KR100907044B1 - Producong method of nano carbon-metal composite powder - Google Patents

Producong method of nano carbon-metal composite powder Download PDF

Info

Publication number
KR100907044B1
KR100907044B1 KR1020070081433A KR20070081433A KR100907044B1 KR 100907044 B1 KR100907044 B1 KR 100907044B1 KR 1020070081433 A KR1020070081433 A KR 1020070081433A KR 20070081433 A KR20070081433 A KR 20070081433A KR 100907044 B1 KR100907044 B1 KR 100907044B1
Authority
KR
South Korea
Prior art keywords
slurry
carbon
metal
composite powder
fluid
Prior art date
Application number
KR1020070081433A
Other languages
Korean (ko)
Other versions
KR20090017023A (en
Inventor
김진천
김지순
권영순
Original Assignee
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단 filed Critical 울산대학교 산학협력단
Priority to KR1020070081433A priority Critical patent/KR100907044B1/en
Publication of KR20090017023A publication Critical patent/KR20090017023A/en
Application granted granted Critical
Publication of KR100907044B1 publication Critical patent/KR100907044B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

본 발명에 따르면, 나노탄소와 유체를 혼합하여 슬러리를 제조하는 슬러리제조단계; 슬러리 내에서 금속선을 전기적으로 폭발시키는 전기폭발단계; 및 슬러리에 함유된 유체를 건조시키는 건조단계를 포함하는 것을 특징으로 하는 나노탄소-금속 복합분말 제조방법이 제공된다. According to the present invention, a slurry manufacturing step of preparing a slurry by mixing a nano-carbon and fluid; An electric explosion step of electrically exploding the metal wire in the slurry; And it provides a nano-carbon composite powder manufacturing method comprising a drying step of drying the fluid contained in the slurry.

이와 같은 나노탄소-금속 복합분말 제조방법에 의하면, 유체내에서 금속선을 폭발시켜, 복합상 역할을 하는 금속 분말의 산화를 원천적으로 억제할 수 있으며, 응집되는 것을 방지하여 나노미터(㎚) 수준의 금속 분말이 형성되도록 할 수 있고, 2성분계 이상의 합금 금속선을 사용하여, 합금 금속 분말을 기지상으로 갖는 나노탄소-금속 복합분말과 이들의 유체를 제조할 수 있는 매우 경제적인 방법이라는 장점을 갖는다.According to the nanocarbon-metal composite powder manufacturing method, the metal wire in the fluid can be exploded, and the oxidation of the metal powder acting as the composite phase can be fundamentally suppressed, and the agglomeration is prevented to prevent the aggregation of nanometer (nm) levels. The metal powder can be formed, and using an alloy metal wire of two or more components, the nanocarbon-metal composite powder having an alloy metal powder on a known phase and a very economical method for producing a fluid thereof can be obtained.

나노 탄소, 탄소 튜브, 탄소 화이버, 금속 분말, 전기 폭발 Nano carbon, carbon tube, carbon fiber, metal powder, electric explosion

Description

나노탄소-금속 복합분말 제조방법{Producong method of nano carbon-metal composite powder}Production method of nano carbon-metal composite powder

본 발명은 나노탄소-금속 복합분말 제조방법에 관한 것으로서, 보다 상세하게는 금속 분말의 산화를 원천적으로 억제할 수 있으며, 금속 분말이 응집되는 것을 방지하여 나노미터(㎚) 수준의 금속 분말이 형성되도록 할 수 있으며, 2성분계 이상의 금속 분말이 경제적으로 나노탄소와 혼합되도록 하는 나노탄소-금속 복합분말 제조방법에 관한 것이다. The present invention relates to a method for manufacturing nanocarbon-metal composite powder, and more particularly, to inhibit the oxidation of metal powders, and to prevent the agglomeration of metal powders to form nanometer (nm) metal powders. The present invention relates to a method for producing nanocarbon-metal composite powder in which two or more metal powders are economically mixed with nanocarbon.

본 발명에서 나노탄소는 탄소나노튜브 및 탄소나노화이버를 포함한다.In the present invention, nano carbon includes carbon nanotubes and carbon nanofibers.

상기 탄소나노튜브는 1개의 탄소원자에 3개의 다른 탄소원자와 결합되어, 육각형 벌집 무늬를 이루면서 속이 빈 튜브(혹은 실린더)와 같은 모양을 갖고 있다. 탄소나노튜브는 탄소 원자의 구조에 따라 금속과 같은 전기적 도체가 되기도 하고 또 반도체가 되기도 한다. 이러한 탄소나노튜브는 전기 전도도가 구리와 비슷하고, 열전도율은 자연계에서 가장 뛰어난 다이아몬드와 같으며, 강도는 철강보다 100배나 뛰어난 것으로 알려져 있다. 탄소 섬유는 1%만 변형시켜도 끊어지는 반면 탄소나노튜브는 15%가 변형되어도 견딜 수 있다.The carbon nanotubes are bonded to three different carbon atoms on one carbon atom, and form a hexagonal honeycomb pattern and have a hollow tube (or cylinder) shape. Carbon nanotubes may be electrical conductors such as metals or semiconductors, depending on the structure of carbon atoms. These carbon nanotubes are similar in electrical conductivity to copper, the thermal conductivity is the same as the most excellent diamond in nature, and is known to be 100 times stronger than steel. Carbon fiber can be broken by only 1% deformation while carbon nanotubes can withstand 15% deformation.

따라서 탄소나노튜브의 합성과 응용에 대한 연구가 활발하게 진행되고 있으며, 반도체와 평판 디스플레이, 배터리, 초강력 섬유, 생체 센서, 텔레비전 브라운관 등 탄소나노튜브를 이용한 장치가 수없이 개발되고 있고, 이들 탄소나노튜브에 이종 물질을 복합화 하는 연구도 활발하게 진행되고 있다.Therefore, research on the synthesis and application of carbon nanotubes is being actively conducted, and numerous devices using carbon nanotubes such as semiconductors, flat panel displays, batteries, super strong fibers, biosensors, and television CRTs have been developed. Research into complexing heterogeneous materials in tubes has also been actively conducted.

탄소나노튜브의 복합화 연구에서는 수 nm에 불과한 탄소나노튜브를 기존의 마이크론 크기의 소재에 금속 재료를 복합화하려는 연구와 탄소나노튜브에 나노층의 금속 및 무기 재료를 코팅하거나 분산시키는 연구들이 활발하게 진행되고 있다.In the research on the composite of carbon nanotubes, researches are being made to composite metal materials with carbon nanotubes, which are only a few nm, into existing micron-sized materials, and studies to coat or disperse nano-layered metal and inorganic materials on carbon nanotubes It is becoming.

이러한 복합화 공정에는 첨가 원소를 직접 탄소나노튜브에 증착하는 기상법, 침전 등의 화학적 반응을 일으키는 액상법, 기계적 합금화와 같은 고상법이 응용되고 있으나, 탄소나노튜브의 낮은 반응성과 나노미터(nm) 크기의 첨가되는 금속 분말과의 혼합 불균일성, 또한 첨가되는 금속 분말의 성장과 산화를 제어하기가 어려워 금속 분말의 입자 크기를 0.1㎛급으로 극미세 하는데 한계가 있다.In such a compounding process, a gas phase method for directly depositing additional elements onto carbon nanotubes, a liquid phase method for causing chemical reactions such as precipitation, and a solid phase method such as mechanical alloying are applied. However, low reactivity and nanometer (nm) size of carbon nanotubes are applied. It is difficult to control the mixing heterogeneity with the metal powder to be added, and the growth and oxidation of the metal powder to be added, so that the particle size of the metal powder is extremely fine to 0.1 µm.

본 발명은 상기의 문제점을 해결하기 위하여 창출된 것으로서, 금속 분말의 산화를 원천적으로 억제할 수 있으며, 금속 분말이 응집되는 것을 방지하여 나노미터(㎚) 수준의 금속 분말이 형성되도록 할 수 있으며, 2성분계 이상의 금속 분말이 경제적으로 나노탄소와 혼합되도록 하는 나노탄소-금속 복합분말 제조방법을 제공하는데 그 목적이 있다. The present invention has been created to solve the above problems, it is possible to fundamentally inhibit the oxidation of the metal powder, it is possible to prevent the agglomeration of the metal powder to form a metal powder of nanometer (nm) level, It is an object of the present invention to provide a method for producing nanocarbon-metal composite powder in which two or more metal powders are economically mixed with nanocarbon.

상기의 목적을 달성하기 위하여,In order to achieve the above object,

본 발명은 나노탄소와 유체를 혼합하여 슬러리를 제조하는 슬러리제조단계; 상기 슬러리 내에서 금속선을 전기적으로 폭발시키는 전기폭발단계; 및 상기 슬러리에 함유된 유체를 건조시키는 건조단계를 포함하는 것을 특징으로 하는 나노탄소-금속 복합분말 제조방법을 제공한다.The present invention is a slurry manufacturing step of preparing a slurry by mixing a fluid with nano carbon; An electric explosion step of electrically exploding the metal wire in the slurry; And it provides a nano-carbon composite powder manufacturing method comprising a drying step of drying the fluid contained in the slurry.

여기서, 상기 슬러리제조단계는 물, 과산화수소수, 에탄올, 에틸렌글리콜, 글리세린, 젤라틴, 엔진오일, 증류수, 벤젠, 톨루엔, 식염수, 식용유, 석유 및 휘발유로 이루어진 군에서 선택된 어느 하나 이상의 유체로 구성된 액체 내에 슬러리를 제조한다.Here, the slurry manufacturing step is a liquid consisting of at least one fluid selected from the group consisting of water, hydrogen peroxide water, ethanol, ethylene glycol, glycerin, gelatin, engine oil, distilled water, benzene, toluene, saline, edible oil, petroleum and gasoline. Prepare a slurry.

특히, PVP(polyvinylpyrrolidone), PEI(polyethylenimine), PDADMAC(polydiallydimethylammonium chloride), 폴리소르베이트 80, 폴리에틸렌글리콜 축합형, 지방산 폴리글리콜에스테르 등 시판되는 고분자로 이루어진 군에서 선택된 어느 하나 이상의 고분자 분산제; 또는 아크릴, 스테아린산(stearic acid), 왁스(wax), 지방산 모노글리세린에스테르, 지방산 알칸올아미드 등 저융점 유기화합물로 이루어진 군에서 선택된 어느 하나 이상의 결합제를 첨가하여 슬러리를 제조하는 것이 바람직하다.In particular, any one or more polymer dispersants selected from the group consisting of commercially available polymers such as polyvinylpyrrolidone (PVP), polyethylenimine (PEI), polydiallydimethylammonium chloride (PDADMAC), polysorbate 80, polyethylene glycol condensation type, fatty acid polyglycol esters; Alternatively, the slurry may be prepared by adding one or more binders selected from the group consisting of low melting point organic compounds such as acrylic, stearic acid, wax, fatty acid monoglycerin ester and fatty acid alkanolamide.

또한, 상기 나노탄소는 탄소나노튜브 및 탄소나노화이버로 이루어진 군에서 선택된 어느 하나인 것이 바람직하다.In addition, the nano-carbon is preferably any one selected from the group consisting of carbon nanotubes and carbon nanofibers.

상술한 바와 같이, 본 발명의 나노탄소-금속 복합분말 제조방법에 의하면, As described above, according to the method for producing nanocarbon-metal composite powder of the present invention,

첫째, 유체내에서 금속선을 폭발시켜, 복합상 역할을 하는 금속 분말의 산화를 원천적으로 억제할 수 있으며, 응집되는 것을 방지하여 나노미터(㎚) 수준의 금속 분말이 형성되도록 할 수 있다.First, by exploding the metal wire in the fluid, it is possible to fundamentally inhibit the oxidation of the metal powder to act as a composite phase, it is possible to prevent the aggregation to form a metal powder of nanometer (nm) level.

둘째, 2성분계 이상의 합금 금속선을 사용하여, 합금 금속 분말을 기지상으로 갖는 나노탄소-금속 복합분말과 이들의 유체를 제조할 수 있는 매우 경제적인 방법이다.Second, using a two-component or more alloy metal wires, it is a very economical method to prepare a nano-carbon-metal composite powder and a fluid thereof having a base metal alloy powder.

셋째, 유체 내에서 전기폭발법으로 나노탄소-금속 복합분말을 제조하고, 이들 제조된 분말은 고강도 소재 개발, 코팅소재로의 응용 및 고촉매 소재 등의 에너지소재 원료로 유용하게 이용될 수 있다. Third, nanocarbon-metal composite powder is prepared by electroexplosion in a fluid, and these powders may be usefully used as raw materials for energy materials such as high-strength material development, application to coating materials, and high catalyst materials.

넷째, 나노탄소-금속 복합분말 제조방법에서 완전 건조를 거치지 않고, 반 건조 슬러리 상태에서 테이프케스팅과 같은 코팅공정에 응용할 수 있다. Fourth, the nanocarbon-metal composite powder may be applied to a coating process such as tape casting in a semi-dry slurry without undergoing complete drying.

이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that it can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only one of the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.

이하, 도 1 내지 도 4를 참조하여 본 발명의 일실시예에 따른 나노탄소-금속 복합분말 제조방법을 설명하도록 한다.Hereinafter, a method for preparing nanocarbon-metal composite powder according to one embodiment of the present invention will be described with reference to FIGS. 1 to 4.

도 1은 본 발명의 일실시예에 따른 나노탄소-금속 복합분말 제조방법을 나타낸 흐름도, 도 2는 본 발명의 일실시예에 따른 나노탄소-금속 복합분말 제조방법에 사용되는 장치를 나타낸 사진, 도 3은 본 발명의 일실시예에 따른 나노탄소-금속 복합분말 제조방법에서 전기폭발단계의 슬러리를 나타낸 상태도, 도 4는 본 발명의 일실시예에 따른 나노탄소-금속 복합분말 제조방법에 따라 제조된 나노탄소-금속 복합분말 제조방법을 나타낸 개념도이다.1 is a flow chart showing a method for producing nanocarbon-metal composite powder according to an embodiment of the present invention, Figure 2 is a photograph showing a device used in the method for producing nanocarbon-metal composite powder according to an embodiment of the present invention, Figure 3 is a state diagram showing the slurry of the electric explosion step in the nanocarbon-metal composite powder manufacturing method according to an embodiment of the present invention, Figure 4 is a nanocarbon-metal composite powder manufacturing method according to an embodiment of the present invention It is a conceptual diagram showing a method for producing a nano-carbon composite powder prepared according to.

본 발명의 일실시예에 따른 나노탄소-금속 복합분말 제조방법은 슬러리제조단계(S110), 전기폭발단계(S120), 건조단계(S130) 및 회수단계(S140)를 포함한다.Nanocarbon-metal composite powder manufacturing method according to an embodiment of the present invention includes a slurry manufacturing step (S110), an electric explosion step (S120), a drying step (S130) and a recovery step (S140).

또한, 본 발명의 일실시예에 따른 나노탄소-금속 복합분말 제조방법은 슬러리제조단계(S110), 전기폭발단계(S120), 건조단계(S130) 및 코팅단계(S150)를 포함한다.In addition, nanocarbon-metal composite powder manufacturing method according to an embodiment of the present invention includes a slurry manufacturing step (S110), an electric explosion step (S120), a drying step (S130) and a coating step (S150).

상기 슬러리제조단계(S110)는 나노탄소를 유체와 혼합하여 슬러리를 제조하는 단계이다. 여기서 유체는 물, 과산화수소수, 에탄올, 에틸렌글리콜, 글리세린, 젤라틴, 엔진오일, 증류수, 벤젠, 톨루엔, 식염수, 식용유, 석유, 휘발유 등으로 이루어진 군에서 선택된 어느 하나 이상의 유체를 이용할 수 있으며, 나노탄소는 나노탄소튜브 또는 나노탄소화이버일 수 있다. The slurry manufacturing step (S110) is a step of preparing a slurry by mixing nanocarbon with a fluid. The fluid may be any one or more fluids selected from the group consisting of water, hydrogen peroxide, ethanol, ethylene glycol, glycerin, gelatin, engine oil, distilled water, benzene, toluene, saline, edible oil, petroleum, gasoline, and the like. May be a nanocarbon tube or a nanocarbon fiber.

여기서, 나노탄소가 유체에서 잘 분산되도록 하기 위하여 분산제를 첨가할 수 있는데, 분산제로는 PVP(polyvinylpyrrolidone), PEI(polyethylenimine), PDADMAC(polydiallydimethylammonium chloride), 폴리소르베이트 80, 폴리에틸렌글리콜 축합형, 지방산 폴리글리콜에스테르 등 시판되는 고분자로 이루어진 군에서 선택된 어느 하나 이상의 고분자 분산제를 이용할 수 있다. Here, a dispersant may be added in order to disperse the nanocarbon in the fluid, and the dispersant may be polyvinylpyrrolidone (PVP), polyethylenimine (PEI), polydiallydimethylammonium chloride (PDADMAC), polysorbate 80, polyethylene glycol condensation type, fatty acid poly Any one or more polymer dispersants selected from the group consisting of commercially available polymers such as glycol esters can be used.

아울러, 후술할 전기폭발단계(S120)에서 방출되는 금속 분말과 상기 나노탄소의 결합력을 높이기 위하여 결합제를 첨가할 수 있으며, 여기서, 아크릴, 스테아린산(stearic acid), 왁스(wax), 지방산 모노글리세린에스테르, 지방산 알칸올아미드 등 저융점 유기화합물로 이루어진 군에서 선택된 어느 하나 이상의 결합제를 이용할 수 있다. In addition, a binder may be added to increase the bonding strength of the metal powder and the nano-carbon released in the electroexplosive step (S120) to be described later, where acrylic, stearic acid, wax, and fatty acid monoglycerin ester , At least one binder selected from the group consisting of low melting point organic compounds such as fatty acid alkanolamides may be used.

상기 전기폭발단계(S120)는 상기 슬러리내에서 금속선에 전력을 공급하여 전기폭발되도록 하는 단계이다. 금속선에 전력을 공급하면, 금속선은 저항 발열에 의하여 용융, 방전, 기화 공정을 통한 폭발이 일어나게 되고, 이에 따라 금속의 분말화가 진행된다. The electroexplosion step (S120) is a step of supplying power to the metal wire in the slurry to be exploded. When power is supplied to the metal wires, the metal wires are exploded through melting, discharging, and vaporization by resistance heating, and thus powdering of the metal proceeds.

본 발명의 일실시예에 따르면, 전기폭발단계(S120)는 0.5-20kV의 전력을 마이크로초(㎲)-수십분(min) 동안 공급하여 전기 폭발이 일어나도록 할 수 있다. According to one embodiment of the present invention, the electric explosion step (S120) may supply an electric power of 0.5-20kV for microseconds (several minutes) to several tens of minutes (min) to cause an electrical explosion.

본 발명의 일실시예에 따른 전기폭발단계(S120)는 도 2와 같은 장치를 이용하여 실시한다. 여기서, 사용되는 금속선은 코발트(Co), 철(Fe) 및 구리(Cu)로 이루어진 군에서 선택된 어느 하나 이상의 금속으로 이루어진 것을 이용할 수 있다. Electric explosion step (S120) according to an embodiment of the present invention is carried out using the apparatus as shown in FIG. Here, the metal wire used may be made of any one or more metals selected from the group consisting of cobalt (Co), iron (Fe), and copper (Cu).

도 3을 참조하여 보다 자세히 설명하면, 슬러리제조단계(S110)에서 나노탄소(110)와 유체(130)를 혼합하여 제조된 슬러리 내에 금속선(120)이 위치되도록 하고, 금속선(120)에 전력을 공급하면, 금속선(120)으로부터 유체(130)내로 금속 분말(121)이 방출된다. Referring to FIG. 3, the metal wire 120 is positioned in the slurry prepared by mixing the nanocarbon 110 and the fluid 130 in the slurry manufacturing step (S110), and power is supplied to the metal wire 120. When supplied, the metal powder 121 is discharged from the metal wire 120 into the fluid 130.

예를 들어, 코발트로 이루어진 금속선을 사용한 경우, 코발트 금속 분말이 유체 내로 방출되며, 코발트 및 철을 포함하는 합금선의 금속선을 사용한 경우, 코발트 금속 분말과 철 금속 분말이 슬러리 내로 방출되어, 나노탄소와 결합하게 된다. For example, when a metal wire made of cobalt is used, cobalt metal powder is released into a fluid, and when a metal wire of an alloy wire containing cobalt and iron is used, cobalt metal powder and iron metal powder are released into a slurry, and the nanocarbon and Will be combined.

상기와 같은 전기폭발단계(S120)에서 형성된 나노탄소-금속 복합분말의 형상을 도 4에 나타내었다. 도 4를 참조하면, 전기폭발단계(S120)에서 형성된 나노탄소-금속 복합분말에서 나노탄소에 금속 분말이 균일하게 복합화되어 있는 것을 알 수 있다. The shape of the nano-carbon-metal composite powder formed in the electric explosion step (S120) as described above is shown in FIG. 4. Referring to FIG. 4, it can be seen that the metal powder is uniformly complexed with nanocarbon in the nanocarbon-metal composite powder formed in the electroexplosion step (S120).

본 발명에 따르면, 상기와 같이 유체 내에서 전기폭발이 일어나도록 함으로 써, 금속 분말이 성장하거나 산화되는 것을 방지할 수 있어, 금속선으로부터 나노미터(㎚) 크기의 금속 분말이 방출되도록 할 수 있는 것이다.According to the present invention, by causing the electrical explosion in the fluid as described above, it is possible to prevent the growth or oxidation of the metal powder, it is possible to release the nanometer (nm) size metal powder from the metal wire .

상기 건조단계(S130)는 슬러리제조단계(S110)에서 사용된 유체를 건조시키는 단계이다. 이러한 건조단계(S130)에서는 상기 유체가 기화하도록 유체의 증발온도 이상에서 가열하여 건조시키는 것이 가능하지만, 이에 한정된 것은 아니고 사용된 유체를 건조시키는 어떠한 방법도 가능하다. The drying step (S130) is a step of drying the fluid used in the slurry production step (S110). In this drying step (S130) it is possible to dry by heating above the evaporation temperature of the fluid to vaporize the fluid, but is not limited to this, any method of drying the used fluid is possible.

상기 회수단계(S140)는 상기 건조단계(S130)에서 유체를 건조시킨 다음 남아있는 나노탄소-금속 복합분말을 회수하는 단계이다. 이렇게 회수된 나노탄소-금속 복합분말은 고강도 소재 개발, 코팅소재로의 응용 및 고촉매 소재 등의 에너지소재 원료로 유용하게 이용될 수 있다. The recovery step (S140) is a step of recovering the remaining nano-carbon-metal composite powder after drying the fluid in the drying step (S130). The nanocarbon-metal composite powder thus recovered may be usefully used as a raw material for energy materials such as high strength material development, application as a coating material, and high catalyst material.

상기 코팅단계(S150)는 상기 건조단계(S130)에서 유체가 완전히 건조되도록 하지 않고, 1-90부피%의 유체가 기화된 상태의 슬러리를 이용하여 테이프케스팅과 같은 공정을 수행하여 나노탄소-금속 복합분말이 피처리물에 직접 코팅되도록 할 수 있다. The coating step (S150) does not allow the fluid to be completely dried in the drying step (S130), nanocarbon-metal by performing a process such as tape casting using a slurry in the state of the vaporized fluid of 1-90% by volume The composite powder can be coated directly on the workpiece.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As mentioned above, although this invention was demonstrated by the limited embodiment and drawing, this invention is not limited by this, The person of ordinary skill in the art to which this invention belongs, Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

도 1은 본 발명의 일실시예에 따른 나노탄소-금속 복합분말 제조방법을 나타낸 흐름도, 1 is a flow chart showing a nano-carbon-metal composite powder manufacturing method according to an embodiment of the present invention,

도 2는 본 발명의 일실시예에 따른 나노탄소-금속 복합분말 제조방법에서 사용된 전기폭발장치를 나타낸 사진,Figure 2 is a photograph showing the electric explosion apparatus used in the nano-carbon-metal composite powder manufacturing method according to an embodiment of the present invention,

도 3은 본 발명의 일실시예에 따른 나노탄소-금속 복합분말 제조방법에서 전기폭발단계의 슬러리를 나타낸 상태도, Figure 3 is a state diagram showing the slurry of the electric explosion step in the nano-carbon-metal composite powder manufacturing method according to an embodiment of the present invention,

도 4는 본 발명의 일실시예에 따른 나노탄소-금속 복합분말 제조방법에 따라 제조된 나노탄소-금속 복합분말을 나타낸 개념도이다.Figure 4 is a conceptual diagram showing a nano-carbon-metal composite powder prepared according to the nano-carbon-metal composite powder manufacturing method according to an embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

110 : 나노탄소 120 : 금속선110: nano carbon 120: metal wire

121 : 금속 분말 130 : 유체121: metal powder 130: fluid

Claims (4)

나노탄소와 유체를 혼합하여 슬러리를 제조하는 슬러리제조단계;Slurry manufacturing step of preparing a slurry by mixing the nano-carbon and fluid; 상기 슬러리 내에서 금속선을 전기적으로 폭발시키는 전기폭발단계; 및An electric explosion step of electrically exploding the metal wire in the slurry; And 상기 슬러리에 함유된 유체를 건조시키는 건조단계를 포함하는 것을 특징으로 하는 나노탄소-금속 복합분말 제조방법.Nanocarbon-metal composite powder manufacturing method comprising the step of drying the fluid contained in the slurry. 제 1항에 있어서,The method of claim 1, 상기 슬러리제조단계는 PVP(polyvinylpyrrolidone), PEI(polyethylenimine), PDADMAC(polydiallydimethylammonium chloride), 폴리소르베이트 80, 폴리에틸렌글리콜 축합형, 지방산 폴리글리콜에스테르로 이루어진 군에서 선택된 어느 하나 이상의 고분자 분산제; 또는 아크릴, 스테아린산(stearic acid), 왁스(wax), 지방산 모노글리세린에스테르, 지방산 알칸올아미드로 이루어진 군에서 선택된 어느 하나 이상의 저융점 유기화합물인 결합제를 첨가하여 슬러리를 제조하는 것을 특징으로 하는 나노탄소-금속 복합분말 제조방법.The slurry production step may be any one or more polymer dispersants selected from the group consisting of polyvinylpyrrolidone (PVP), polyethylenimine (PEI), polydiallydimethylammonium chloride (PDADMAC), polysorbate 80, polyethylene glycol condensation type, fatty acid polyglycol esters; Or nanocarbon, characterized in that the slurry is prepared by adding a binder which is at least one low melting organic compound selected from the group consisting of acrylic, stearic acid, wax, fatty acid monoglycerin ester and fatty acid alkanolamide. -Metal composite powder manufacturing method. 제 1항에 있어서,The method of claim 1, 상기 나노탄소는 탄소나노튜브 및 탄소나노화이버로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 나노탄소-금속 복합분말 제조방법.The nano-carbon is a nano-carbon-metal composite powder manufacturing method, characterized in that any one selected from the group consisting of carbon nanotubes and carbon nanofibers. 제 1항에 있어서,The method of claim 1, 상기 유체는 물, 과산화수소수, 에탄올, 에틸렌글리콜, 글리세린, 젤라틴, 엔진오일, 증류수, 벤젠, 톨루엔, 식염수, 식용유, 석유 및 휘발유로 이루어진 군에서 선택된 어느 하나 이상의 유체를 이용하는 것을 특징으로 하는 나노탄소-금속 복합분말 제조방법.The fluid is nanocarbon, characterized in that using at least one fluid selected from the group consisting of water, hydrogen peroxide, ethanol, ethylene glycol, glycerin, gelatin, engine oil, distilled water, benzene, toluene, saline, edible oil, petroleum and gasoline. -Metal composite powder manufacturing method.
KR1020070081433A 2007-08-13 2007-08-13 Producong method of nano carbon-metal composite powder KR100907044B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070081433A KR100907044B1 (en) 2007-08-13 2007-08-13 Producong method of nano carbon-metal composite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070081433A KR100907044B1 (en) 2007-08-13 2007-08-13 Producong method of nano carbon-metal composite powder

Publications (2)

Publication Number Publication Date
KR20090017023A KR20090017023A (en) 2009-02-18
KR100907044B1 true KR100907044B1 (en) 2009-07-09

Family

ID=40685906

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070081433A KR100907044B1 (en) 2007-08-13 2007-08-13 Producong method of nano carbon-metal composite powder

Country Status (1)

Country Link
KR (1) KR100907044B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101975403B1 (en) 2018-07-05 2019-09-10 (주)나노기술 Apparatus for manufacturing metal nano powder using electrical wire evaporation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101409640B1 (en) * 2009-12-16 2014-06-18 울산대학교 산학협력단 Manufacturing method of graphene and graphene-nano metal composite powders using electrical explosion of wire
KR101278493B1 (en) * 2010-09-13 2013-07-02 (주)지니아텍 Device for manufacturing nanostructured powder by electric explosion
KR101142534B1 (en) * 2011-06-02 2012-05-07 한국전기연구원 Process for producing si-based nanocomposite anode material for lithium secondary battery and lithium secondary battery including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030049703A (en) * 2001-12-17 2003-06-25 한국화학연구원 Manufacturing process of nickel-plated carbon fibers by electroplating method
KR20060046974A (en) * 2004-11-12 2006-05-18 삼성전기주식회사 Carbon nano tube emitter for field emission using electrolytic copper foil process, preparing method thereof and field emission lamp comprising the same
KR20070024041A (en) * 2005-08-26 2007-03-02 한국전기연구원 Method for manufacturing nanostructured powder by wire explosion in liqiud and device for manufacturing the same
KR20080006814A (en) * 2006-07-13 2008-01-17 충남대학교산학협력단 Method for preparing carbon nanotubes for field emission devices by electrodoposition and carbon nanotube for field emission devices made thereby

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030049703A (en) * 2001-12-17 2003-06-25 한국화학연구원 Manufacturing process of nickel-plated carbon fibers by electroplating method
KR20060046974A (en) * 2004-11-12 2006-05-18 삼성전기주식회사 Carbon nano tube emitter for field emission using electrolytic copper foil process, preparing method thereof and field emission lamp comprising the same
KR20070024041A (en) * 2005-08-26 2007-03-02 한국전기연구원 Method for manufacturing nanostructured powder by wire explosion in liqiud and device for manufacturing the same
KR20080006814A (en) * 2006-07-13 2008-01-17 충남대학교산학협력단 Method for preparing carbon nanotubes for field emission devices by electrodoposition and carbon nanotube for field emission devices made thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101975403B1 (en) 2018-07-05 2019-09-10 (주)나노기술 Apparatus for manufacturing metal nano powder using electrical wire evaporation

Also Published As

Publication number Publication date
KR20090017023A (en) 2009-02-18

Similar Documents

Publication Publication Date Title
Liu et al. Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process
Hsin et al. Production and in‐situ metal filling of carbon nanotubes in water
EP1948562B1 (en) Carbon nanotubes functionalized with fullerenes
Wang et al. Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol
Thirumal et al. Synthesis of nitrogen doped coiled double walled carbon nanotubes by chemical vapor deposition method for supercapacitor applications
Jung et al. One-pot synthesis of graphitic and nitrogen-doped graphitic layers on nickel nanoparticles produced by pulsed laser ablation in liquid: Solvent as the carbon and nitrogen source
Cheng et al. Formation of composite fuels by coating aluminum powder with a cobalt nanocatalyst: Enhanced heat release and catalytic performance
Wang et al. Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si@ SiC@ C for high-performance lithium ion batteries
Jeong et al. Preparation of highly pure and crystalline carbon nanotubes and their infiltration by paraffin wax
KR100907044B1 (en) Producong method of nano carbon-metal composite powder
áRavindranathan Thampi Preparation of a Pt–Ru bimetallic system supported on carbon nanotubes
US7713577B2 (en) Preparation of graphitic articles
KR20120074166A (en) Method for producing a light alloy having dispersed carbon nanotube
KR20110068647A (en) Manufacturing method of graphene and graphene-nano metal composite powders using electrical explosion of wire
Liu et al. High-power instant-synthesis technology of carbon nanomaterials and nanocomposites
Hu et al. Morphological study of graphite-encapsulated iron composite nanoparticles fabricated by a one-step arc discharge method
Hussain et al. Enhancement of thermal conductivity and thermal stability of capric-lauric acid eutectic phase change material using carbonaceous materials
Devi et al. Carbon-based nanomaterials: carbon nanotube, fullerene, and carbon dots
Zhang et al. Carbothermal shock enabled functional nanomaterials for energy-related applications
Wan et al. Recent advances in the synthesis and fabrication methods of high-entropy alloy nanoparticles
WO2020178616A1 (en) Carbon nanotubes decorated with carbon nanospheres
Ndungu et al. Carbon nanomaterials synthesized using liquid petroleum gas: Analysis toward applications in hydrogen storage and production
KR100886944B1 (en) Producing method of WC-Co composite powder
Chen et al. Efficient and green synthesis of SiOC nanoparticles at near-ambient conditions by liquid-phase plasma
Zhao et al. Direct growth of carbon nanotubes on metal supports by chemical vapor deposition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120430

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130703

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee