KR20030049703A - Manufacturing process of nickel-plated carbon fibers by electroplating method - Google Patents

Manufacturing process of nickel-plated carbon fibers by electroplating method Download PDF

Info

Publication number
KR20030049703A
KR20030049703A KR1020010080001A KR20010080001A KR20030049703A KR 20030049703 A KR20030049703 A KR 20030049703A KR 1020010080001 A KR1020010080001 A KR 1020010080001A KR 20010080001 A KR20010080001 A KR 20010080001A KR 20030049703 A KR20030049703 A KR 20030049703A
Authority
KR
South Korea
Prior art keywords
nickel
carbon fiber
nickel plating
current
plated carbon
Prior art date
Application number
KR1020010080001A
Other languages
Korean (ko)
Other versions
KR100572995B1 (en
Inventor
박수진
이재락
장유신
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020010080001A priority Critical patent/KR100572995B1/en
Publication of KR20030049703A publication Critical patent/KR20030049703A/en
Application granted granted Critical
Publication of KR100572995B1 publication Critical patent/KR100572995B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/20Industrial for civil engineering, e.g. geotextiles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2507/00Sport; Military

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE: A method of preparing nickel-plated carbon fiber by electroplating is provided to make the carbon fiber exert higher surface energy, and when added to a resin matrix, be well adhered to the matrix with improved interlaminar shear strength, impact strength and ductility. CONSTITUTION: In a method of preparing nickel-plated carbon fiber, carbon fiber is disposed between nickel anode and cathode bar in a nickel plating electrolytic solution, and current is applied to between the nickel anode and the cathode bar. The nickel plating electrolytic solution contains 30-210g/l of NiSO4, 30-100g/l of NiCl2, and 30-40g/l of H3BO3. The current application is made at current density of 5-80A/m2 for 10-60 seconds.

Description

전해도금법에 의한 니켈 도금된 탄소섬유의 제조 방법{MANUFACTURING PROCESS OF NICKEL-PLATED CARBON FIBERS BY ELECTROPLATING METHOD}MANUFACTURING PROCESS OF NICKEL-PLATED CARBON FIBERS BY ELECTROPLATING METHOD}

본 발명은 탄소섬유를 이용한 고분자 복합재료에서 섬유와 매트릭스간의 계면 결합력을 증가시키기 위하여 일반 탄소섬유에 전해니켈 도금 표면처리한 고강도 탄소섬유 및 그에 의해 제조된 고강도 탄소섬유의 제조방법에 관한 것이다.The present invention relates to a high-strength carbon fiber electrolytic nickel-plated surface treatment on a general carbon fiber in order to increase the interfacial bonding force between the fiber and the matrix in the polymer composite material using the carbon fiber, and a method for producing the high-strength carbon fiber produced thereby.

항공·우주산업의 발달과 더불어 급속하게 개발되기 시작한 탄소섬유 강화 복합재료는 오늘날 항공·우주산업뿐만 아니라 전기·전자 재료, 토목·건축 재료, 자동차, 선박, 군사장비, 스포츠용품 등 다양한 분야에서 사용되고 있는 첨단 소재중의 한가지이다.Carbon fiber-reinforced composites, which began to develop rapidly with the development of the aviation and aerospace industry, are used today in various fields such as electric and electronic materials, civil engineering and building materials, automobiles, ships, military equipment, and sporting goods as well as in the aerospace and aerospace industry. It is one of the high-tech materials.

이러한 강화재(reinforcing material)로서의 탄소섬유는 최종 열처리온도에 의해 그 종류가 나누어지는데 일반적으로 열처리 온도가 증가할수록 계면결합력은 감소하는 경향을 보이는데 이는 열처리 온도가 증가할수록 결정구조가 완벽해져 표면에너지가 낮아지기 때문이다. 또한 열처리온도가 1000∼1500℃까지 가열하여 탄화시킨 고강도 탄소섬유는 일반적으로 크로멘(chromene)이나 파이론(pyrone)과 같은 염기성 관능기를 가지거나 탄소원자 차체가 루이스(Lewis) 염기성을 띠게 된다고 알려져 있다. 따라서 탄소섬유의 계면결합력은 섬유의 표면적을 늘려 더 많은 접촉점을 제공하거나 섬유와 수지사이의 물리화학적 상호작용을 증가시킴으로써 향상될 수 있다.Carbon fiber as a reinforcing material is divided by the final heat treatment temperature. In general, as the heat treatment temperature increases, the interfacial bond strength tends to decrease. As the heat treatment temperature increases, the crystal structure becomes perfect and the surface energy decreases. Because. In addition, high-strength carbon fibers carbonized by heating to a temperature of 1000 to 1500 ° C. generally have basic functional groups such as chromene and pyrone, or carbon atom bodies are known to have Lewis basicity. . Thus, the interfacial bonding strength of carbon fibers can be improved by increasing the surface area of the fibers to provide more contact points or by increasing the physicochemical interaction between the fibers and the resin.

이와 같은 계면결합력을 향상시키기 위한 탄소섬유의 표면처리 방법들이 기존에 많이 연구되어 왔다. 탄소섬유의 표면처리는 크게 기상산화, 액상산화, 전기화학적 산화 등을 들 수 있는데, 기상산화(플라즈마 처리)는 공정이 간단하고 부산물이 거의 없으며 섬유자체 물성의 손상이 가장 적은 방법으로 최근에 널리 행해지는 표면처리 방법이지만(논문[A. Bismarck et al,J. Colloid Interface Sci. 210, 60 (1999)] 참조), 고비용의 단점이 있다. 한편, 액체를 이용한 산화법은 기상처리법에 비해 에칭(etching)효과가 적으며 계면결합력을 향상시키는데 효과적이며(논문[S. J. Park et al,J. Colloid Interface Sci. 228, 287 (2000)] 참조), 전기화학적 처리방법은 산성이나 염기성 수용액에서 섬유표면을 전기화학적으로 산화시키는 것으로 연속공정이 가능하므로 상업적으로 선호되는 공정이다 (한국화학연구원의 한국 특허 출원 제1999-17131호 참조).In order to improve such interfacial bonding force, carbon fiber surface treatment methods have been studied in the past. The surface treatment of carbon fiber can be classified into gas phase oxidation, liquid phase oxidation, and electrochemical oxidation. Gas phase oxidation (plasma treatment) has been widely used in recent years. Although the surface treatment method is performed (see paper A. Bismarck et al, J. Colloid Interface Sci. 210 , 60 (1999)), there is a disadvantage of high cost. On the other hand, the liquid oxidation method is less effective than the gas phase treatment (etching) effect and effective in improving the interfacial bonding force (see SJ Park et al, J. Colloid Interface Sci. 228 , 287 (2000)), The electrochemical treatment method is a commercially preferred process because the continuous process is possible by electrochemically oxidizing the fiber surface in an acidic or basic aqueous solution (see Korean Patent Application No. 1999-17131 by the Korea Research Institute of Chemical Research).

종래에는, 주로 산, 염기성 전해용액을 이용한 전기화학적 산화방법이나 기상산화 방법을 사용하여 탄소섬유를 표면 처리하였다. 이 경우에는 탄소섬유 표면자체를 손상시키게 되며, 그로 인한 매트릭스 수지와의 계면결합력이 감소하는 문제점이 발생하였다.Conventionally, carbon fibers have been surface treated mainly by electrochemical oxidation or vapor phase oxidation using acid and basic electrolytic solutions. In this case, the carbon fiber surface itself is damaged, thereby causing a problem in that the interfacial bonding force with the matrix resin is reduced.

따라서, 본 발명의 목적은 산화 표면 처리법을 사용하지 않고, 비산화적방법인 전해 니켈 도금 처리를 함으로써 산소 관능기뿐 아니라 금속 니켈을 섬유 표면에 도입시켜 매트릭스 수지와의 계면결합력이 우수한 고성능 탄소섬유를 제공하고자 하는 것으로, 니켈도금용액을 사용하여 비교적 낮은 전류밀도를 인가하여 전해니켈도금 처리함으로써 그러한 목적을 달성할 수 있음을 알고 본 발명을 완성하게되었다.Accordingly, an object of the present invention is to provide a high-performance carbon fiber excellent in interfacial bonding force with the matrix resin by introducing not only oxygen functional groups but also metal nickel onto the fiber surface by performing electrolytic nickel plating treatment, which is a non-oxidative method, without using an oxidized surface treatment method. The present invention has been accomplished by knowing that such an object can be achieved by electrolytic nickel plating by applying a relatively low current density using a nickel plating solution.

도 1은 본 발명에 따른 전해 니켈도금법에 의한 탄소섬유의 표면처리 장치를 나타낸 도면이고,1 is a view showing a surface treatment apparatus of carbon fiber by the electrolytic nickel plating method according to the present invention,

도 2는 본 발명의 실시예 1, 2, 3 및 4에 따른 전해 니켈도금된 탄소섬유/에폭시 복합재료의 층간전단강도를 미처리 탄소섬유/에폭시 복합재료의 경우와 비교하여 나타낸 도면이며,2 is a diagram showing the interlaminar shear strength of the electrolytic nickel plated carbon fiber / epoxy composite material according to Examples 1, 2, 3, and 4 of the present invention in comparison with the case of untreated carbon fiber / epoxy composite material,

도 3은 본 발명의 실시예 5, 6 및 7에 따른 전해 니켈도금된 탄소섬유/에폭시 복합재료의 층간전단강도를 미처리 탄소섬유/에폭시 복합재료의 경우와 비교하여 나타낸 도면이다.3 is a diagram showing the interlaminar shear strength of the electrolytic nickel plated carbon fiber / epoxy composite material according to Examples 5, 6, and 7 of the present invention in comparison with that of the untreated carbon fiber / epoxy composite material.

* 도면의 주요 부분의 부호에 대한 설명* Explanation of the symbols of the main parts of the drawings

1: 탄소섬유2: 니켈 도금조 3: 세척조1: carbon fiber 2: nickel plating bath 3: washing bath

4: 음극 로울러 5: 양극 니켈판6: 건조기4: cathode roller 5: anode nickel plate 6: dryer

7: 권취(take-up) 모터7: take-up motor

상기 목적을 달성하기 위해, 본 발명은 니켈 도금용 전해질 용액 중에서 니켈 양극과 음극봉 사이에 탄소섬유를 놓고, 상기 니켈 양극과 음극봉 간에 전류를 인가함으로써 탄소섬유를 니켈로 도금하는 것을 포함하는, 니켈 도금된 탄소섬유의 제조 방법을 제공한다.In order to achieve the above object, the present invention includes placing a carbon fiber between the nickel anode and the cathode rod in the nickel plating electrolyte solution, and plating the carbon fiber with nickel by applying a current between the nickel anode and the cathode rod, Provided is a method for producing nickel plated carbon fibers.

또한, 본 발명은 상기 방법에 의해 제조된 니켈 도금된 탄소섬유를 제공한다.The present invention also provides a nickel plated carbon fiber produced by the above method.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 방법의 특징은 탄소 섬유를 비산화방법에 의해 표면처리하여 니켈도금 하는 것으로서, 이는 탄소섬유 표면을 거의 에칭시키지 않으면서 매트릭스 수지와의 계면결합력을 향상시키는데 효과적일 뿐만 아니라 양극 산화처럼 연속공정이 가능하여 상업적으로도 유용할 수 있는 공정이다.A feature of the method of the present invention is that the carbon fiber is nickel plated by surface treatment by a non-oxidation method, which is effective in improving the interfacial bonding force with the matrix resin with almost no etching of the carbon fiber surface and is continuous as anodization. It is a process that can be commercially useful because it is possible.

본 발명의 방법은 니켈 전해도금욕 중에 탄소 섬유를 놓고 전압을 인가함으로써 탄소섬유를 전해도금하여 탄소섬유 표면에 니켈을 도입하여 수지 매트릭스와의 결합력을 향상시켜 복합재료의 물성을 향상시킬 수 있는 개선된 고성능 탄소섬유 제법이다.The method of the present invention improves the physical properties of the composite material by improving the bonding strength with the resin matrix by introducing carbon into the surface of the carbon fiber by electroplating the carbon fiber by placing the carbon fiber in a nickel electroplating bath and applying a voltage. It is a high performance carbon fiber manufacturing method.

본 발명의 방법은 외부 전원, 니켈 도금욕, 그리고 니켈 판을 사용하여 도 1에서 도시한 공정에서와 같이 수행된다.The method of the present invention is performed as in the process shown in FIG. 1 using an external power source, a nickel plating bath, and a nickel plate.

본 발명에 따른 니켈도금욕에 있어서, 사용될 수 있는 전해 니켈도금용액은 바람직하게는 황산니켈(NiSO4), 염화니켈(NiCl2) 및 붕산(H3BO3)을 주성분으로 포함한다.In the nickel plating bath according to the present invention, the electrolytic nickel plating solution that can be used preferably contains nickel sulfate (NiSO 4 ), nickel chloride (NiCl 2 ) and boric acid (H 3 BO 3 ) as main components.

상기 도금액에서 황산니켈의 역할은 욕 중에 니켈 이온을 공급하는 것이다. 니켈 이온의 공급원으로서는 염화니켈을 사용해도 좋으나 염화물은 니켈 도금의 내부 응력을 높이기 때문에 황산니켈을 니켈 이온의 주 공급원으로 하는 것이 바람직하다. 황산니켈의 농도는 30 내지 210 g/l인 것이 바람직하다. 도금욕 중의 니켈 이온 농도가 높을수록 대전류 밀도의 사용이 가능해지고 낮으면 그 반대가 된다. 그러나 너무 고농도로 하면 욕의 점도가 높아지고 피트를 발생시키기 쉽게 된다.The role of nickel sulfate in the plating solution is to supply nickel ions in the bath. Although nickel chloride may be used as a source of nickel ions, it is preferable to use nickel sulfate as the main source of nickel ions because chloride increases internal stress of nickel plating. The concentration of nickel sulfate is preferably 30 to 210 g / l. The higher the nickel ion concentration in the plating bath, the higher the current density can be used, and the lower the reverse. Too high a concentration, however, will make the bath more viscous and prone to pits.

본 발명에 사용되는 전해 니켈도금 용액에 염화니켈을 가하는 목적은 욕 중의 염소이온을 공급하기 위한 것이며 동시에 니켈 이온도 공급이 된다. 염화니켈의 농도는 30 내지 100 g/l인 것이 바람직하다. 염소 이온은 니켈의 양극 용해에 불가결한 성분이며, 너무 낮은 농도는 양극의 니켈이 부동태화되어 불용화되는 것을 방지하지 못하며, 너무 높은 농도는 도금막의 내부응력을 높여서 바람직하지 못하다.The purpose of adding nickel chloride to the electrolytic nickel plating solution used in the present invention is to supply chlorine ions in the bath and at the same time nickel ions are also supplied. The concentration of nickel chloride is preferably 30 to 100 g / l. Chlorine ions are an indispensable component for the anode dissolution of nickel, and too low a concentration does not prevent the nickel of the anode from passivating and insolubilizing, and too high a concentration increases the internal stress of the plating film, which is not preferable.

또한, 붕산은 니켈 도금용액에 있어서 pH 완충제로서 중요한 역할을 한다. 음극의 반응은 주로 니켈 도금 반응이나 음극 전류 효율은 100%가 아니고 많거나 적거나 수소의 동시 발생이 일어나는데, 그 결과 특히 고전류 밀도 부분에서는 수소 이온의 소모가 심하고 음극에 접근된 음극막 내의 pH가 어떤 한계치를 넘으면수산화니켈의 침전이 생기게 된다. 이것이 니켈과 공석됨으로써 도금은 소손의 현상을 나타내고 이미 정상적인 석출물은 얻을 수 없다. 이 현상은 전류 밀도가 어떤 한계치를 넘으면 일어나고 그로부터는 전류 효율이 급속히 감소된다. 그러나, 전형적 약산인 붕산을 가한 욕에서는 음극막 내의 pH가 상승되어도 붕산에서 H+을 공급하기 때문에 pH의 상승을 막고 한계 전류 밀도를 높일 수 있다. 이와 같이 음극막 내의 pH 상승이 억제되는 것과 동시에 붕산의 존재에 의해 욕 전체의 pH 변동이 완충된다. 따라서, 붕산의 농도는 30 내지 40 g/l인 것이 바람직하다. 너무 낮은 농도에서는 pH 완충역할을 하지 못하게 되며 40 g/l이상의 농도에서는 용해되지 않아 침전물로 존재하기 때문에 바람직하지 않다.Boric acid also plays an important role as a pH buffer in nickel plating solutions. The reaction of the cathode is mainly nickel plating, but the cathode current efficiency is not 100%, but the generation of hydrogen is more or less, and consequently the hydrogen is consumed at high current density, and the pH in the cathode membrane approaching the cathode is high. Exceeding certain limits results in precipitation of nickel hydroxide. Since it is vaccinated with nickel, plating shows the phenomenon of burnout, and a normal precipitate cannot be obtained already. This phenomenon occurs when the current density exceeds a certain threshold, from which the current efficiency rapidly decreases. However, in a bath to which a typical weak acid boric acid is added, boric acid is supplied with H + even if the pH in the negative electrode film is increased, thereby preventing the increase in pH and increasing the limit current density. As such, the increase in pH in the cathode membrane is suppressed, and the pH variation of the entire bath is buffered by the presence of boric acid. Therefore, the concentration of boric acid is preferably 30 to 40 g / l. Too low a concentration will not play a pH buffer and at a concentration above 40 g / l it is not desirable because it is present as a precipitate.

본 발명에 있어서, 상기 도금용액을 이용한 도금욕에서의 도금 전류밀도는 5 내지 80 A/m2가 바람직하다. 5 A/m2미만에서는 음극에서 방출되는 전자 및 양극에서 산화되어 나오는 니켈이온의 농도가 낮은 관계로 탄소섬유 표면에 생성되는 금속 니켈 양이 적기 때문에 바람직하지 못하며, 80 A/m2를 초과하면 다량으로 해리되어 나온 니켈이온이 탄소섬유 표면에 피트를 발생시킴으로 인한 매트릭스 수지와의 계면결합력이 감소하는 현상을 유발하기 때문에 바람직하지 못하다.In the present invention, the plating current density in the plating bath using the plating solution is preferably 5 to 80 A / m 2 . If it is less than 5 A / m 2 mothamyeo the concentration of the nickel ion is oxidized from the electron and the positive electrode that are emitted from the cathode not preferable because there is little metal nickel amount is generated in the carbon fiber surface with a lower relationship, exceeds 80 A / m 2 Nickel ions that have been dissociated in large amounts are undesirable because they cause a decrease in interfacial bonding force with the matrix resin due to pits on the carbon fiber surface.

본 발명에 따른 전해도금시 전류는 10 내지 60 초 동안 인가하는 것이 바람직하다. 10초 미만에서는 음극에서 방출되는 전자 및 양극에서 산화되어 나오는 니켈이온의 농도가 낮은 관계로 탄소섬유 표면에 생성되는 니켈의 양이 적기 때문에 바람직하지 못하며, 60초를 초과하면 다량으로 해리되어 나온 니켈이온이 탄소섬유 표면에 피트(pit)를 발생시키고, 이로 인해 매트릭스 수지와의 계면결합력이 감소하는 현상을 유발하기 때문에 바람직하지 못하다.In the electroplating according to the present invention, the current is preferably applied for 10 to 60 seconds. Less than 10 seconds is not preferable because the amount of nickel generated on the surface of the carbon fiber is low due to the low concentration of nickel ions oxidized at the cathode and the electron emitted from the cathode, and a large amount of dissociated nickel after 60 seconds It is undesirable because the ions generate a pit on the surface of the carbon fiber, which leads to a decrease in the interfacial bonding force with the matrix resin.

본 발명에 따라 니켈 도금된 탄소섬유는 섬유상의 니켈의 양이 약 3 내지 약 50 mg/g 범위인 것이 적절하다.Nickel-plated carbon fibers according to the present invention preferably have an amount of nickel on the fiber ranging from about 3 to about 50 mg / g.

본 발명의 하기 실시예는 본 발명을 보다 명확히 이해하기 위한 것으로 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다.The following examples of the present invention are intended to more clearly understand the present invention and are for illustrative purposes only and are not intended to limit the scope of the invention.

[실시예 1]Example 1

1) 탄소섬유의 표면처리1) Surface treatment of carbon fiber

한국 태광산업(주)의 고강도 PAN계 탄소섬유 TZ-307 제품을 수지에 대한 강화재로 사용하고, 니켈도금용액으로 NiSO4·6H2O 50 g/l, NiCl2·6H2O 40 g/l, H3BO330 g/l 도금용액을 사용하여, 도 1에 도시한 공정에 따라 상기 탄소섬유 제품을 60초동안 5 A/m2의 전류밀도로 전해 니켈도금 표면처리하여, 니켈 도금된 탄소섬유를 수득하였다.High strength PAN-based carbon fiber TZ-307 of Korea Taekwang Industrial Co., Ltd. is used as a reinforcing material for resin, and NiSO 4 · 6H 2 O 50 g / l, NiCl 2 · 6H 2 O 40 g / l as nickel plating solution , By using a 30 g / l plating solution of H 3 BO 3 , electrolytic nickel plating surface treatment of the carbon fiber product at a current density of 5 A / m 2 for 60 seconds according to the process shown in Figure 1, Carbon fibers were obtained.

2) 복합재료에 대한 시험2) Test for Composite Material

상기 1)에서와 같이 표면 처리된 탄소섬유를 속슬레 장치를 이용하여 아세톤(acetone)으로 2시간동안 세척한 후 건조시켰다. 이어서 수지 매트릭스로서의 한국 국도화학(주)의 비스페놀 A의 디글리시딜에테르(DGEBA, YD-128)계 에폭시 수지와 경화제로서의 동일 회사의 제품인 디아미노디페닐메탄(DDM)의 혼합물에, 상기 탄소섬유를 혼합하였다. 이때 에폭시 수지는 일방향 프리프레그(prepreg) 제조시 작업의 편리함과 수지가 탄소섬유 속으로 함침되는 것이 원활하도록 에틸메틸케톤(MEK)으로 희석하여 사용하였다. 일방향 프리프레그를 적층하고, 적층된 프리프레그를 열압착기를 이용하여 진공분위기 하에서 압력과 열에 의해서 상기 수지 혼련물을 성형하였다. 이때 경화조건은 7.35 MPa의 압력을 가함과 동시에 150℃에서 2시간 30분 동안 경화시켰으며, 최종 경화물의 섬유 부피%는 50%(±2%)으로 조절하였다.The carbon fibers surface-treated as in 1) were washed with acetone for 2 hours using a Soxhlet apparatus and dried. Subsequently, a mixture of diglycidyl ether (DGEBA, YD-128) epoxy resin of Bisphenol A of Kukdo Chemical Co., Ltd. as a resin matrix and diaminodiphenylmethane (DDM), a product of the same company as a curing agent, was used. The fibers were mixed. At this time, the epoxy resin was diluted with ethyl methyl ketone (MEK) so as to facilitate the operation of the unidirectional prepreg and the resin to be impregnated into the carbon fiber. One-way prepreg was laminated, and the resin mixture was molded by pressure and heat under vacuum atmosphere using the laminated prepreg using a thermocompressor. At this time, the curing conditions were cured for 2 hours and 30 minutes at 150 ℃ while applying a pressure of 7.35 MPa, the fiber volume% of the final cured product was adjusted to 50% (± 2%).

상기와 같이 하여 얻어진 탄소섬유 표면의 화학 조성비는 표 1에, 그리고 복합재료의 기계적 특성은 도 2에 나타내었다.The chemical composition ratio of the carbon fiber surface obtained as described above is shown in Table 1, and the mechanical properties of the composite material are shown in FIG.

[실시예 2]Example 2

실시예 1에서와 동일한 공정을 수행하되, NiSO4·6H2O 150 g/l, NiCl2·6H2O 40 g/l, 및 H3BO330 g/l을 포함하는 전해 니켈 도금용액을 사용하여 탄소섬유를 60초동안 10 A/m2의 전류밀도로 전해 니켈 도금 표면처리 하였다.The same process as in Example 1 was carried out, except that an electrolytic nickel plating solution containing 150 g / l NiSO 4 · 6H 2 O, 40 g / l NiCl 2 · 6H 2 O, and 30 g / l H 3 BO 3 was prepared. The carbon fiber was subjected to electrolytic nickel plating surface treatment at a current density of 10 A / m 2 for 60 seconds.

이렇게 하여 얻어진 탄소섬유 표면의 화학 조성비는 표 1에, 그리고 복합재료의 기계적 특성은 도 2에 나타내었다.The chemical composition ratio of the carbon fiber surface thus obtained is shown in Table 1, and the mechanical properties of the composite material are shown in FIG.

[실시예 3]Example 3

실시예 1에서와 동일한 공정을 수행하되, NiSO4·6H2O 250 g/l, NiCl2·6H2O 40 g/l, 및 H3BO330 g/l을 함유하는 전해 니켈 도금용액을 사용하여 탄소섬유를 40초동안 20 A/m2의 전류밀도로 전해 니켈 도금 표면처리하였다.The same process as in Example 1 was conducted, except that an electrolytic nickel plating solution containing 250 g / l NiSO 4 · 6H 2 O, 40 g / l NiCl 2 · 6H 2 O, and 30 g / l H 3 BO 3 was prepared. The carbon fiber was subjected to electrolytic nickel plating surface treatment at a current density of 20 A / m 2 for 40 seconds.

이렇게 하여 얻어진 탄소섬유 표면의 화학 조성비는 표 1에, 그리고 복합재료의 기계적 특성은 도 2에 나타내었다.The chemical composition ratio of the carbon fiber surface thus obtained is shown in Table 1, and the mechanical properties of the composite material are shown in FIG.

[실시예 4]Example 4

실시예 1에서와 동일한 공정을 수행하되, NiSO4·6H2O 350 g/l, NiCl2·6H2O 40 g/l, 및 H3BO330 g/l을 포함하는 전해 니켈 도금용액을 사용하여 탄소섬유를 40초동안 40 A/m2의 전류밀도로 전해 니켈 도금 표면처리하였다.The same process as in Example 1 was carried out, except that an electrolytic nickel plating solution comprising 350 g / l NiSO 4 · 6H 2 O, 40 g / l NiCl 2 · 6H 2 O, and 30 g / l H 3 BO 3 was prepared. The carbon fiber was subjected to electrolytic nickel plating surface treatment at a current density of 40 A / m 2 for 40 seconds.

이렇게 하여 얻어진 탄소섬유 표면의 화학 조성비는 표 1에, 그리고 복합재료의 기계적 특성은 도 2에 나타내었다.The chemical composition ratio of the carbon fiber surface thus obtained is shown in Table 1, and the mechanical properties of the composite material are shown in FIG.

[실시예 5]Example 5

실시예 1에서와 동일하게 수행하되, NiSO4·6H2O 150 g/l, NiCl2·6H2O 40 g/l, 및 H3BO330 g/l를 함유하는 전해 니켈 도금용액을 사용하여 탄소섬유를 20초동안 60 A/m2의 전류밀도로 전해 니켈 도금 표면처리하였다.Perform the same procedure as in Example 1, but using an electrolytic nickel plating solution containing 150 g / l NiSO 4 · 6H 2 O, 40 g / l NiCl 2 · 6H 2 O, and 30 g / l H 3 BO 3 The carbon fiber was subjected to electrolytic nickel plating surface treatment at a current density of 60 A / m 2 for 20 seconds.

이렇게 하여 얻어진 탄소섬유 표면의 화학 조성비는 표 1에, 그리고 복합재료의 기계적 특성은 도 3에 나타내었다.The chemical composition ratio of the carbon fiber surface thus obtained is shown in Table 1, and the mechanical properties of the composite material are shown in FIG.

[실시예 6]Example 6

실시예 1에서와 동일하게 수행하되, NiSO4·6H2O 250 g/l, NiCl2·6H2O 40 g/l, 및 H3BO330 g/l을 포함하는 전해 니켈 도금용액을 사용하여 탄소섬유를 20초동안 80 A/m2의 전류밀도로 전해 니켈 도금 표면처리하였다.Perform the same as in Example 1, but using an electrolytic nickel plating solution containing 250 g / l NiSO 4 · 6H 2 O, 40 g / l NiCl 2 · 6H 2 O, and 30 g / l H 3 BO 3 The carbon fiber was subjected to electrolytic nickel plating surface treatment at a current density of 80 A / m 2 for 20 seconds.

이렇게 하여 얻어진 탄소섬유 표면의 화학 조성비는 표 1에, 그리고 복합재료의 기계적 특성은 도 3에 나타내었다.The chemical composition ratio of the carbon fiber surface thus obtained is shown in Table 1, and the mechanical properties of the composite material are shown in FIG.

[실시예 7]Example 7

실시예 1에서와 동일하게 수행하되, NiSO4·6H2O 350 g/l, NiCl2·6H2O 40 g/l, 및 H3BO330 g/l을 포함하는 전해 니켈 도금용액을 사용하여 탄소섬유를 10초동안 80 A/m2의 전류밀도로 전해 니켈 도금 표면처리 하였다.Perform the same as in Example 1, but using an electrolytic nickel plating solution containing 350 g / l NiSO 4 · 6H 2 O, 40 g / l NiCl 2 · 6H 2 O, and 30 g / l H 3 BO 3 The carbon fiber was subjected to electrolytic nickel plating surface treatment at a current density of 80 A / m 2 for 10 seconds.

이렇게 하여 얻어진 탄소섬유 표면의 화학 조성비는 표 1에, 그리고 복합재료의 기계적 특성은 도 3에 나타내었다.The chemical composition ratio of the carbon fiber surface thus obtained is shown in Table 1, and the mechanical properties of the composite material are shown in FIG.

구분division C1s C 1s O1s O 1s N1s N 1s Ni2p Ni 2p Eb (eV)Eb (eV) AT (%)AT (%) Eb (eV)Eb (eV) AT (%)AT (%) Eb (eV)Eb (eV) AT (%)AT (%) Eb (eV)Eb (eV) AT (%)AT (%) 미처리탄소섬유Untreated carbon fiber 284.7284.7 68.868.8 532.6532.6 25.825.8 400.7400.7 0.80.8 857857 00 실시예 1Example 1 284.7284.7 64.464.4 532.5532.5 26.426.4 400.7400.7 0.80.8 857857 3.23.2 실시예 2Example 2 284.7284.7 63.163.1 532.5532.5 27.127.1 400.6400.6 0.80.8 857857 3.83.8 실시예 3Example 3 284.7284.7 62.862.8 532.4532.4 28.028.0 400.6400.6 0.80.8 857857 3.13.1 실시예 4Example 4 284.6284.6 62.062.0 532.6532.6 27.927.9 400.3400.3 0.80.8 857857 4.74.7 실시예 5Example 5 284.8284.8 63.363.3 532.6532.6 26.826.8 400.7400.7 0.80.8 857857 3.13.1 실시예 6Example 6 284.8284.8 62.562.5 532.6532.6 27.627.6 400.7400.7 0.80.8 857857 3.73.7 실시예 7Example 7 284.7284.7 64.364.3 532.4532.4 26.826.8 400.6400.6 0.80.8 857857 3.33.3 *AT: 전체 면적 * AT: total area

표 1, 및 도 2 및 도 3에서 알 수 있듯이, 본 발명의 방법으로 제조한 니켈 도금된 탄소섬유는 일반 탄소섬유의 경우보다 섬유 표면에 높은 산소 관능기가 형성됨과 동시에 금속 니켈이 새롭게 도입되어 표면자유에너지가 향상되었으며, 이로인하여 복합재료의 층간전단강도 (ILSS)를 약 14 내지 35% 향상시켰다.As can be seen from Table 1, and FIGS. 2 and 3, the nickel-plated carbon fiber prepared by the method of the present invention has a high oxygen functional group formed on the surface of the fiber than the conventional carbon fiber, and at the same time, metal nickel is newly introduced to the surface. Free energy has been improved, thereby improving the interlayer shear strength (ILSS) of the composite material by about 14-35%.

본 발명에서 사용한 비산화적 전해 니켈도금 방법은 연속공정이 가능하고, 안정적인 처리가 가능함과 동시에 탄소 섬유표면에 니켈을 도입시킴으로써 탄소섬유가 높은 표면에너지를 가지게되어 수지 매트릭스에 첨가시 매트릭스와 잘 접착되어 우수한 층간전단강도를 발현할 수 있다.The non-oxidative electrolytic nickel plating method used in the present invention is capable of continuous processing, stable processing and at the same time, the carbon fiber has a high surface energy by introducing nickel into the surface of the carbon fiber, and thus it adheres well to the matrix when added to the resin matrix. It can express excellent interlaminar shear strength.

Claims (5)

니켈 도금용 전해질 용액 중에서 니켈 양극과 음극봉 사이에 탄소섬유를 놓고, 상기 니켈 양극과 음극봉 간에 전류를 인가하는 것을 포함하는, 니켈 도금된 탄소섬유의 제조 방법.A method of manufacturing a nickel-plated carbon fiber comprising placing a carbon fiber between the nickel anode and the cathode rod in the electrolyte solution for nickel plating, and applying a current between the nickel anode and the cathode rod. 제 1 항에 있어서,The method of claim 1, 니켈 도금용 전해질 용액이 30 내지 210 g/l의 NiSO4, 30 내지 100 g/l의 NiCl2및 30 내지 40 g/l의 H3BO3를 포함하는 것을 특징으로 하는 방법.The electrolytic solution for nickel plating comprises 30 to 210 g / l NiSO 4 , 30 to 100 g / l NiCl 2 and 30 to 40 g / l H 3 BO 3 . 제 1 항에 있어서,The method of claim 1, 5 내지 80 A/m2의 전류밀도로 전류를 인가하는 것을 특징으로 하는 방법.And applying a current at a current density of 5 to 80 A / m 2 . 제 1 항에 있어서,The method of claim 1, 전류를 10 내지 60 초 동안 인가시키는 것을 특징으로 하는 방법.And applying a current for 10 to 60 seconds. 제 1 항 내지 제 4 항 중의 어느 한 항의 방법에 따라 제조된, 니켈도금된 탄소섬유.A nickel plated carbon fiber prepared according to the method of any one of claims 1 to 4.
KR1020010080001A 2001-12-17 2001-12-17 Manufacturing process of nickel-plated carbon fibers by electroplating method KR100572995B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010080001A KR100572995B1 (en) 2001-12-17 2001-12-17 Manufacturing process of nickel-plated carbon fibers by electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010080001A KR100572995B1 (en) 2001-12-17 2001-12-17 Manufacturing process of nickel-plated carbon fibers by electroplating method

Publications (2)

Publication Number Publication Date
KR20030049703A true KR20030049703A (en) 2003-06-25
KR100572995B1 KR100572995B1 (en) 2006-04-24

Family

ID=29575503

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010080001A KR100572995B1 (en) 2001-12-17 2001-12-17 Manufacturing process of nickel-plated carbon fibers by electroplating method

Country Status (1)

Country Link
KR (1) KR100572995B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907044B1 (en) * 2007-08-13 2009-07-09 울산대학교 산학협력단 Producong method of nano carbon-metal composite powder
CN102995396A (en) * 2012-12-17 2013-03-27 江苏航科复合材料科技有限公司 Metallization treatment method for continuous carbon fiber surface
WO2016010287A1 (en) * 2014-07-17 2016-01-21 (주)크린앤사이언스 Method for plating nonwoven fabric by using continuous electroless and electrolytic plating processes
KR101645944B1 (en) 2016-03-09 2016-08-05 (주)다인스 Metal coated carbon fiber bundle manufacturing process for braid
CN114622400A (en) * 2022-04-12 2022-06-14 武汉纺织大学 Surface modification method for enhancing oxidation resistance and electric heating performance of carbon fiber

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101096531B1 (en) * 2008-06-03 2011-12-20 인하대학교 산학협력단 Manufacturing process of high conductive carbon fibers by metal electroplating method
KR20200082273A (en) 2018-12-28 2020-07-08 (주)다인스 Metal Coated Carbon Fiber And Fabricating Method Thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250495A (en) * 1985-08-28 1987-03-05 Toa Nenryo Kogyo Kk Surface electrolytic treatment device for carbon fiber
EP0431237A1 (en) * 1989-04-12 1991-06-12 American Cyanamid Company Direct deposition of gold on carbon fiber
JP2989039B2 (en) * 1991-07-03 1999-12-13 松谷化学工業株式会社 Processed starch and bakery food using the same
KR100434444B1 (en) * 2001-05-26 2004-06-04 (주)메디텍스 Graded plating method of metal to textile

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907044B1 (en) * 2007-08-13 2009-07-09 울산대학교 산학협력단 Producong method of nano carbon-metal composite powder
CN102995396A (en) * 2012-12-17 2013-03-27 江苏航科复合材料科技有限公司 Metallization treatment method for continuous carbon fiber surface
CN102995396B (en) * 2012-12-17 2014-09-24 江苏航科复合材料科技有限公司 Metallization treatment method for continuous carbon fiber surface
WO2016010287A1 (en) * 2014-07-17 2016-01-21 (주)크린앤사이언스 Method for plating nonwoven fabric by using continuous electroless and electrolytic plating processes
KR101645944B1 (en) 2016-03-09 2016-08-05 (주)다인스 Metal coated carbon fiber bundle manufacturing process for braid
CN114622400A (en) * 2022-04-12 2022-06-14 武汉纺织大学 Surface modification method for enhancing oxidation resistance and electric heating performance of carbon fiber

Also Published As

Publication number Publication date
KR100572995B1 (en) 2006-04-24

Similar Documents

Publication Publication Date Title
Zhang et al. The effect of carbon-fiber surface properties on the electron-beam curing of epoxy-resin composites
Park et al. Effect of acidic anode treatment on carbon fibers for increasing fiber-matrix adhesion and its relationship to interlaminar shear strength of composites
Wu et al. Kevlar fiber–epoxy adhesion and its effect on composite mechanical and fracture properties by plasma and chemical treatment
US3671411A (en) Treatment of carbon or graphite fibers and yarns for use in fiber reinforced composites
He et al. Mixed resin and carbon fibres surface treatment for preparation of carbon fibres composites with good interfacial bonding strength
JP4349118B2 (en) Method for producing sizing-coated carbon fiber
CN112323482B (en) Carbon fiber obtained by electrophoretic deposition-electropolymerization combined modification and resin matrix composite material thereof
CN108504908A (en) A kind of preparation method of carbon nanotube enhanced aluminium-based composite material
KR100572995B1 (en) Manufacturing process of nickel-plated carbon fibers by electroplating method
CN101660185A (en) Method of strong effect carbon fiber anodic oxidation surface treatment
CN109868647A (en) A method of in the layer-by-layer chemical graft graphene oxide of carbon fiber surface
CN108625151A (en) A kind of surface treatment method of high-strength carbon fiber
KR100486962B1 (en) Manufacturing process of nanoscaled nickel-plated carbon fibers by non-electroplating method
CN108330692A (en) A kind of superhigh molecular weight polyethylene fibers substep is modified and its composite material and preparation method thereof
CN107034662A (en) A kind of method of carbon fiber surface modification
WO2019153218A1 (en) Environmentally friendly non-destructive fiber-reinforced composite material recovering method
CN113863001A (en) Carbon fiber surface complexing modification method
KR100317617B1 (en) Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins
Ma et al. Constructing “soft‐stiff” structure on the surface of carbon fiber to enhance the interfacial properties of its epoxy composites
KR101418877B1 (en) Manufacturing method of anodized carbon fibers using acidic liquid electrolytes mixed sulfuric acid and nitric acid
WO2020093503A1 (en) Electrically promoted heterogeneous catalytic device for recovering cfrp and control method thereof
US3865705A (en) Process for modifying the surface characteristics of carbon substrates and composite articles produced from the treated substrates
Yim et al. Influence of oxyfluorination on geometrical pull-out behavior of carbon-fiber-reinforced epoxy matrix composites
JPS6385167A (en) Surface modified carbon fiber and its production
CN115703892A (en) High-performance degradable epoxy resin-carbon fiber composite material and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20050822

Effective date: 20051227

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130412

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140411

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180417

Year of fee payment: 13