KR20030049812A - method for manufacturing the ferritic stainless steel sheet with a good elongation and execllent anti-ridging - Google Patents

method for manufacturing the ferritic stainless steel sheet with a good elongation and execllent anti-ridging Download PDF

Info

Publication number
KR20030049812A
KR20030049812A KR1020010080132A KR20010080132A KR20030049812A KR 20030049812 A KR20030049812 A KR 20030049812A KR 1020010080132 A KR1020010080132 A KR 1020010080132A KR 20010080132 A KR20010080132 A KR 20010080132A KR 20030049812 A KR20030049812 A KR 20030049812A
Authority
KR
South Korea
Prior art keywords
less
annealing
hot
rolling
temperature
Prior art date
Application number
KR1020010080132A
Other languages
Korean (ko)
Other versions
KR100570892B1 (en
Inventor
유도열
김봉운
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010080132A priority Critical patent/KR100570892B1/en
Publication of KR20030049812A publication Critical patent/KR20030049812A/en
Application granted granted Critical
Publication of KR100570892B1 publication Critical patent/KR100570892B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: A method for manufacturing ferritic stainless steel sheet with good elongation and excellent anti-ridging by using STS 409L steel is provided. CONSTITUTION: The method includes the steps of hot rolling a steel slab (isometric rate thereof is greater than 70 %) comprising 0.01 wt.% or less of C, 1.0 wt.% or less of Si, 1 wt.% or less of Mn, 0.035 wt.% or less of P, 0.03 wt.% or less of S, Cr 10 to 12 wt.%, 0.1 wt.% or less of Mo, 0.01 wt.% or less of N, 0.1 wt.% or less of Cu, 0.1 wt.% or less of Al, 0.2 wt.% or less of Ni, 0.3 wt.% or less of Ti, a balance of Fe and incidental impurities at less than 1200 deg.C so that hot annealing is excluded, wherein C+N is less than 0.015 wt.%, 10<=Ti/(C+N)<=15, finish hot rolling temperature is less than 800 deg.C; cold rolling the hot rolled steel sheet at a reduction ratio of higher than 85 %; rapid heating the cold rolled steel sheet to the temperature range of 1000 to 1100°C at temperature elevation rate of greater than 400 °C/sec; and cold annealing the heated steel sheet for 5 to 15 sec within the temperature range of 1000 to 1100 deg.C.

Description

연신율 및 내리찡성이 우수한 페라이트계 스테인리스강의 제조방법{method for manufacturing the ferritic stainless steel sheet with a good elongation and execllent anti-ridging}Method for manufacturing the ferritic stainless steel sheet with a good elongation and execllent anti-ridging

본 발명은 연신율 및 내리찡성이 우수한 페라이트계 스테인리스강의 제조방법에 관한 것으로, 더욱 상세하게는 TS409L강에서 화학성분을 일정범위내로 제어하고, 일정한 등축정율을 갖는 스라브을 제조하여 열연소둔을 생략하고, 일정 냉간압하율 및 냉연소둔시 소둔온도와 승온속도를 높여 연신율 및 리찡성을 개선시키면 제조원가가저렴하고, 동시에 성형성이 양호한 STS409L강 열연 무소둔 제조 방법에 관한 것이다.The present invention relates to a method for manufacturing ferritic stainless steel with excellent elongation and slidability, and more particularly, to control the chemical composition within a certain range in TS409L steel, to manufacture a slab having a constant equiaxed crystal, eliminating hot-rolling annealing, The present invention relates to a method of manufacturing STS409L steel hot rolled annealing having low manufacturing cost and good moldability by increasing the annealing temperature and the temperature increase rate during cold rolling and cold rolling annealing to improve elongation and refrigerability.

일반적으로 STS409L강은 스테인리스강에서 고가인 Cr 함량이 낮아 가장 값이싼 강종으로 자동차 배기계 부품용으로 많이 사용되고 있다. 따라서 제조원가 절감 및 생산성 향상을 위해 열연 무소둔 후 산세하고 ZM 냉간압연하여 냉연소둔하는 경우 연신율 및 내리찡성이 열위하여 성형시 피단이 자주 발생되는 문제점이 있다.In general, STS409L steel is the most inexpensive steel grade due to low Cr content in stainless steel, and is widely used for automobile exhaust system parts. Therefore, in order to reduce manufacturing costs and improve productivity, pickling after hot rolling annealing and cold rolling annealing with ZM cold rolling have inferior elongation and slidability, which causes problems in forming during molding.

이러한 문제점을 해결하기 위한 종래의 기술은 STS409L강을 950~960℃에서 열연소둔후 산세하여 냉간압하율 50~80% 실시후에 냉연소둔을 920℃에서 승온속도 10~15℃/sec. 20초간 열처리하는 경우 연신율 38%, 리찡높이가 20mm 수준이고, 이에 비해 열연소둔을 생략하는 경우는 연신율 36%, 리찡 높이는 40mm 수준으로 매우 높게 나타나 성형시 균열이 발생되는 문제점이 있다.Conventional technology to solve this problem is hot-rolled annealing STS409L steel at 950 ~ 960 ℃ and pickled by cold rolling annealing at 920 ℃ after 50 ~ 80% cold reduction rate 10 ~ 15 ℃ / sec. In the case of heat treatment for 20 seconds, the elongation is 38%, the squirrel height is 20mm level. On the other hand, when the hot anneal is omitted, the elongation is 36% and the squirrel height is 40mm.

본 발명은 상기의 문제점을 해결하기 위하여 안출된 것으로써, 본 발명자는 상기한 STS409L강의 열연 무소둔재의 문제점을 개선하기 위해 실험을 행하고, 그 결과를 근거하여 본 발명을 제안하였으며, 본 발명은 STS409L강에서 화학성분을 일정범위내로 제어하고, 일정한 등축정율을 갖는 스라브을 제조하여 열연소둔을 생략하고, 일정 냉간압하율 및 냉연소둔시 소둔온도와 승온속도를 높여 연신율 및 리찡성을 개선시키면 제조원가 저렴하고, 동시에 성형성이 양호한 STS409L강 열연 무소둔 제조 방법을 제공하고자 하는데 그 목적이 있다.The present invention has been made to solve the above problems, the present inventors conducted the experiment to improve the problems of the above-described hot-rolled annealing material of STS409L steel, and proposed the present invention on the basis of the results, the present invention is STS409L If steel is controlled within a certain range, the slab with constant equiaxed rate is manufactured to omit hot-rolled annealing, and it is cheaper to manufacture by improving the elongation rate and rimability by increasing the annealing temperature and the temperature increase rate during constant cold rolling rate At the same time, the object of the present invention is to provide a method for producing STS409L steel hot rolled annealing having good moldability.

도 1은 STS409L강 냉연소둔시 승온속도에 따른 연신율 및 리찡높이 변화를 나타낸 그래프도.1 is a graph showing the change in elongation and resorption height according to the temperature increase rate during cold rolling annealing of STS409L steel.

도 2는 각 시편의 화학조성 및 열간압연 및 소둔조건과 연신율 및 리찡높이 측정 결과를 도시한 도표.Figure 2 is a chart showing the chemical composition and hot rolling and annealing conditions and the elongation and resorption height measurement results of each specimen.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 STS409L 페라이트계 스테인리스강의 제조방법에 있어서,The present invention provides a method for producing STS409L ferritic stainless steel,

중량 %로 C;0.01% 이하, Si:1.0% 이하 , Mn:1% 이하, P:0.035 이하, S:0.03이하, Cr:10 ~ 12%, Mo :0.1% 이하, N:0.01% 이하, Cu:0.1% 이하, Al:0.1% 이하, Ni:0.2% 이하, Ti:0.3% 이하 나머지 Fe 및 불가피하게 첨가되는 불순물로 조성되고, C+N:0.015% 이하, 10≤Ti/(C+N)비≤15를 만족하는 조성에서, 연주 스라브 등축정율이 70% 이상을 갖도록 제조하여 스라브 가열온도 1200℃ 이하, 마무리 압연온도가 800℃ 이하로 열간압연하여 열연소둔을 생략하여 산세하고, 냉간압하율 85% 이상이 되게 냉간압연후 냉연소둔은 판온도 기준 1000~1100℃ 범위내에서, 승온속도 400℃/sec. 이상으로, 냉연소둔시간은 판온도 기준 1000℃ 이상, 1100℃ 이하에서 5초 이상~15초 이하로 유지되게 냉연소둔처리하면 연신율이 39% 이상, 리찡 높이가 20mm 이하로 성형시 파단불량이 발생되지 않는 열연소둔 생략형 STS409L 페라이트계 스테인리스강을 제조하는 방법이다.By weight% C: 0.01% or less, Si: 1.0% or less, Mn: 1% or less, P: 0.035 or less, S: 0.03 or less, Cr: 10-12%, Mo: 0.1% or less, N: 0.01% or less, Cu: 0.1% or less, Al: 0.1% or less, Ni: 0.2% or less, Ti: 0.3% or less Composition with remaining Fe and inevitable impurities added, C + N: 0.015% or less, 10 ≦ Ti / (C + In a composition satisfying the N) ratio ≤ 15, it is manufactured so that the performance slab equiaxed crystal ratio is 70% or more. Cold rolling after cold rolling to the reduction ratio of 85% or more within the range of 1000 ~ 1100 ℃ based on the plate temperature, the temperature rising rate of 400 ℃ / sec. The cold rolling annealing time is maintained at 1000 ° C or above and 1100 ° C or below for 5 seconds or more and 15 seconds or less at the plate temperature. It is a method for manufacturing a non-hot-rolled annealing STS409L ferritic stainless steel.

이하 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

상기한 목적을 달성하기 위하여 본 발명에서는 강을 상기와 같이 조성함이 바람직하다. 이하 본 발명강의 조성범위 한정이유에 대하여 설명한다.In order to achieve the above object, in the present invention, it is preferable to form the steel as described above. Hereinafter, the reason for limiting the composition range of the inventive steel will be described.

상기 C 및 N는 Ti와 결합하여 Ti탄질화물을 형성시키는 원소로 C, N 함량이 높아지면 미 결합된 고용 C, N 함량이 높아져 강도가 높고, 연신율이 저하되기 때문에 그 함량은 C의 경우는 0.01% 이하, N은 0.01% 이하를 만족하고, C+N 함량이 0.015% 이상이면 연신율이 저하되기 때문에 C+N 함량은 0.015% 이하로 한정한다.The C and N are Ti-nitride bonded with Ti to form Ti carbonitride. When the C and N contents are increased, the unbound solid solution C and N contents are increased, the strength is high, and the elongation is lowered. 0.01% or less, N satisfies 0.01% or less, and the C + N content is limited to 0.015% or less because the elongation is lowered if the C + N content is 0.015% or more.

Si는 페라이트 형성원소로 함량 증가시 페라이트 상의 안정성이 높아지게 되고 내산화성이 향상되나 1.0% 이상 첨가하면 경도, 항복강도, 인장강도를 높이고 연신율을 저하시키기 때문에 연신율 개선에 불리하여 1.0% 이하로 한정한다.Si is a ferrite forming element which increases the stability of ferrite phase and improves the oxidation resistance. However, if it is added more than 1.0%, Si is disadvantageous for improving elongation because it increases hardness, yield strength, tensile strength and lowers elongation. .

Mn은 함량이 높아지면 MnS를 용출하여 내공식성을 저하시키기 때문에 1.0% 이하로 한정한다.Mn is limited to 1.0% or less because the content of Mn elutes MnS and lowers pitting resistance.

P 및 S는 MnS등 개재물을 형성하여 내식성 및 열간가공성을 저해하므로 가능한 낮게 관리하는 것이 좋기 때문에 P :0.035% 이하, S : 0.03% 이하로 한정한다.Since P and S form inclusions such as MnS to inhibit corrosion resistance and hot workability, P and S should be kept as low as possible, so they are limited to P: 0.035% or less and S: 0.03% or less.

Cr은 함량이 10% 이하로 너무 낮으면 내식성이 저하하고, 함량이 너무 높아지면 내식성은 향상이 되나 12% 이상이면 강도가 높아져 연신율 저하로 성형성이 저하하기 때문에 그 함량은 10%≤Cr≤12%로 한정한다.If Cr is too low (10% or less), the corrosion resistance is lowered. If the content is too high, the corrosion resistance is improved, but if it is 12% or more, the strength is increased and the moldability is reduced due to the decrease in elongation. It is limited to 12%.

Mo는 내식성을 현저하게 향상시키지만 강도를 높여 성형성이 나빠진다. 따라서 내식성 및 성형성을 고려하여 Mo 함량을 0.1% 이하로 한정한다.Mo significantly improves the corrosion resistance, but increases the strength, resulting in poor moldability. Therefore, the Mo content is limited to 0.1% or less in consideration of corrosion resistance and moldability.

Al은 탈산제로 첨가되는 원소로 많이 첨가하면 표면결함을 발생시키기 때문에 0.1% 이하로 한정한다.Al is limited to 0.1% or less because a large amount of element is added as a deoxidizer, and causes surface defects.

Cu는 감마상 생성원소로 많이 첨가하면 합금철 투입량 증가에 의한 제조원가 상승을 유발하고, 열간가공성이 저하하여 열간압연시 표면결함을 유발하기 때문에 Cu는 0.1% 이하로 한정한다.When Cu is added as a gamma-phase generating element, Cu increases in manufacturing cost due to an increase in the input amount of ferroalloy, and decreases hot workability, causing surface defects during hot rolling. Therefore, Cu is limited to 0.1% or less.

Ti는 안정화원소로 Ti 함량이 너무 높아지면 연신율 및 성형성이 저하되기 때문에 0.3% 이하, Ti 첨가량이 너무 낮으면 용접부에 입계부식이 발생되기 때문에 그 비는 10≤Ti/(C+N)비≤15로 한정한다.Ti is a stabilizing element. If the Ti content is too high, the elongation and formability are deteriorated, so that the ratio is 10 ≦ Ti / (C + N) ratio. It is limited to ≤ 15.

이하는 본 발명의 제조조건에 대하여 설명한다.Hereinafter, the manufacturing conditions of the present invention will be described.

먼저 스라브내 등축정율이 70% 이하로 낮아지면 무소둔시 스라브내 주상정이 조직이 열간압연, 냉연소둔후에도 잔류하여 리찡성이 나빠지기 때문에 등축정율은70% 이상으로 한정한다.First, if the equiaxed crystallinity in slab is lowered to 70% or less, the equiaxed crystallinity is limited to 70% or more since the columnar crystals in the slab remain unchanged even after hot rolling and cold annealing.

스라브 가열온도가 1200℃ 이상, 마무리 압연온도가 800℃ 이상이 되면 열간압연시 내부변형축적에너지가 낮아 열연 무소둔 후 냉간압연 및 냉간소둔하면 리찡성에 나쁜 밴드(band) 조직이 많이 잔류하기 때문에 열간압연 시에 내부변형축적에너지를 높일 목적으로 저온압연을 실시하고자 스라브 가열온도 는 1200℃ 이하, 마무리 압연온도가 800℃ 이하로 열간압연하는 것으로 한정한다.When the slab heating temperature is more than 1200 ℃ and the finishing rolling temperature is more than 800 ℃, the internal strain accumulation energy during hot rolling is low, so there are many bad band structures due to cold rolling and cold annealing after hot rolling annealing. In order to perform low-temperature rolling for the purpose of increasing the internal strain accumulation energy during rolling, the slab heating temperature is limited to hot rolling at 1200 ° C or lower and the finishing rolling temperature at 800 ° C or lower.

열간압연 후에 열연소둔은 생략하고, 산세하여 냉간압연시에 냉간압하율이 낮아지면 두께 방향 1/4t지점의 주상정 조직 파괴가 잘 일어나지 않기 때문에 냉간압연시 내부 주상정 조직 파괴 및 재결정 촉진을 위해 냉간압하율은 85% 이상으로 한정한다.After hot rolling, hot rolling annealing is omitted, and when cold rolling is lowered at the time of pickling and cold rolling, columnar tissue destruction in the 1 / 4t thickness direction is less likely to occur, thereby promoting internal columnar tissue destruction and recrystallization during cold rolling. Cold rolling reduction is limited to 85% or more.

냉연소둔조건은 고온에서 단시간 급속가열을 통해 연신율 및 리찡성을 개선하고자 냉연소둔온도는 1000℃ 이하가 되면 재결정이 불충분하고, 1100℃ 이상이면 결정립이 조대화되어 내리찡성 저하되고, 소둔시 코일 장력에 의한 판파단이 우려되기 때문에 소둔온도는 1000℃~1100℃ 로 한정한다.Cold rolling annealing condition is to improve elongation and rhythm through short time rapid heating at high temperature. In case of cold rolling annealing temperature is below 1000 ℃, recrystallization is insufficient. Annealing temperature is limited to 1000 ° C. to 1100 ° C., because of rupture of the plate.

승온속도는 400℃/sec. 이하이면 리찡성 및 연신율을 개선시키는 재결정 집합조직이 발달하지 않기 때문에 승온속도는 400℃/sec. 이상으로 한정한다.The temperature increase rate is 400 ℃ / sec. The temperature increase rate is 400 ° C / sec. It is limited to the above.

냉연소둔시간은 너무 짧으면 재결정집합조직이 발달하지 않고, 너무 시간이 길어지면 소둔온도가 높은 1100℃ 이상 때와 같이 결정립이 조대화되어 내리찡성이 저하되고, 소둔시 코일의 판파단이 우려되기 때문에 냉연소둔시간은 판온도 기준 1000℃ 이상~1100℃ 이하에서 5초 이상~15초 이하로 한정한다.If the cold annealing time is too short, the recrystallized aggregate structure does not develop, and if the time is too long, the grain size becomes coarse, such as when the annealing temperature is higher than 1100 ° C. Cold rolling annealing time is limited to 1000 seconds or more and 1100 degrees C or less from 5 seconds to 15 seconds or less based on the plate temperature.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

하기 도 2와 같이 조성되는 페라이트계 스테인레스강을 30Kg 진공유도로에서 용해하여 가로, 세로 110(mm)인 주괴를 제조하고, 제조된 주괴를 1250℃ 및 1180℃에서 150분 가열하고, 900℃ 및 790℃ 에서 열연사상압연하여 두께가 4mm, 8.6mm 및 12mm인 열연판을 제조하고, 950℃ 열연소둔을 실시 한 시편과 생략한 시편을 제조하여 산세처리후에 냉간압하율을 70%, 86%, 90%로 냉간압연하여 최종 냉연판 두께가 1.2mm로 일정하게 하였다. 냉연소둔처리는 소둔온도 900, 920, 1050, 1200℃, 승온속도는 13, 100, 300, 400, 500(℃/sec.)로 , 소둔시간은 10, 20, 25초로 변화시켜 글리블 시험기에서 직접 전기저항가열방식으로 냉연소둔처리하여 산세하였다. 산세후 시편규격 JIS 5호로 압연방향과 평행한 방향으로 인장시편을 가공하여 인장시험하고, 또한 인장시편을 15% 인장후 표면조도기로 최대 리찡높이를 측정하여 나타내었다2, a ferritic stainless steel prepared as shown in FIG. 2 was dissolved in a 30Kg vacuum induction furnace to prepare an ingot having a length of 110 (mm), and the prepared ingot was heated at 1250 ° C and 1180 ° C for 150 minutes, and was heated at 900 ° C and After hot rolling at 790 ° C, hot rolled plates having thicknesses of 4mm, 8.6mm and 12mm were prepared, and specimens subjected to hot-rolling annealing at 950 ° C and specimens which were omitted were subjected to cold rolling reduction rates of 70%, 86%, after pickling. Cold rolling was performed at 90% to make the final cold roll thickness constant at 1.2 mm. The cold rolling annealing treatment is performed at annealing temperatures of 900, 920, 1050, 1200 ℃, temperature rising speed of 13, 100, 300, 400, 500 (℃ / sec.) And annealing time of 10, 20, 25 seconds. Pickled by cold rolling annealing by direct electric resistance heating method. Tensile test was carried out by processing tensile specimens in the direction parallel to the rolling direction in JIS No. 5 after pickling, and the maximum regrinding height was measured by surface roughness after 15% tensioning.

각 시편의 화학조성 및 열간압연 및 소둔조건과 연신율 및 리찡높이 측정 결과를 도 2에 나타내었다.The chemical composition, hot rolling and annealing conditions, elongation, and height measurement results of each specimen are shown in FIG. 2.

또한 열연 무소둔재을 사용하여 냉간압하율 86%로 냉간압연하고, 냉연소둔온도 1050℃에서 승온속도변화에 따른 연신율 및 리찡높이를 나타낸 것이 제2도이다. 승온속도가 400℃ 이상이면 연신율 39% 이상, 리찡높이가 20mm 이하로 연신율 및 내리찡성이 우수한 것으로 확인되었다.In addition, using a hot-rolled annealing material is cold rolled to a cold reduction rate of 86%, the second drawing shows the elongation and drift height according to the temperature increase rate at the cold rolling annealing temperature of 1050 ℃. When the temperature increase rate is 400 ℃ or more, it was confirmed that the elongation is 39% or more, the ridge height is 20mm or less, excellent in elongation and slidability.

도 1및 도 2의 결과를 종합하면 C+N 함량이 0.015% 이하이고, 10≤Ti/(C+N)비≤15가 만족되는 화학조성을 갖고, 또한 스라브내 등축정율이 86%, 90%로 70% 이상을 만족시키는 스라브을 사용하여 스라브 가열온도 1180℃, 마무리 압연온도가 790℃에서 열간압연하고, 열연소둔을 생략한 시편을 냉간압하율이 86% 및 90%, 냉연소둔온도는 1050℃에서 승온속도 400℃, 500℃, 소둔시간 10초간 냉연소둔처리한 발명재(A, B, C)는 연신율 및 리찡성 개선에 유익한 재결정집합조직이 발달하여 연신율이 39% 이상, 리찡 높이가 20mm 이하로 상기 제조조건을 만족시키지 않는 비교재에 비해 양호한 특성을 보인다. 또한 통상의 제조조건인 열연소둔처리재(시편 Q) 보다도 특성이 개선된 것을 알 수 있다. 따라서 열연소둔을 생략함으로써 제조원가가 저렴하고, 연신율 및 내리찡성이 우수한 STS409L강을 제조 가능하였다.1 and 2, the C + N content is 0.015% or less, 10≤Ti / (C + N) ratio ≤ 15, the chemical composition is satisfied, and the equiaxed crystal in the slab is 86%, 90% Using slabs that satisfy more than 70% of the slab, the slab heating temperature is 1180 ℃, the finish rolling temperature is 790 ℃, and the hot rolled annealing specimens are 86% and 90% cold-rolled, and 1050 ℃ Inventive materials (A, B, C) subjected to cold annealing for 400 ° C, 500 ° C, and annealing time for 10 seconds at RH have developed a recrystallized texture which is beneficial for improvement of elongation and rhythm. It exhibits better characteristics than the comparative material that does not satisfy the above manufacturing conditions. Moreover, it turns out that the characteristic is improved compared with the hot-rolled annealing material (sample Q) which is normal manufacturing conditions. Therefore, by omitting hot annealing, it was possible to manufacture STS409L steel with low manufacturing cost and excellent elongation and deformability.

상술한 바와 같이, 본 발명에 의하면, 연신율 및 리찡성 개선에 유익한 재결정집합조직이 발달하여 연신율이 39% 이상, 리찡 높이가 20mm 이하로 상기 제조조건을 만족시키지 않는 비교재에 비해 양호한 효과를 나타낸다.As described above, according to the present invention, the recrystallized aggregates, which are beneficial for the improvement of elongation and rhythm, are developed, which shows a good effect compared to the comparative material which does not satisfy the above manufacturing conditions with elongation of 39% or more and ridgeal height of 20 mm or less. .

또한 통상의 제조조건인 열연소둔처리재 보다도 특성이 개선된 효과를 얻을 수 있다.In addition, it is possible to obtain an effect of improved characteristics over the hot-rolled annealing material which is a normal manufacturing condition.

또한, 본 발명의 제조방법에 의하여 열연소둔을 생략함으로써 제조원가가 저렴하고, 연신율 및 내리찡성이 우수한 STS409L강을 제조 가능하였다.In addition, by omitting the hot-rolled annealing according to the production method of the present invention, it was possible to manufacture STS409L steel with low manufacturing cost and excellent elongation and deformability.

Claims (1)

중량 %로 C; 0.01% 이하, Si:1.0% 이하 , Mn:1% 이하, P: 0.035 이하, S: 0.03 이하, Cr:10 ~ 12%, Mo: 0.1% 이하, N: 0.01% 이하, Cu: 0.1% 이하, Al: 0.1% 이하, Ni: 0.2% 이하, Ti: 0.3% 이하 나머지 Fe 및 불가피하게 첨가되는 불순물로 조성되고, C+N: 0.015% 이하, 10≤Ti/(C+N)비≤15를 만족하는 조성의 강을,C by weight; 0.01% or less, Si: 1.0% or less, Mn: 1% or less, P: 0.035 or less, S: 0.03 or less, Cr: 10-12%, Mo: 0.1% or less, N: 0.01% or less, Cu: 0.1% or less , Al: 0.1% or less, Ni: 0.2% or less, Ti: 0.3% or less, composed of remaining Fe and inevitable impurities, C + N: 0.015% or less, 10≤Ti / (C + N) ratio≤15 Steel of the composition to satisfy 연주 스라브 내에 등축정율이 70% 이상이 되게 제조된 스라브을 가열온도 1200℃ 이하, 마무리 압연온도가 800℃ 이하가 되게 열간압연하여 열연소둔을 생략하여 산세하는 단계;Hot-rolling the slab manufactured to have an equiaxed crystallinity of 70% or more in the playing slab to a heating temperature of 1200 ° C. or lower and a finishing rolling temperature of 800 ° C. or lower so as to omit hot rolling annealing; 또한 냉간압하율 85% 이상으로 냉간압연한 후에 냉연판온도 기준 1000℃이상~1100℃이하에서 승온속도 400(℃/sec.) 이상으로 급속가열하여 이 온도 범위내에서 5초 이상 ~ 15초 이하로 냉연소둔을 실시하는 단계;In addition, after cold rolling at 85% or more of cold rolling reduction rate, it is rapidly heated to 400 (℃ / sec.) Or higher at a heating rate of 1000 ℃ ~ 1100 ℃ based on the cold rolling plate temperature, and then 5 seconds or more and 15 seconds or less within this temperature range. Performing cold rolling annealing; 로 이루어진 것을 특징으로 하는 연신율이 높고, 내리찡성이 우수한 페라이트계 스테인리스강의 제조방법.A high elongation, characterized in that made of a ferritic stainless steel manufacturing method excellent.
KR1020010080132A 2001-12-17 2001-12-17 method for manufacturing the ferritic stainless steel sheet with a good elongation and execllent anti-ridging KR100570892B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010080132A KR100570892B1 (en) 2001-12-17 2001-12-17 method for manufacturing the ferritic stainless steel sheet with a good elongation and execllent anti-ridging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010080132A KR100570892B1 (en) 2001-12-17 2001-12-17 method for manufacturing the ferritic stainless steel sheet with a good elongation and execllent anti-ridging

Publications (2)

Publication Number Publication Date
KR20030049812A true KR20030049812A (en) 2003-06-25
KR100570892B1 KR100570892B1 (en) 2006-04-12

Family

ID=29575604

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010080132A KR100570892B1 (en) 2001-12-17 2001-12-17 method for manufacturing the ferritic stainless steel sheet with a good elongation and execllent anti-ridging

Country Status (1)

Country Link
KR (1) KR100570892B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101049012B1 (en) * 2003-12-18 2011-07-12 주식회사 포스코 Manufacturing method of 409L ferritic stainless steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3270137B2 (en) * 1992-08-26 2002-04-02 日新製鋼株式会社 Method for producing ferritic stainless steel sheet excellent in surface properties, ridging property and workability
KR950009169B1 (en) * 1993-07-02 1995-08-16 포항종합제철주식회사 Making method of ferrite stainless steel plate
JP3721640B2 (en) * 1996-06-28 2005-11-30 Jfeスチール株式会社 Manufacturing method of ferritic stainless steel sheet with excellent workability
KR100347572B1 (en) * 1997-12-27 2002-10-25 주식회사 포스코 Method for preparing stainless cold rolled steel by using hot rolled non-annealing materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101049012B1 (en) * 2003-12-18 2011-07-12 주식회사 포스코 Manufacturing method of 409L ferritic stainless steel

Also Published As

Publication number Publication date
KR100570892B1 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
US6458221B1 (en) Ferritic stainless steel plate
KR100799240B1 (en) A ferritic stainless steel sheet good of workability and a manufacturing method thereof
JP3292671B2 (en) Hot-rolled steel strip for cold-rolled steel sheet with good deep drawability and aging resistance
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
WO2009008548A1 (en) Process for producing high-strength cold rolled steel sheet with low yield strength and with less material quality fluctuation
JP7524354B2 (en) Zinc electroplated ultra-high strength dual-phase steel with delayed fracture resistance and method of manufacturing same
KR101813914B1 (en) High-strength steel sheet having small planar anisotropy of elongation and method for producing the same
JP4214671B2 (en) Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
JP5365181B2 (en) Steel sheet and manufacturing method thereof
JP5151390B2 (en) High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
KR100570892B1 (en) method for manufacturing the ferritic stainless steel sheet with a good elongation and execllent anti-ridging
KR101630548B1 (en) Hot rolled steel sheet used as material for cold rolling and method for producing the same
JP2023547090A (en) High-strength steel plate with excellent thermal stability and its manufacturing method
JPS61272321A (en) Manufacture of ultra high-strength cold rolled steel sheet
KR101035767B1 (en) Hot-rolled steel sheet with good formability, and method for producing the same
KR101316907B1 (en) Ferritic stainless steel and method for manufacturing the same
KR100986844B1 (en) Method for manufacturing the ferritic stainless steel having the good formability
JP4562281B2 (en) Ferritic stainless steel sheet with excellent workability and method for producing the same
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
KR101528014B1 (en) Cold-rolled steel plate and method for producing same
KR20190022127A (en) Ferritic stainless steel with improved impact toughness at low temperature and method of manufacturing the same
JP2007284771A (en) Cr-containing steel sheet having excellent shape-fixability and production method therefor
JPH0353025A (en) Manufacture of high heat-resistant and high-corrosion resistant ferritic stainless steel sheet
KR20230059478A (en) Ferritic stainless hot-rolled steel plate excellent in formability and method for production thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120307

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130401

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160405

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170404

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190409

Year of fee payment: 14