KR20030050096A - Method of trench type device isolation - Google Patents

Method of trench type device isolation Download PDF

Info

Publication number
KR20030050096A
KR20030050096A KR1020010080488A KR20010080488A KR20030050096A KR 20030050096 A KR20030050096 A KR 20030050096A KR 1020010080488 A KR1020010080488 A KR 1020010080488A KR 20010080488 A KR20010080488 A KR 20010080488A KR 20030050096 A KR20030050096 A KR 20030050096A
Authority
KR
South Korea
Prior art keywords
substrate
trench
etch stop
pad
stop layer
Prior art date
Application number
KR1020010080488A
Other languages
Korean (ko)
Inventor
정희근
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020010080488A priority Critical patent/KR20030050096A/en
Publication of KR20030050096A publication Critical patent/KR20030050096A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE: A trench isolation method is provided to prevent a dent phenomenon chronically occurring in a conventional trench-type isolation process by performing a relatively simple additional process for recessing a pad layer. CONSTITUTION: The pad layer is formed on a substrate(100). An etch stop layer is formed on the pad layer. The etch stop layer, the pad layer and the substrate in a trench region are sequentially eliminated through a patterning process to form an etch stop layer pattern, a pad layer pattern and a substrate trench(140). An isotropic etch process is performed on the pad layer pattern to laterally recess the pad layer pattern. A silicon nitride layer liner(160) is formed on the substrate including the inner wall of the trench. A silicon oxide layer is stacked on the substrate to fill the trench. A chemical mechanical polishing(CMP) process is performed on the front surface of the substrate until the etch stop layer pattern is exposed. The etch stop layer pattern is removed to expose an active region through an etch process.

Description

트랜치형 소자 분리 방법{Method of trench type device isolation}Method of trench type device isolation

본 발명은 반도체 장치 형성 방법에 관한 것으로, 보다 상세하게는 기판에 대한 트랜치형 소자 분리 방법에 관한 것이다.The present invention relates to a method of forming a semiconductor device, and more particularly, to a trench type device isolation method for a substrate.

반도체 장치는 한정된 면적의 기판에 많은 전자 소자를 형성하고, 이들을 연관시키는 배선을 형성함으로써 이루어진다. 기판 상의 각 전자 소자가 정상적으로 운영되기 위해 인근 소자의 작동시 영향을 받지 않도록 소자 사이의 분리가 필요하다.A semiconductor device is formed by forming many electronic elements on a substrate having a limited area and forming wirings to associate them. In order for each electronic device on the substrate to operate normally, separation between the devices is required so that they are not affected by the operation of nearby devices.

소자 분리를 위해서는 기판의 소자 사이 영역에 필드 산화막을 형성하는 방법을 주로 사용하게 된다. 종래에는 필드 산화막 형성을 위해 기판 일부를 습식 산화하는 LOCOS(Local Oxidation of Silicon) 방법을 주로 사용하였다. 그러나,LOCOS 방법은 필드 산화막 주변 활성 영역으로 산화막이 얇게 침투하는 버즈 빅(bird' beak) 현상이 발생하는 약점이 있다. 따라서, 반도체 장치의 소자 고집적화가 진행되면서 필드 산화막 영역을 좁히고 활성 영역을 상대적으로 확장시킬 필요가 증대됨에 따라 트렌치형 소자 분리 방법이 많이 사용된다.In order to separate devices, a method of forming a field oxide film in an area between devices of a substrate is mainly used. Conventionally, LOCOS (Local Oxidation of Silicon) method of wet oxidation of a part of a substrate is mainly used to form a field oxide film. However, the LOCOS method has a disadvantage in that a bird 'beak phenomenon in which the oxide film penetrates into the active region around the field oxide film occurs. Therefore, as device integration of semiconductor devices progresses, the necessity of narrowing the field oxide film region and expanding the active region relatively increases, so that a trench type device isolation method is widely used.

도1 내지 도5는 종래의 트랜치형 소자 분리 방법의 각 단계를 나타내는 공정 단면도들이다.1 to 5 are process cross-sectional views illustrating respective steps of a conventional trench isolation method.

이상 도면을 참조하여 종래의 트랜치형 소자 분리 방법을 설명하면, 먼저, 기판(10)에 패드 산화막(20)과 식각 저지막으로서 실리콘 질화막을 형성한다. 통상의 패터닝 공정을 통해 트렌치 영역에서 식각 저지막을 제거하여 식각 저지막 패턴(30)을 형성하고, 이어서 식각 저지막 패턴(30)을 식각 마스크로 기판(10)을 식각하여 도1과 같은 형태의 트랜치(40)를 형성한다.Referring to the drawings, a conventional trench type isolation method is described. First, a silicon nitride film is formed on the substrate 10 as a pad oxide film 20 and an etch stop layer. The etching stop layer pattern 30 is formed by removing the etch stop layer in the trench region through a conventional patterning process, and then the substrate 10 is etched using the etch stop layer pattern 30 as an etch mask to form an etch stop layer 30. Form the trench 40.

트랜치(40) 측벽에 대한 식각 손상을 치유시키기 위한 어닐링을 실시한다. 이때, 트랜치 내벽을 포함하는 기판 표면에 열산화막(50)이 형성된다. 이어서, 기판 전면에 실리콘 질화막 라이너(60)를 형성하여 도2의 상태를 이룬다. 여기서 라이너(60)는 후속 공정들에서 트랜치(40)를 채우는 소자 분리용 산화막(도3의 70)에 의해 산소가 확산되어 인근 기판(10)이 산화되는 것을 방지한다. 따라서, 라이너(60)는 기판(10) 산화에 의한 스트레스로 인해 주변 기판(10) 결정이 손상되고 결정 손상에 의해 전류 누설이 발생하는 것을 방지하는 역할을 하게 된다.Annealing is performed to etch damage to the trench 40 sidewalls. In this case, the thermal oxide film 50 is formed on the substrate surface including the trench inner wall. Subsequently, the silicon nitride film liner 60 is formed on the entire surface of the substrate to achieve the state of FIG. 2. Here, the liner 60 prevents oxygen from being diffused by the oxide isolation film (70 in FIG. 3) filling the trench 40 in subsequent processes to oxidize the adjacent substrate 10. Accordingly, the liner 60 serves to prevent the surrounding substrate 10 crystals from being damaged due to the stress caused by the oxidation of the substrate 10 and prevent current leakage from occurring due to the crystal damage.

기판(10) 전면에 CVD를 통해 실리콘 산화막(70)이 적층되면서 도3과 같이 트렌치를 채우게 된다. 이어서, 기판 전면에 식각 저지막 패턴(30)이 드러날 때까지CMP를 실시한다. 결과, 도4와 같이 트랜치에만 실리콘 산화막이 잔류하여 소자 분리막(71)을 이루게 된다.The silicon oxide film 70 is deposited on the entire surface of the substrate 10 through CVD to fill the trench as shown in FIG. 3. Subsequently, CMP is performed until the etch stop layer pattern 30 is exposed on the entire substrate. As a result, as shown in FIG. 4, the silicon oxide film remains only in the trench to form the device isolation layer 71.

소자 형성을 위해 활성 영역을 노출시키는 단계에서 식각 저지막 패턴(30)은 인산 습식 식각 등의 방법으로 제거된다. 그러나, 이때, 식각 저지막 패턴(30)과 동일한 재질로 이루어지는 라이너(60) 상단이 노출되어 있으므로 열산화막(50)과 트랜치를 채운 CVD 산화막(70) 사이의 라이너(60) 상단도 함께 제거되어 좁은 틈을 만든다. 또한, 후속 세정 과정 등에서 실리콘 산화막에 대해 식각력을 가진 세정액이 좁은 틈을 통해 주변 산화막을 제거할 수 있다. 결과, 도5와 같이 소자 분리막(71')과 활성 영역 경계부에 제거된 라이너를 중심으로 오목한 틈(80)을 형성하는 덴트 현상이 발생한다.In the step of exposing the active region to form the device, the etch stop layer pattern 30 is removed by a method such as phosphate wet etching. However, at this time, since the top of the liner 60 made of the same material as the etch stop layer pattern 30 is exposed, the top of the liner 60 between the thermal oxide film 50 and the CVD oxide film 70 filling the trench is also removed. Make a narrow gap In addition, the cleaning liquid having an etching force with respect to the silicon oxide film may be removed in the subsequent cleaning process through the narrow gap. As a result, as shown in FIG. 5, a dent phenomenon occurs in which the recess 80 is formed around the liner removed at the boundary between the device isolation layer 71 ′ and the active region.

덴트 현상이 발생되면, 오목한 틈(80) 주위의 게이트 절연막이 얇게 형성되는 문제가 있고, 가령, 활성 영역에 트랜지스터가 형성될 때 이 틈에 게이트막이 채워지면 게이트 패터닝 과정에서 이 틈새의 게이트막은 쉽게 제거되지 않고 잔류할 수 있다. 이 잔류막은 길게 소오스 영역과 드레인 영역을 연결하는 바이 패스를 이루어 전류 누설을 일으킬 수도 있다. 한편, 얇게 형성된 게이트 절연막의 영향과 함께 게이트 전극과 이어진 잔류막이 채널의 양 모서리 부분에 작용하면 이 부분에 높은 전압이 인가되는 효과를 가져온다. 즉, 스레숄드 전압이 인가되기 전에 이미 채널 양단을 통해 전류가 일부 흐르게 함으로써 트랜지스터 특성을 불명확하게 하는 험프 현상도 일으킬 수 있다.If a dent occurs, there is a problem that a thin gate insulating film is formed around the concave gap 80. For example, when a transistor is formed in the active region, if the gap is filled with the gate film, the gate film of the gap is easily formed during the gate patterning process. It may remain without being removed. The residual film may have a long connection between the source region and the drain region to cause current leakage. On the other hand, when the residual film connected to the gate electrode acts on both edge portions of the channel together with the influence of the thinly formed gate insulating film, a high voltage is applied to the portion. In other words, some current flows through the channel before the threshold voltage is applied, which may also cause a hump phenomenon that makes the transistor characteristics unclear.

본 발명은 상술한 종래의 트렌치형 소자 분리 방법에서 덴트 현상이 발생하고, 험프 등의 소자 불량이 발생하는 것을 방지하기 위한 것으로, 덴트를 방지할 수 있는 트렌치형 소자 분리 방법을 제공하는 것을 목적으로 한다.The present invention is to prevent the occurrence of a dent phenomenon and the occurrence of device defects such as the hump in the conventional trench type device isolation method described above, and to provide a trench type device separation method that can prevent the dent. do.

도1 내지 도5는 종래의 트랜치형 소자 분리 방법의 각 단계를 나타내는 공정 단면도들,1 to 5 are process sectional views showing respective steps of the conventional trench isolation method;

도6 내지 도12는 종래의 트랜치형 소자 분리 방법의 각 단계를 나타내는 공정 단면도들이다.6 to 12 are process cross-sectional views illustrating respective steps of a conventional trench isolation method.

상기 목적을 달성하기 위한 본 발명은, 통상의 트랜치형 소자 분리 방법에서 트렌치 식각에 이은 어닐링 및 실리콘 질화막 라이너 형성 전에 기판 습식 식각을 통해 식각 저지막 패턴 하부의 패드 산화막 일부를 측방으로 리세스 시키는 단계가 더 구비되는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a step of recessing a portion of the pad oxide layer under the etch stop layer pattern laterally through the substrate wet etching prior to the trench etching and the silicon nitride film liner in the conventional trench type isolation method. It is characterized in that the further provided.

즉, 본 발명은, 기판에 패드막을 형성하고, 식각 저지막을 형성하는 단계, 패터닝 공정을 이용하여 트렌치 영역에서 식각 저지막, 패드막, 기판을 차례로 제거하여 식각 저지막 패턴, 패드막 패턴, 기판 트랜치를 형성하는 단계, 패드막 패턴에 대한 등방성 식각을 실시하여 패드막 패턴 단부를 측방으로 리세스시키는 단계, 트랜치 내벽을 포함하는 기판 전면에 라이너를 형성하는 단계, 기판 전면에 실리콘 산화막을 적층하여 트렌치를 채우는 단계, 기판 전면에 식각 저지막 패턴이 드러날 때까지 CMP를 실시하는 단계, 활성 영역이 노출되도록 식각 저지막 패턴을 식각으로 제거하는 단계를 구비하여 이루어진다.That is, the present invention may include forming a pad film on a substrate, forming an etch stop film, and sequentially removing the etch stop film, the pad film, and the substrate from the trench region by using a patterning process to remove the etch stop film pattern, the pad film pattern, and the substrate. Forming a trench, isotropically etching the pad film pattern to recess the end of the pad film pattern laterally, forming a liner on the front surface of the substrate including the trench inner wall, and depositing a silicon oxide film on the front surface of the substrate Filling the trench; performing CMP until the etch stop layer pattern is exposed on the entire surface of the substrate; and removing the etch stop layer pattern by etching to expose the active region.

본 발명에서 통상, 라이너 형성 전에 트랜치 측벽이 트렌치 식각 과정에서 입은 결정 손상을 치유하기 위한 어닐링을 실시하는 단계, 즉, 트랜치 내벽에 열산화막을 형성하는 단계가 더 이루어진다.In the present invention, before the liner is formed, annealing is performed to cure the crystal damage caused by the trench sidewalls during the trench etching process, that is, a thermal oxide film is formed on the inner wall of the trench.

본 발명에서 패드막은 대개 실리콘 기판의 열산화를 통한 실리콘 산화막으로이루어지나 실리콘 질화막 및 기판과 식각선택비를 가지는 다른 물질로 이루어질 수 있다. 이 경우, 패드막을 측방으로 리세스시키는 단계에서 등방성 식각물질로는 패드막에 선택성을 가지는 것을 사용해야 한다.In the present invention, the pad film is usually formed of a silicon oxide film through thermal oxidation of a silicon substrate, but may be made of a silicon nitride film and another material having an etching selectivity with the substrate. In this case, as the isotropic etching material in the step of recessing the pad film laterally, one having a selectivity to the pad film should be used.

본 발명에서 라이너나 식각 방지막은 실리콘 질화막을 사용하지만 패드막 및 기판과 식각 선택비를 가지는 다른 물질로 이루어지는 경우도 상정할 수 있다. 단, 라이너의 기능을 위해 산소 확산을 막는 베리어막으로 역할을 할 수 있는 물질로 형성되어야 한다.In the present invention, the liner or the anti-etching film uses a silicon nitride film, but it may also be assumed that the liner or the etching prevention film is made of a pad film and another material having an etching selectivity with the substrate. However, for the function of the liner, it should be formed of a material that can act as a barrier film that prevents oxygen diffusion.

이하 도면을 참조하면서 실시예를 통해 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도6을 참조하면, 기판(100) 표면에 식각 방지막 형성 전에 스트레스 완화를 목적으로 패드막(120)을 형성한다. 패드막(120) 혹은 버퍼막(buffer layer)은 대개 기판 열산화를 통해 실리콘 산화막으로 100 옹스트롬 정도 두께로 형성한다. 패드막(120) 위에 식각 방지막(130)을 형성한다. 식각 방지막(130)은 기판(100)에 트렌치 형성을 위한 식각시 식각 마스크의 역할을 할 수 있는 물질이며, 소자 분리막 형성하는 과정에서 CMP에 대한 식각 저지막으로 작용할 수 있는 물질이다. 통상, 식각 방지막(130)은 실리콘 질화막을 두께 1000 옹스트롬 내외로 하여 형성할 수 있다. 도시되지 않으나 식각 방지막(130) 위에 하드 마스크용 실리콘 산화막이 더 적층될 수 있다.Referring to FIG. 6, the pad film 120 is formed on the surface of the substrate 100 for the purpose of stress relaxation before the etching prevention film is formed. The pad film 120 or the buffer layer is usually formed to a thickness of about 100 angstroms with a silicon oxide film through substrate thermal oxidation. An etch stop layer 130 is formed on the pad layer 120. The etch stop layer 130 is a material that can serve as an etch mask during etching for forming a trench in the substrate 100, and can act as an etch stopper for CMP in the process of forming an isolation layer. In general, the etch stop layer 130 may be formed with a silicon nitride layer having a thickness of about 1000 angstroms. Although not shown, a silicon oxide film for a hard mask may be further stacked on the etch stop layer 130.

도7을 참조하면, 패터닝 과정을 통해 트렌치 영역에서 식각 방지막, 패드막, 기판을 차례로 제거하여 기판(100)에 트렌치(140)를 형성한다. 패터닝을 위해서는 먼저, 포토레지스트막 도포와 마스크 노광 및 현상으로 트렌치 영역을 드러내는 포토레지스트 패턴(미도시)을 형성한다. 포토레지스트 패턴을 식각 마스크로 식각 방지막을 식각하여 식각 방지막 패턴(130)을 형성한다. 이때 패드막도 함께 제거되어 패드막 패턴(120)을 형성하게 된다. 포토레지스트 패턴을 애싱 등의 공정으로 제거하고, 식각 방지막 패턴(130)을 식각 마스크로 기판에 수천 옹스트롬 깊이의 트랜치(140)를 형성한다.Referring to FIG. 7, a trench 140 is formed in the substrate 100 by sequentially removing the etch stop layer, the pad layer, and the substrate from the trench region through a patterning process. For patterning, first, a photoresist pattern (not shown) that exposes the trench region is formed by photoresist film application, mask exposure, and development. The etch stop layer is etched using the photoresist pattern as an etch mask to form the etch stop layer pattern 130. At this time, the pad film is also removed to form the pad film pattern 120. The photoresist pattern is removed by a process such as ashing, and the trench 140 having a depth of thousands of angstroms is formed on the substrate using the etch stop layer pattern 130 as an etch mask.

도7 및 도8을 참조하면, 트렌치(140)가 형성된 기판(100)에 습식 식각을 적용하여 패드막 패턴(120)의 일부를 제거하여 리세스된 패드막 패턴(131)을 형성한다. 패드막 패턴(120)은 기판(100)과 식각 저지막 패턴(130) 사이에 얇게 존재한다. 그러므로, 습식 식각을 통해 리세스된 패드막 패턴(131)은 트렌치 주변에서 활성 영역쪽으로 측방으로 주변부가 제거되어 줄어든 형태를 가지게 된다. 이때, 패드막 패턴(120)만 리세스되어야 하므로 패드막은 특정 식각물질에 대해 기판 및 식각 저지막과 선택비를 가져야 한다.7 and 8, a portion of the pad layer pattern 120 is removed by wet etching the substrate 100 on which the trench 140 is formed to form a recessed pad layer pattern 131. The pad layer pattern 120 is thin between the substrate 100 and the etch stop layer pattern 130. Therefore, the pad layer pattern 131 recessed through the wet etching has a form in which the peripheral portion is removed laterally from the periphery of the trench toward the active region. In this case, since only the pad layer pattern 120 should be recessed, the pad layer should have a selectivity with respect to the substrate and the etch stop layer with respect to a specific etching material.

도9를 참조하면, 열처리를 통해 기판 전면에 혹은 기판 실리콘이 드러난 트렌치 내벽에 열산화막(150)이 형성된다. 열처리를 통해 트렌치 식각 과정에서 결정 구조에 손상을 입은 기판면이 치유되는 효과를 가질 수 있다. 이어서, 실리콘 질화막 라이너(160)가 CVD를 통해 기판 전면에 50 내지 100 옹스트롬 정도 적층된다. 기판 표면 질화를 통해 질화막 형성하는 방법도 생각될 수 있으나, 조절이 용이하지 않다. 리세스된 패드막 패턴(131) 측방으로 오목하게 형성된 부분(165)에도 실리콘 질화막 라이너(160)가 오목한 형태로 적층된다. 이 부분에서 라이너(160)가 이루는 길이는 패드막 패턴이 리세스되지 않은 경우와 비교할 때 상당량 증가된다.Referring to FIG. 9, a thermal oxide film 150 is formed on the entire surface of the substrate or on the inner wall of the trench where the substrate silicon is exposed through heat treatment. Through heat treatment, the substrate surface damaged by the crystal structure during the trench etching process may be healed. Subsequently, silicon nitride film liner 160 is deposited on the entire surface of the substrate by CVD by about 50 to 100 angstroms. A method of forming a nitride film through substrate surface nitriding may also be considered, but adjustment is not easy. The silicon nitride film liner 160 may also be stacked in a concave shape on the recessed portion of the recessed pad film pattern 131. The length of the liner 160 in this portion is increased considerably compared with the case where the pad film pattern is not recessed.

도10을 참조하면, 실리콘 산화막(170)이 적층된다. 이때, 적층 두께를 충분히 하여 기판에 형성된 트렌치가 모두 채워지도록 하며, 리세스된 패드막 패턴(131)의 측방으로 오목하게 들어간 부분(165)도 완전히 채우게 된다. 이때 적층되는 실리콘 산화막(170)은 CMP를 통해 소자 분리막을 형성하게 되며, 통상 CVD로 형성되나, SOG 도포 등의 방법도 가능하다.Referring to FIG. 10, a silicon oxide film 170 is stacked. In this case, the lamination thickness may be sufficiently filled to fill all the trenches formed in the substrate, and the portion 165 recessed to the side of the recessed pad layer pattern 131 may be completely filled. In this case, the silicon oxide layer 170 is stacked to form a device isolation layer through the CMP, it is usually formed by CVD, a method such as SOG coating is also possible.

도11을 참조하면, 트렌치가 실리콘 산화막(170)으로 채워진 기판에 전면 CMP를 실시한다. CMP는 식각 저지막 패턴(130)이 드러나도록 실시한다. 따라서, 기판 전면에 적층된 실리콘 산화막(170)은 식각 저지막 패턴(130) 상면에서 제거되고, 트렌치에만 잔존하여 소자 분리막(171)이 된다. 이때, 라이너(160)가 오목하게 형성된 부분(165), 즉, 리세스된 패드막 패턴(131) 말단 부분은 식각 저지막 패턴(130) 아래에 있으므로 실리콘 산화막(170)으로 채워진 상태, 즉, 소자 분리막(171)으로 보호된 상태를 유지한다.Referring to FIG. 11, a front surface CMP is performed on a substrate in which a trench is filled with a silicon oxide film 170. The CMP is performed to expose the etch stop layer pattern 130. Therefore, the silicon oxide layer 170 stacked on the entire surface of the substrate is removed from the upper surface of the etch stop layer pattern 130, and remains only in the trench to become the device isolation layer 171. In this case, since the liner 160 is concave, that is, the recessed pad layer pattern 131 end portion is under the etch stop layer pattern 130, the silicon oxide layer 170 is filled with the liner 160. The device isolation layer 171 is protected.

도11 및 도12를 참조하면, 식각 저지막 패턴(130)에 대한 식각 제거가 이루어진다. 통상 식각 효율이 높은 습식 식각을 이용하며, 실리콘 질화막에 대해서는 인산 습식 식각이 이루어진다. 이때, 노출된 라이너(160) 상단부도 함께 식각된다. 그러나, 패드막 리세스를 이용하여 종래의 경우에 비해 단면상 그 경로가 길어져 있으므로 라이너(160) 상단부가 기판면(180) 아래까지 식각되기 어렵다. 그러므로, 리세스된 패드막 패턴(131) 제거가 이루어지고 활성 영역의 기판면(180)이 노출된 시점에서 최종 소자 분리막(172)에 포함된 라이너(160) 상단은 실리콘 기판면(180) 위에 존재하게 되고, 덴트 현상은 일어나지 않게 된다.11 and 12, etching removal of the etch stop layer pattern 130 is performed. In general, wet etching having high etching efficiency is used, and phosphate wet etching is performed on the silicon nitride film. At this time, the exposed upper end of the liner 160 is also etched together. However, since the path is longer in cross-section than in the conventional case using the pad film recess, the upper end of the liner 160 is hardly etched down to the substrate surface 180. Therefore, when the recessed pad layer pattern 131 is removed and the substrate surface 180 of the active region is exposed, the top of the liner 160 included in the final device isolation layer 172 may be disposed on the silicon substrate surface 180. It is present and no dent occurs.

본 발명에 따르면, 패드막을 리세스시키는 비교적 간단한 부가 공정을 통해 트렌치형 소자 분리 방법에서 고질적인 문제가 되는 덴트 현상을 방지할 수 있게 된다.According to the present invention, it is possible to prevent the dent phenomenon, which is a chronic problem in the trench type device isolation method, through a relatively simple addition process of recessing the pad film.

Claims (4)

기판에 패드막을 형성하고, 상기 패드막 위에 식각 저지막을 형성하는 단계,Forming a pad layer on the substrate and forming an etch stop layer on the pad layer; 패터닝 공정을 이용하여 트렌치 영역에서 상기 식각 저지막, 상기 패드막, 상기 기판을 차례로 제거하여 식각 저지막 패턴, 패드막 패턴 및 기판 트랜치를 형성하는 단계,Forming an etch stop layer pattern, a pad layer pattern, and a substrate trench by sequentially removing the etch stop layer, the pad layer, and the substrate from the trench region using a patterning process; 상기 패드막 패턴에 대한 등방성 식각을 실시하여 상기 패드막 패턴을 측방으로 리세스시키는 단계,Isotropically etching the pad film pattern to recess the pad film pattern laterally; 상기 트랜치의 내벽을 포함하는 상기 기판 전면에 실리콘 질화막 라이너를 형성하는 단계,Forming a silicon nitride film liner on the entire surface of the substrate including an inner wall of the trench; 상기 기판 전면에 실리콘 산화막을 적층하여 상기 트렌치를 채우는 단계,Stacking a silicon oxide film on the entire surface of the substrate to fill the trench; 상기 기판 전면에 상기 식각 저지막 패턴이 드러날 때까지 CMP(Chemical Mechanical Polishing)를 실시하는 단계,Performing chemical mechanical polishing (CMP) until the etch stop layer pattern is exposed on the entire surface of the substrate; 활성 영역이 노출되도록 상기 식각 저지막 패턴을 식각으로 제거하는 단계를 구비하는 트렌치형 소자 분리 방법.And removing the etch stop layer pattern by etching to expose an active region. 제 1 항에 있어서,The method of claim 1, 상기 실리콘 질화막 라이너를 형성하는 단계 전에 상기 트랜치의 측벽이 트렌치 식각 과정에서 입은 결정 손상을 치유하기 위한 어닐링을 실시하는 단계가 더 구비됨을 특징으로 하는 트렌치형 소자 분리 방법.And annealing the semiconductor sidewalls of the trench to heal crystal damages during the trench etching process before the forming of the silicon nitride film liner. 제 1 항에 있어서,The method of claim 1, 상기 패드막은 실리콘 기판의 열산화를 통한 실리콘 산화막으로 이루어지는 것을 특징으로 하는 트렌치형 소자 분리 방법.The pad layer is a trench type device isolation method, characterized in that made of a silicon oxide film through thermal oxidation of the silicon substrate. 제 1 항에 있어서,The method of claim 1, 상기 라이너 및 식각 방지막은 실리콘 질화막으로 형성하는 것을 특징으로 하는 트렌치형 소자 분리 방법.And the liner and the etch stop layer are formed of a silicon nitride layer.
KR1020010080488A 2001-12-18 2001-12-18 Method of trench type device isolation KR20030050096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010080488A KR20030050096A (en) 2001-12-18 2001-12-18 Method of trench type device isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010080488A KR20030050096A (en) 2001-12-18 2001-12-18 Method of trench type device isolation

Publications (1)

Publication Number Publication Date
KR20030050096A true KR20030050096A (en) 2003-06-25

Family

ID=29575871

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010080488A KR20030050096A (en) 2001-12-18 2001-12-18 Method of trench type device isolation

Country Status (1)

Country Link
KR (1) KR20030050096A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100719366B1 (en) * 2005-06-15 2007-05-17 삼성전자주식회사 Method of forming a semiconductor device having a trench device isolation layer
KR100770258B1 (en) * 2005-04-22 2007-10-25 삼성에스디아이 주식회사 Organic Thin Film Transistor and fabrication method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100770258B1 (en) * 2005-04-22 2007-10-25 삼성에스디아이 주식회사 Organic Thin Film Transistor and fabrication method of the same
KR100719366B1 (en) * 2005-06-15 2007-05-17 삼성전자주식회사 Method of forming a semiconductor device having a trench device isolation layer
US7427533B2 (en) 2005-06-15 2008-09-23 Samsung Electronics Co., Ltd. Methods of fabricating semiconductor devices including trench device isolation layers having protective insulating layers and related devices

Similar Documents

Publication Publication Date Title
KR100386946B1 (en) Shallow trench isolation type semiconductor devices and method of forming it
JP2012033952A (en) Semiconductor element separation method
US6110797A (en) Process for fabricating trench isolation structure for integrated circuits
US6660599B2 (en) Semiconductor device having trench isolation layer and method for manufacturing the same
KR20030050096A (en) Method of trench type device isolation
KR100195237B1 (en) Method for providing trench/locos isolation
KR20050028618A (en) Method for forming isolation layer of semiconductor device
KR100622754B1 (en) A method for forming a field oxide of a semiconductor device
KR20030049783A (en) Method of forming an isolation film in semiconductor device
JP2006024605A (en) Method of manufacturing semiconductor integrated circuit device
KR0172760B1 (en) Method of manufacturing element-isolating insulation film of semiconductor device
KR101006510B1 (en) Method for forming isolation layer of semiconductor device
KR100305018B1 (en) Device Separation Method of Semiconductor Devices
KR100579851B1 (en) Isolation Method for semiconductor device
KR19990025195A (en) Trench element isolation
KR100422960B1 (en) Method for forming isolation layer of semiconductor device
KR970005703B1 (en) Semiconductor device and manufacturing method for the same
KR100290912B1 (en) Method for fabricating isolation region of semiconductor device
KR20000028124A (en) Separation method for trench element of semiconductor device
KR20030008053A (en) Method for forming isolation layer in semiconductor device
JP2018207062A (en) Method for manufacturing semiconductor device, and semiconductor device
KR20080029268A (en) Isolation layer of semiconductor device and method forming the same
KR20040037460A (en) Method for forming shallow trench isolation in semiconductor device
KR20000020242A (en) Method for forming isolation film of semiconductor device
KR20060057162A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination