 때문에 제한하였다.C determines the fraction of austenite in the annealing temperature range and also increases the amount of austenite remaining at room temperature to improve ductility by moving to austenite and stabilizing austenite during cracking and holding at 350-450 ° C. If it is less than 0.05%, the austenite fraction is small, so that it is difficult to secure the strength, and more than 3% of retained austenite, which may contribute to ductility, is not obtained. If it exceeds 0.20%, the weldability is limited.

·Si:0.7~1.5% · Si: 0.7 ~ 1.5%

Si은 고용강화에 의하여 강도를 증가시키고 350-450℃에 유지시 세멘타이트 석출을 억제하고 탄소가 오스테나이트로 농화되는 것을 조장하여 연성의 향상에 기여하지만 0.7%미만에서는 그 효과가 작고,1.5%초과이면 산세성,용접성, 도장성 및 내식성등이 저하되기 때문에 제한하였다.Si increases strength by solid solution strengthening and inhibits cementite precipitation when it is maintained at 350-450 ℃ and promotes the enrichment of carbon to austenite, contributing to the improvement of ductility, but less than 0.7%, the effect is small, 1.5% If it exceeds, since pickling property, weldability, coating property, corrosion resistance, etc. fall, it was limited.

·Mn:1.5~1.8% · Mn: 1.5 ~ 1.8%

Mn은 오스테나이트 형성원소로 소둔온도역에서 오스테나이트 양에 영향을 미치고, 고용강화 원소이고,냉각과정에서 변태를 억제하는데, 그 첨가량이 1.5%미만이면 베이나이트 억제를 위한 냉각속도가 증가하고, 1.8%초과이면 350-450℃ 유지하는 동안 베이나이트 변태가 지연되어 주어진 항온 유지시간 동안 탄소농화가 불충분하고 그 결과 다량의 잔류 오스테나이트를 얻기 어려워 연성이 저하한다.Mn is an austenite forming element, which affects the amount of austenite in the annealing temperature range, is a solid solution strengthening element, and suppresses transformation during the cooling process. When the addition amount is less than 1.5%, the cooling rate for the bainite inhibition increases, If it exceeds 1.8%, the bainite transformation is delayed during the 350-450 ° C. holding, so that the carbon enrichment is insufficient for the given constant temperature holding time, and as a result, it is difficult to obtain a large amount of retained austenite, thereby reducing the ductility.

·P:0.01~0.1% · P: 0.01 ~ 0.1%

P는 고용강화에 의하여 강도를 증가시키고 Si과 복합첨가하면 350-450℃에서 유지하는 동안 오스테나이트로 탄소농화를 촉진시키는 성분으로 0.01%미만이면 그 효과가 없고 0.1%초과이면 점용접성과 취성이 증가한다.P is a component that increases the strength by solid solution strengthening and adds Si and promotes carbon enrichment with austenite while maintaining at 350-450 ℃. If P is less than 0.01%, it is not effective. Increases.

·S:0.005%이하 · S: 0.005% or less

S는 슬라브에서 편석을 일으켜 균열을 유발하고 강중에서 MnS를 형성하여 강판의 균열발생의 기점을 제공하기 때문에 0.005%이하로 한정한다.S is limited to 0.005% or less because segregation in the slab causes cracking and MnS is formed in steel to provide a starting point for cracking of the steel sheet.

·산가용성 Al:0.02~0.5% , Acid-soluble Al: 0.02 ~ 0.5%

Al은 통상 강의 탈산을 위하여 첨가하는데 탈산작용과 B과 결합하지 않은 N과 결합하고 남은 Al은 Si와 같이 페라이트 안정화 원소로써 잔류 오스테나이트 안정화에 기여하며 0.02%미만에는 효과가 없고 0.5%초과에서는 주조시 Al 클러스터(cluster) 및 Al2O3등에 의하여 열간취성과 연성이 저하한다.Al is usually added for deoxidation of steel, but deoxidation and bonding with N which is not bonded with B and remaining Al contribute to residual austenite stabilization as a ferrite stabilizing element like Si, which is ineffective at less than 0.02% and casting at more than 0.5%. Hot brittleness and ductility are degraded by Al clusters and Al 2 O 3 .

·Ni:0.1~0.5% · Ni: 0.1 ~ 0.5%

Ni은 오스테나이트 안정화 원소로써 소둔과정에서 오스테나이트의 안정성을 증가시키는데, 0.1%미만에서는 효과가 작고 0.5%초과이면 합금비용이 증가한다.Ni is an austenite stabilizing element, which increases the stability of austenite during annealing, but less than 0.1%, the effect is small, and the alloy cost increases when it exceeds 0.5%.

·Cr:0.02~0.10% · Cr: 0.02 ~ 0.10%

Cr은 슬라브 가열시 표층 탈탄을 방지하기 위하여 첨가하며, 페라이트 안정화 원소로서 Si와 같은 역할을 하는데 0.02%미만에서는 효과가 거의 없고 0.10%초과이면 Cr탄화물을 다량 형성하여 연성을 저하시키므로 0.02-0.10%로 한다.Cr is added to prevent surface decarburization during slab heating, and plays the same role as Si as a ferrite stabilizing element.It has little effect at less than 0.02%, and if it is more than 0.10%, it forms a large amount of Cr carbide to decrease ductility, so 0.02-0.10% Shall be.

·N:0.003~0.007% · N: 0.003 ~ 0.007%

N는 오스테나이트 안정화 원소로서 0.003%미만이면 효과가 작고, 0.007%초과이면 제조상 비용이 증가하고, AlN을 형성하여 연성을 저하시키고 또한 오스테나이트로 탄소농화 작용을 하는 Al의 영향을 감소시킨다.N is less than 0.003% of the austenite stabilizing element, the effect is small, if it is more than 0.007%, the manufacturing cost increases, AlN is formed to reduce the ductility, and also reduces the effect of Al, which acts as austenite carbon enrichment.

·Mo:0.01~0.1%, B:0.0005~0.002% · Mo: 0.01 ~ 0.1%, B: 0.0005 ~ 0.002%

Mo, B는 소둔후 오스테나이트의 변태를 지연시키기 위하여 첨가하는데, Mo, B의 첨가로 낮은 Mn의 함량에서도 냉각속도를 느리게 할 수 있어 용융도금성 및 연성이 개선된다. 이러한 효과를 위해서 Mo은 0.01%이상 첨가하고, B의 경우는 0.0005%이상 첨가하나, Mo가 0.1%이상이면 제조비용 증가가 과다하고, B가 0.002%이상이면 고용 B에 의하여 연성이 오히려 감소한다.Mo and B are added to delay the transformation of austenite after annealing, and the addition of Mo and B can slow the cooling rate even at a low Mn content, thereby improving melt plating property and ductility. For this effect, Mo is added at least 0.01% and B is added at 0.0005%, but if Mo is at least 0.1%, the increase in manufacturing cost is excessive. If B is at least 0.002%, the ductility is rather reduced by solid solution B. .

·Si%+9.5P%+0.45Al%+0.3Cr%+0.6Ni% ≥1.0 · Si% + 9.5P% + 0.45Al % + 0.3Cr% + 0.6Ni% ≥1.0

본 발명에서는 350-450℃온도 영역에서 무석출 베이나이트 변태가 일어나는 과정에서 오스테나이트의 안정성에 영향을 주는 성분에 대해서는 관계식 1과 같은 Si등가식을 만족하도록 해당 성분을 조절한다.In the present invention, the components that affect the stability of the austenite in the process of the non-precipitated bainite transformation in the 350-450 ℃ temperature range is adjusted to satisfy the Si equivalent equation, such as the equation (1).

[관계식 1][Relationship 1]

Sieq=Si%+9.5P%+0.45Al%+0.3Cr%+0.6Ni% ≥1.0Sieq = Si% + 9.5P% + 0.45Al% + 0.3Cr% + 0.6Ni% ≥1.0

관계식 1에 의한 성분첨가량이 1.0이상이 되어야 다량의 안정된 잔류 오스테니아트를 얻을 수 있고 연성이 우수한 강판을 제조할 수 있다. 만약 성분 첨가량이 Si등가식으로 1.0미만이 되면 350-450℃온도 영역에서 오스테나이트가 안정화되지 못하여 상온에서 얻어지는 잔류 오스테나이트의 양이 감소하고 따라서 강판의 연성이 감소한다.When the amount of ingredient added according to relation 1 is 1.0 or more, a large amount of stable residual austenite can be obtained and a steel sheet having excellent ductility can be manufactured. If the component addition amount is less than 1.0 by Si equivalent, the austenite is not stabilized in the 350-450 ° C. temperature range, and thus the amount of retained austenite obtained at room temperature decreases, thus reducing the ductility of the steel sheet.

상기와 같이 조성되는 슬라브는 제강공정을 통해 용강을 얻은 다음에 조괴 또는 연속주조공정을 통해 만든다. 이 슬라브를 열간압연공정, 권취공정, 냉간압연공정, 소둔공정을 통해 목표로 하는 기계적성질을 갖는 강판을 제조하는데, 각 공정별 제조조건을 구체적으로 설명한다.The slabs formed as described above are obtained by ingot or continuous casting process after obtaining molten steel through steelmaking process. The slab is hot rolled, wound, cold rolled, and annealed to produce a steel sheet having the desired mechanical properties. The manufacturing conditions for each process will be described in detail.

·열간압연공정 · Hot rolling

슬라브를 열간압연하는데, 이때의 열간압연조건은 미세한 열연조직을 얻기 위하여 마무리 압연 온도를 A3변태점 이상으로 한다.The slab is hot rolled, wherein the hot rolling conditions are such that the finish rolling temperature is A3 transformation point or more in order to obtain a fine hot rolled structure.

·권취공정 · Winding process

상기 열간압연한 열연판을 권취하는데, 이때의 권취온도는 630~680℃에서 행한다. 이러한 권취온도는 소둔을 위한 가열과정에서 역변태시 오스테나이트 핵이 생성되는 열연판의 퍼얼라이트 주변에 Mn등 오스테나이트 안정화 원소를 농화시키기 위한 것이다.The hot rolled hot rolled sheet is wound, wherein the winding temperature is performed at 630 to 680 ° C. This winding temperature is for concentrating an austenite stabilizing element such as Mn around the perlite of the hot rolled sheet in which the austenite nucleus is generated during reverse transformation during heating for annealing.

·냉간압연공정 - cold rolling

상기 권취한 열연판을 냉간압연하는데, 이때 냉간하율은 30~80%로 하는 것이 바람직하다. 열연조직을 변형시키고 그 변형에너지는 재결정 과정의 에너지가 되므로 냉간압하율이 30%미만에서는 이러한 변형효과가 작고, 80%초과이면 냉간압연에 의한 가공이 어렵고 압연시 강판의 가장자리에 균열이 발생하는 문제점이 있다.The wound hot rolled sheet is cold rolled, wherein the cold reduction rate is preferably 30 to 80%. Deformation of hot-rolled structure and its deformation energy is the energy of recrystallization process, so if the cold reduction rate is less than 30%, this deformation effect is small. If it is over 80%, it is difficult to process by cold rolling and cracking occurs at the edge of steel sheet during rolling. There is a problem.

·소둔공정 · Annealing Process

그 다음으로 냉간압연판을 소둔하는데, 이때의 소둔은 우선 780-810℃에서 5-180초동안 유지한다. 이는 미세한 재결정 조직을 얻고 동시에 강도에 필요한 오스테나이트 양과 연성에 필요한 페라이트양을 조성하기 위한 것으로, 780℃미만에서는 열연판의 세멘타이트가 재용해가 완전히 되지 않아 오스테나이트내 탄소함량이 낮고, 810℃초과의 경우 페라이트 양이 감소하여 연성이 저하하는 문제점이 있다.The cold rolled sheet is then annealed, at which time the annealing is first maintained at 780-810 ° C. for 5-180 seconds. This is to obtain a fine recrystallized structure and at the same time to form the amount of austenite required for strength and the amount of ferrite necessary for ductility, and below 780 ° C, the cementite of the hot rolled sheet is not completely re-dissolved, so the carbon content in the austenite is low and 810 ° C. In the case of excess, the amount of ferrite is reduced to reduce the ductility.

다음으로 620-680℃까지 5℃/초 이하의 속도로 1차냉각하고 다시 350-450℃온도까지 2차 냉각하는데 이때 1차 냉각과 2차 냉각의 평균냉각속도(CRtot)는 관계식 2를 만족하도록 한다.Next, the first cooling is performed at a rate of 5 ° C./sec or less to 620-680 ° C., and the second cooling is performed again to 350-450 ° C., where the average cooling rate (CRtot) of the first cooling and the second cooling satisfies relation 2 Do it.

[관계식 2][Relationship 2]

CRmax[3.0- (Mn+0.3Si%+2.7P%)] ≥log(CRtot,℃/초) ≥ CRmin[2.5-(Mn+ 0.3Si%+ 2.7P%)]CRmax [3.0- (Mn + 0.3Si% + 2.7P%)] ≥log (CRtot, ° C./sec) ≥ CRmin [2.5- (Mn + 0.3Si% + 2.7 P%)]

소둔온도에서 전체 냉각속도(CR tot)가 상한속도(CR max)와 하한속도(CR min)의 범위로 나타내는 관계식 2의 조건을 벗어나는 경우 즉, 냉각속도가 너무 빠르면 350-450℃온도 유지시 세멘타이트 무석출 베이나이트 변태가 지연되어 괴상의 조대한 급냉조직이 얻어지고 연성이 저하하며, 냉각속도가 너무 느리면 퍼얼라이트 변태 또는 세멘타이트가 석출하는 베이나이트 변태가 일어나 잔류 오스테나이트가 얻어지지 않기 때문에 연성이 낮아진다.If the total cooling rate (CR tot) at the annealing temperature is outside the condition of Equation 2, which is expressed as the range of the upper limit speed (CR max) and the lower limit speed (CR min), that is, if the cooling rate is too fast, the cement is maintained at 350-450 ℃. Tight, non-deposited bainite transformation is delayed, resulting in a coarse quenching structure and ductility deterioration, and if the cooling rate is too slow, the bainite transformation with precipitated perlite or cementite will not occur, resulting in no residual austenite. Ductility is lowered.

본 발명에서 냉각과정을 1차 냉각과 2차 냉각으로 구분하여 서냉후 급냉하는 것은 강판의 통판성과 형상을 향상시키기 위함이며, 1차 냉각과정에서 오스테나이트로 탄소분배가 평형상태까지 충분히 일어나도록 하고 2차 냉각과정에서 관계식 2를 만족하기 위함이다.In the present invention, the cooling process is divided into primary cooling and secondary cooling to quench after slow cooling in order to improve the mail flow and shape of the steel sheet, and to sufficiently disperse the carbon distribution to austenite in the primary cooling process. This is to satisfy the relation 2 in the secondary cooling process.

또한 냉각이 끝난 강판은 350-450℃온도 영역에서 1-20분 동안 유지하는데 이때 탄소가 오스테나이트로 농화되어 안정화되며 1분미만에서는 농화가 충분하게 일어나지 않고 20분 초과에서는 베이나이트가 성장하여 오스테나이트를 잠식하게 되어연성이 저하하기 때문에 제한하였다In addition, the cooled steel sheet is maintained for 1-20 minutes in the temperature range of 350-450 ° C. At this time, carbon is concentrated and stabilized with austenite. In less than 1 minute, the thickening does not occur sufficiently. The knight was encroached and ductility decreased, so it was limited.

본 발명에서는 소둔후 서냉대-급냉대로 이루어진 연속소둔 설비와 용융도금설비에서 효율적으로 잔류 오스테나이트 함유 강판을 제조할 수 있으며, Si, Mn 등을 최소화할 수 있는 Si등가식과 냉각속도 관계식을 제안함으로써 작업성이 뛰어나고 안정된 재질을 가진 연성이 우수한 50-80 kg/mm2급 고강도 냉연강판을 제조하는 것이다. 본 발명에 따라 제조한 냉연강판은 용융아연도금 특성이 우수하기 때문에 용융아연 도금강판용 원판으로도 사용할 수 있다.In the present invention, it is possible to efficiently manufacture the steel plate containing the residual austenite in the continuous annealing equipment consisting of a slow cooling zone-quenching zone after the annealing and a molten plating equipment, and by suggesting a Si equivalent equation and a cooling rate relation that can minimize Si, Mn, etc. It is to manufacture 50-80 kg / mm grade 2 high strength cold rolled steel sheet with excellent workability and excellent ductility with stable materials. The cold rolled steel sheet produced according to the present invention can be used as an original for hot dip galvanized steel sheet because of its excellent hot-dip galvanizing properties.

이하 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.The present invention will be described in more detail with reference to the following Examples.

[실시예]EXAMPLE

표1에 발명강과 비교강을 같이 나타내었다.Table 1 shows the invention steel and the comparative steel together.

표1에 표시된 화학성분을 가지는 발명강(1강-13번강)과 비교강(14강-21강)에 대하여 900℃에서 열간압연 마무리 압연을 하여 3.0mm두께로 한 다음 냉각하여 650℃에서 권취한 열연판을 1.2mm두께로 냉간압연하고 소둔하여 기계적 성질을 조사하였다. 소둔조건은 790℃에서 90초 동안 유지후 650℃까지 3℃/초로 1차냉각하고 다시 10℃/초로 2차냉각을 하여 400℃에서 10분간 유지한 다음 상온으로 냉각하였으며, 한편 발명강 2강에 대해서 소둔온도(T1), 1차냉각온도(T2),2차냉각온도(T3),전체 냉각속도 즉, 1차냉각속도와 2차냉각속도의 평균속도(CRt) 그리고 2차냉각온도에서 유지시간(t1)을 변화하였다. 표2에 소둔조건과 이 조건에 의하여 얻어진 강판의 기계적 성질을 나타내었다.Inventive steels (steels 1-13) and comparative steels (steels 14-21) having the chemical composition shown in Table 1 were hot-rolled and finish rolled at 900 ° C. to a thickness of 3.0 mm and then cooled and wound up at 650 ° C. One hot rolled sheet was cold rolled to 1.2 mm and annealed to investigate mechanical properties. The annealing condition was maintained at 790 ℃ for 90 seconds and then first cooled to 650 ℃ at 3 ℃ / second, and then again secondary cooling at 10 ℃ / second and maintained at 400 ℃ for 10 minutes and then cooled to room temperature At annealing temperature (T1), primary cooling temperature (T2), secondary cooling temperature (T3), total cooling rate, that is, average speed of primary cooling rate and secondary cooling rate (CRt), and secondary cooling temperature. The holding time t1 was changed. Table 2 shows the annealing conditions and the mechanical properties of the steel sheet obtained by these conditions.

표 2에서 알 수 있듯이, 본 발명의 소둔조건을 만족하는 강판은 인장강도 50-80kg/mm2와 동시에 연신율 35%이상의 우수한 연성을 가지는 고강도 강판으로 본 발명의 성분 범위를 벗어난 비교강과 본 발명강이라도 본 발명범위를 벗어난 조건으로 열처리한 강판에 비하여 훨씬 높은 연성을 가지고 있다.As can be seen from Table 2, the steel sheet that satisfies the annealing conditions of the present invention is a high-strength steel sheet having excellent ductility of at least 35% elongation at the same time as the tensile strength 50-80kg / mm2, even if the comparative steel and the invention steel outside the range of the present invention It has much higher ductility than steel sheets heat treated under conditions outside the scope of the present invention.

이러한 특징은 관계식1의 Si등가식을 이용한 본 발명강의 성분과 소둔후 1,2차 냉각조건과 관계식 2에 의한 냉각속도 제어를 통하여 안정된 오스테나이트를 최대한 형성함으로써 가능하며 따라서 본 발명강은 다량의 잔류 오스테나이트를 함유함으로써 연성이 매우 우수한 인장강도 50-80kg/mm2급 고강도 냉연강판 및 용융아연도금강판의 원판을 종래의 방법에 비하여 효율적으로 생산할 수 있다.This feature is possible by forming a stable austenite as much as possible through the control of the components of the present invention steel using the Si equivalent equation of relation 1 and the first and second cooling conditions and the cooling rate control according to the relation 2 after the annealing. an original plate of the residual austenite by containing a nitro tensile ductility, excellent 50-80kg / mm 2 class high strength cold rolled steel sheet and hot-dip galvanized steel sheet can be efficiently produced as compared with the conventional method.

상술한 바와 같이, 본 발명은 드로잉성, 소부경화성 및 내2차가공취성이 우수한 32-40kgf/mm2급 냉연강판을 제공할 수 있으며, 이 냉연강판은 자동차 판넬 및 구조용 부품에 적용할 수 있으며 용융아연도금 특성이 우수하기 때문에 용융아연 도금강판용 원판으로도 사용할 수 있다.As described above, the present invention can provide 32-40kgf / mm2 grade cold rolled steel sheet excellent in drawing property, hardening hardening resistance and secondary processing brittleness, and this cold rolled steel sheet can be applied to automobile panels and structural parts and melted. Because of its excellent galvanizing properties, it can be used as a master plate for hot-dip galvanized steel sheet.

Claims (1)

중량%로 C:0.05-0.20%, Si: 0.7-1.5%, Mn:1.5-1.8%, S:0.005%이하, N:0.003-0.007%이하, Mo: 0.01-0.1%, B:0.0005-0.002%, P:0.01-0.1%, Al:0.02-0.5%, Cr:0.02-0.10%, Ni:0.1-0.5%, 상기 Si, P, Al, Cr, Ni이 다음의 조건, Si%+9.5P%+0.45Al%+0.3Cr%+0.6Ni% ≥1.0 을 만족하고, 나머지 Fe와 불가피한 불순물로 조성되는 강슬라브를 마무리압연온도 A3변태점 이상의 조건으로 열간압연하고, 630-680℃의 온도에서 권취한 다음, 30-80%의 압하율로 냉간압연한 후, 780-810℃에서 5-180초동안 유지한 다음 620-680℃까지 5℃/초 이하로 1차 냉각하고 다시 350-450℃까지 2차 냉각하여 1-20분동안 항온유지후 상온으로 냉각하는 소둔과정에서 상기 1차냉각속도와 2차냉각속도의 평균냉각속도(CRtot)가 다음의 조건, CRmax[3.0- (Mn+0.3Si%+2.7P%)] ≥log(CRtot,℃/초) ≥ CRmin[2.5-(Mn+ 0.3Si%+ 2.7P%)] 를 만족하는 것을 포함하여 이루어지는 연성이 우수한 고강도 냉연강판의 제조방법.By weight% C: 0.05-0.20%, Si: 0.7-1.5%, Mn: 1.5-1.8%, S: 0.005% or less, N: 0.003-0.007% or less, Mo: 0.01-0.1%, B: 0.0005-0.002 %, P: 0.01-0.1%, Al: 0.02-0.5%, Cr: 0.02-0.10%, Ni: 0.1-0.5%, Si, P, Al, Cr, Ni are the following conditions, Si% + 9.5P A steel slab satisfying% + 0.45Al% + 0.3Cr% + 0.6Ni% ≥1.0 and composed of the remaining Fe and unavoidable impurities is hot-rolled at a condition above the finishing rolling temperature A3 transformation point and wound at a temperature of 630-680 ° C. After cold rolling at a reduction ratio of 30-80%, it is maintained at 780-810 ° C. for 5-180 seconds, followed by primary cooling up to 620-680 ° C. up to 5 ° C./sec and back to 350-450 ° C. In the annealing process after cooling to room temperature for 2 to 20 minutes, the average cooling rate (CRtot) of the primary cooling rate and the secondary cooling rate is the following condition, CRmax [3.0- (Mn + 0.3Si). % + 2.7 P%)] ≥ log (CRtot, ° C / sec) ≥ high strength ductility, including satisfying CRmin [2.5- (Mn + 0.3 Si% + 2.7 P%)] Method of producing a cold-rolled steel sheet.
KR10-2001-0082105A 2001-12-20 2001-12-20 Manufacturing method of retained austenite contained cold rolled steel sheets with good ductility KR100530071B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0082105A KR100530071B1 (en) 2001-12-20 2001-12-20 Manufacturing method of retained austenite contained cold rolled steel sheets with good ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0082105A KR100530071B1 (en) 2001-12-20 2001-12-20 Manufacturing method of retained austenite contained cold rolled steel sheets with good ductility

Publications (2)

Publication Number Publication Date
KR20030052199A true KR20030052199A (en) 2003-06-26
KR100530071B1 KR100530071B1 (en) 2005-11-22

Family

ID=29577048

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0082105A KR100530071B1 (en) 2001-12-20 2001-12-20 Manufacturing method of retained austenite contained cold rolled steel sheets with good ductility

Country Status (1)

Country Link
KR (1) KR100530071B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928769B1 (en) * 2002-12-28 2009-11-25 주식회사 포스코 Manufacturing method of composite thin steel sheet composed of ferrite and martensite with excellent uniform elongation
KR100957993B1 (en) * 2002-10-31 2010-05-17 주식회사 포스코 A method for manufacture high strength cold rolled steel sheet having low yield ratio and excellent elongation
KR101041322B1 (en) * 2010-11-18 2011-06-15 양원구 Self-forage harvesting apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110121727A (en) 2006-03-31 2011-11-08 가부시키가이샤 고베 세이코쇼 High-strength cold rolled steel sheet excelling in chemical treatability

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3569949B2 (en) * 1994-05-02 2004-09-29 Jfeスチール株式会社 Method of manufacturing thin steel sheet for processing with excellent bake hardenability and aging resistance
US6319338B1 (en) * 1996-11-28 2001-11-20 Nippon Steel Corporation High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
KR100276308B1 (en) * 1996-12-10 2000-12-15 이구택 The manufacturing method ofsuper high strength cold rolling steel sheet with workability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100957993B1 (en) * 2002-10-31 2010-05-17 주식회사 포스코 A method for manufacture high strength cold rolled steel sheet having low yield ratio and excellent elongation
KR100928769B1 (en) * 2002-12-28 2009-11-25 주식회사 포스코 Manufacturing method of composite thin steel sheet composed of ferrite and martensite with excellent uniform elongation
KR101041322B1 (en) * 2010-11-18 2011-06-15 양원구 Self-forage harvesting apparatus

Also Published As

Publication number Publication date
KR100530071B1 (en) 2005-11-22

Similar Documents

Publication Publication Date Title
CN109097705B (en) 800 MPa-grade cold-rolled hot-galvanized dual-phase steel and production method thereof
US8137487B2 (en) Method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability
KR102020411B1 (en) High-strength steel sheet having excellent workablity and method for manufacturing thereof
KR102153197B1 (en) Cold rolled steel sheet with excellent formability, galvanized steel sheet, and manufacturing method thereof
JP5082451B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in deep drawability and ductility, and method for producing high-strength hot-dip galvanized steel sheet using the cold-rolled steel sheet
JP2019506530A (en) High strength steel plate having excellent formability and method of manufacturing the same
KR20120033008A (en) High strength cold-rolled dual phase steel sheet for automobile with excellent formability and method of manufacturing the cold-rolled multi phase steel sheet
KR102200227B1 (en) Cord rolled steel sheet, hot-dip galvanized steel sheet having good workability, and manufacturing method thereof
CN114921726A (en) Low-cost high-yield-ratio cold-rolled hot-galvanized ultrahigh-strength steel and production method thereof
KR102470747B1 (en) A method of preparing utlra high strength cold-rolled steel sheet having excellent yield ratio and ductility and utlra high strength cold -rolled steel sheet using the same
JP2023547102A (en) Ultra-high strength steel plate with excellent ductility and its manufacturing method
KR102468040B1 (en) High-strength hot-dip galvanized steel sheet with excellent ductility and processability and process for producing the same
KR20140030785A (en) High strength galvannealed steel sheet with excellent stretch flangeability and coating adhesion and method for manufacturing the same
JP2004018912A (en) High-tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property and method for manufacturing the same
JP2004018911A (en) High-tensile strength cold-rolled steel plate having excellent elongation property and elongation-flanging property, and method for manufacturing the same
KR100530071B1 (en) Manufacturing method of retained austenite contained cold rolled steel sheets with good ductility
JP2018502992A (en) Composite steel sheet with excellent formability and method for producing the same
JP5251206B2 (en) High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method
CN116536582B (en) High-plasticity alloyed hot-dip galvanized Q & P980 steel and preparation method thereof
JP7440619B2 (en) Steel plate with excellent uniform elongation rate and work hardening rate and method for manufacturing the same
KR102464387B1 (en) High strength galva-annealed steel sheet and method of manufacturing the same
JPH0344423A (en) Manufacture of galvanized hot rolled steel sheet having excellent workability
KR101149193B1 (en) Steel sheet having excellent formability and galvanizing property, and method for producing the same
KR20090068993A (en) High-strength hot- dip galvanized steel sheet having excellent formability and galvanizing property, and method for producing the same
JP3376882B2 (en) Manufacturing method of high tensile alloyed hot-dip galvanized steel sheet with excellent bendability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121102

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131101

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141111

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151112

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20161114

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20171114

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20181114

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20191114

Year of fee payment: 15