JPS6250495A - Surface electrolytic treatment device for carbon fiber - Google Patents

Surface electrolytic treatment device for carbon fiber

Info

Publication number
JPS6250495A
JPS6250495A JP18904785A JP18904785A JPS6250495A JP S6250495 A JPS6250495 A JP S6250495A JP 18904785 A JP18904785 A JP 18904785A JP 18904785 A JP18904785 A JP 18904785A JP S6250495 A JPS6250495 A JP S6250495A
Authority
JP
Japan
Prior art keywords
carbon fibers
cell
tank
tow
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18904785A
Other languages
Japanese (ja)
Inventor
Makoto Saito
誠 斉藤
Hiroshi Inoue
寛 井上
Noboru Yamamoto
登 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP18904785A priority Critical patent/JPS6250495A/en
Publication of JPS6250495A publication Critical patent/JPS6250495A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To make tthe uniform electrolytic oxidation treatment of all carbon fibers in the stage of subjecting the surface of the carbon fibers for a carbon fiber-reinforced composite material to the electrolytic oxidation treatment by disposing anodes and cathodes into electrolytic cells at both ends of plural electrolytic cells and passing the group of the carbon fibers through the two electrolytic cells respectively, thereby constituting a series type power feed system. CONSTITUTION:The surface of the carbon fibers are subjected to the electrolytic oxidation treatment to improve the adhesiveness of a matrix material and the carbon fibers in the stage of producing the carbon fiber-refinforced composite material. The anode is disposed in the 1st cell of n-pieces of the electrolytic cells and the cathode is disposed in the final cell. Partition plates through which an electrolyte can flow freely are provided in the respective electrolytic cells. The tow of N-1 pieces of the carbon fibers is passed through the n-th cell and the (n-1)th cell. Electric current is passed in a series type in each cell by the type in which the tow in each cell is the cathode in the 1st cell, the anode in the 2nd cell and the 2nd tow in the 2nd cell is the cathode and the anode in the 3rd cell. Then the currents which flow in each piece of the tow have the same value and the thickness of the anodic oxidation treat ment layers is made uniform.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭素繊維強化複合材の製造においてマトリクス
材との接着性を改善するための電解酸化による炭素繊維
の表面電解処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for electrolytically treating the surface of carbon fibers by electrolytic oxidation in order to improve adhesion to a matrix material in the production of carbon fiber reinforced composite materials. .

本発明はPAN系、ピッチ系のみならずその他の原料を
前駆体とする炭素繊維に有効である。
The present invention is effective for carbon fibers whose precursors are not only PAN-based and pitch-based but also other raw materials.

(従来の技術) 炭素繊維の電解酸化において炭素繊維に対する給電方法
としてロール給電による接触法と電解液を通じて非接触
的に給電する非接触法が知られている。
(Prior Art) In the electrolytic oxidation of carbon fibers, two known methods of supplying power to carbon fibers include a contact method using roll power supply and a non-contact method in which power is supplied non-contactly through an electrolytic solution.

ロール給電では炭素繊維とロールが接触するため。In roll feeding, the carbon fiber and roll come into contact.

毛羽立ちやロールへの巻き付きが起こる。一方1例えば
特公昭47−29942号公報において開示される非接
触法(図−2に1例を示した)ではこれらの問題は解消
される。しかし従来技術における非接触法の弱点は各ト
ウへの均一給電に困難があり表面処理程度が4く均一に
なることである。即ち図−2に示すように同一給電槽に
おいて同時に多数のトウに給電するため、トウの開繊具
合、給電板の傾斜、液流の僅かな乱れ等の要因により各
トつに流れる電流が一定せず従ってトウ間の表面処理程
度に不均一が生じる。また多数のトウに対して同一電極
から並列に給電する形になるので給電槽における陽極電
流値が大きくなり、従って陽極たる給電電極の電蝕減肉
が著しく、!A繁な電極交換を要すると共に、電蝕によ
って溶解した物質による電解液の汚染が炭素繊維の物性
に悪影響を与え、電解液交換頻度を上昇させる。一方並
列給電は装置構成が単純にできるという長所を持つ。即
ち給電槽と電解槽の2槽措成はまことにシンプルであり
、工業的な意味を十分に有している。
Fluffing and wrapping around rolls occur. On the other hand, these problems are solved by the non-contact method disclosed in, for example, Japanese Patent Publication No. 47-29942 (an example is shown in FIG. 2). However, the disadvantage of the non-contact method in the prior art is that it is difficult to uniformly supply power to each tow, and the degree of surface treatment is uniform. In other words, as shown in Figure 2, since power is supplied to many tows at the same time in the same power supply tank, the current flowing to each tow is constant depending on factors such as the degree of opening of the tows, the inclination of the power supply plate, and slight disturbances in the liquid flow. Therefore, non-uniformity occurs in the degree of surface treatment between the tows. In addition, since power is supplied to many tows in parallel from the same electrode, the anode current value in the power supply tank increases, resulting in significant electrolytic corrosion thinning of the power supply electrode, which is the anode! A: Frequent electrode replacement is required, and contamination of the electrolyte by substances dissolved by electrolytic corrosion adversely affects the physical properties of the carbon fibers, increasing the frequency of electrolyte replacement. On the other hand, parallel power supply has the advantage of simplifying the device configuration. In other words, the two-tank configuration of a power supply tank and an electrolytic tank is quite simple and has sufficient industrial significance.

(発明が解決しようとする問題点) 従来の非接触法電解処理の難点は多数のトウに対して同
一電極から並列給電することに伴うトウ間の給電が不均
一になること及び給電電極の電蝕減肉過多となることで
ある。従って本発明では非接触法においてもトウごとに
流れる電流を一定に保ち、全てのトウを均一に処理する
こと及び給電電極の電蝕を最小に抑えることを技術的課
題とする。
(Problems to be Solved by the Invention) The drawbacks of the conventional non-contact electrolytic treatment are that the power supply between the tows becomes uneven due to parallel power supply from the same electrode to a large number of tows, and that the power supply of the power supply electrode becomes uneven. This results in excessive erosion. Therefore, the technical problem of the present invention is to keep the current flowing for each tow constant even in the non-contact method, to treat all tows uniformly, and to minimize galvanic corrosion of the power supply electrode.

(問題点を解決するための手段) 前述の如くトウ間の不均一給電及び給電電極の電蝕減肉
過多は、同一電極から多数のトウに一度に並列給電する
ことに起因する。この点に着目し本発明では直列型の給
電を行うことにより問題を解決した。
(Means for Solving the Problems) As described above, uneven power feeding between tows and excessive thinning due to electrolytic corrosion of the power feeding electrodes are caused by power feeding to a large number of tows in parallel from the same electrode at once. Focusing on this point, the present invention solves the problem by performing a series type power supply.

図−1はその代表的な一例であり図−3はその変化型で
ある。図−1を例に説明する。全部で5槽あり。
Figure 1 is a typical example, and Figure 3 is a variation thereof. This will be explained using Figure 1 as an example. There are 5 tanks in total.

第1槽を給電槽とし第2槽から第5槽を電解槽とする。The first tank is used as a power supply tank, and the second to fifth tanks are used as electrolytic cells.

各電解槽には2グループの炭素繊維が通過するが1両グ
ループは互いに接触してはいけない。以下において説明
の便宜上各種を2室に分ける仮想的な仕切板を考える。
Two groups of carbon fibers pass through each electrolytic cell, but the two groups must not touch each other. In the following, for convenience of explanation, we will consider a virtual partition plate that divides each type into two rooms.

この仕切板は一部開口しており、2室間を電解液が自由
に移動できる措造を想定する。仕切板の目的は各種を通
過する2グループのトウが互いに接触しないことを保証
することである。さて第1Mの1室には陽極板が、最後
の第5槽の1室には陰極板が配置される。適当な本数の
トウ(図−1では2本)を1グループとしてグループ分
けした時、あるグループは隣接する2槽の各1室を通過
する。一方の槽2例えば第1槽では電解液から炭素繊維
に電流流れこみ、他方の槽1例えば第2槽では該炭素繊
維から電解液に電流が流れ出ていく。即ち第1槽では炭
素繊維が陰極として作用し、第2槽では該炭素繊維が陽
極として作用し、陽極で発生した発生期の酸素により炭
素繊維が酸化される。装置全体としての電流の流れを見
ると、まず第1槽の陽極板に給電された後、各種を走行
するトウと電解液を順次直列的に流れながら第5槽の陰
極板から放電される。グループあたりのトウの本数は1
本以上の適当な本数としてよい。グループあたりのトウ
の本数が増加するにつれて従来技術の欠点である並列的
給電の影響があられれ、トウ間の電流の不均一が顕著化
してくる。一方必要な電解槽の数はトウ本数に反比例し
て減少する。極端な場合として全グループのトウが各々
1本から成る場合、全トウとも一定電流が流れるので表
面処理が完全に均一に進行する。ただし必要な電解槽の
数は最大となるので装置コスト的に不経済である。現実
的には許容される表面処理度のバラツキと電解槽の建設
費を勘案して適当な本数を選択する。
This partition plate is partially open, so that the electrolyte can move freely between the two chambers. The purpose of the divider plate is to ensure that the two groups of tows passing through each type do not touch each other. Now, an anode plate is arranged in one chamber of the first M tank, and a cathode plate is arranged in one chamber of the fifth tank. When an appropriate number of tows (two in Figure 1) are divided into one group, one group passes through one chamber in each of two adjacent tanks. In one tank 2, for example the first tank, a current flows from the electrolyte into the carbon fibers, and in the other tank 1, for example the second tank, a current flows out from the carbon fibers into the electrolyte. That is, in the first tank, the carbon fiber acts as a cathode, and in the second tank, the carbon fiber acts as an anode, and the carbon fiber is oxidized by the nascent oxygen generated at the anode. Looking at the flow of current in the entire device, the current is first supplied to the anode plate of the first tank, and then discharged from the cathode plate of the fifth tank while flowing in series through the tows and electrolyte running in each type. Number of tows per group is 1
An appropriate number of books or more may be used. As the number of tows per group increases, the influence of parallel power supply, which is a drawback of the prior art, becomes more pronounced, and the non-uniformity of current between tows becomes more pronounced. On the other hand, the number of required electrolytic cells decreases in inverse proportion to the number of tows. In an extreme case, when each group consists of one tow, a constant current flows through all the tows, so that the surface treatment progresses completely uniformly. However, since the number of required electrolytic cells is maximum, it is uneconomical in terms of equipment cost. In reality, an appropriate number should be selected in consideration of the allowable variation in the degree of surface treatment and the construction cost of the electrolytic cell.

なお走行トウが電解槽を出入する際、槽壁に接触させな
いようにするため図−3に示すごとくポンプにより一定
量の電解液を循還させ、堰からオーバフローさせ、埴土
に必要な高さを有する液面を維持し。
In order to prevent the running tow from coming into contact with the tank wall when moving in and out of the electrolytic cell, a certain amount of electrolyte is circulated by a pump as shown in Figure 3, and overflows from the weir to increase the required height of the clay. Maintain the liquid level.

その巾をトウを走行させることにより、走行トウを電解
液に浸漬させることができる。次に電極板の電解につい
ては、直列化により電流値を低下できるので、減肉は大
幅に改善され、電極交換の頻度が減少する。また電解液
の汚染も軽減され、電解液消費量が減る。
By running the tow across the width, the running tow can be immersed in the electrolyte. Next, regarding electrolysis of electrode plates, the current value can be lowered by connecting them in series, so thinning can be greatly improved and the frequency of electrode replacement can be reduced. It also reduces electrolyte contamination and reduces electrolyte consumption.

実施例1 図−3に示す電解酸化実験装置を使用した。本装首は図
−1で開示した本発明の一実施態様であり、構成の一部
に並列型を含む直列給電型である。
Example 1 The electrolytic oxidation experimental apparatus shown in Figure 3 was used. This neck brace is an embodiment of the present invention disclosed in FIG. 1, and is a series feeding type including a parallel type as part of the configuration.

実験に使用した炭素繊維は市販のPAN系炭素炭素繊維
り、その糸径は7μm、ストランド強度:320kg/
−1弾性率:22.5Tc+n/−及びI LS S 
; 5.1kg/−(注1)であった。その他の実験条
件を次に示す。
The carbon fiber used in the experiment was a commercially available PAN-based carbon fiber with a thread diameter of 7 μm and a strand strength of 320 kg/
-1 elastic modulus: 22.5Tc+n/- and ILSS
; It was 5.1 kg/- (Note 1). Other experimental conditions are shown below.

爬酵科 電極板           銅板 電解液           5wt% N2LOH水
溶液電解液量          501 全トウ本数         10本 トウあたりのフィラメント数6,000本トウあたりの
電流      0.3A滞留時間         
 60秒 連続処理時間        5時間(新液→実験終了
まで)上記の条件で実験した結果を、比較例の結果とと
もに示す。
Fermentation electrode plate Copper plate electrolyte 5wt% N2LOH aqueous electrolyte amount 501 Total number of tows 10 Number of filaments per tow 6,000 Current per tow 0.3A residence time
60 seconds continuous processing time 5 hours (from new solution to end of experiment) The results of an experiment under the above conditions are shown together with the results of a comparative example.

ここで均一処理の程度を知るためILSS、ストランド
強度を各トウにつき5魚汁50点を測定し、その平均値
、最大値、最小値及び標準偏差を算出した。更に電極消
費量及び溶液汚染度を見るため、試験前後の電極板重量
及び電解液中のCu”+濃度を測定した。なお従来技術
と比較するため図−3の実験装置から仕切板をすべて取
り払った状態としこれを並列給電型の実験装置(図−4
)とした。これに対して前述の直列給電をの実験と全く
同一の条件で試験を実施し比較例とした。
Here, in order to know the degree of uniform treatment, ILSS and strand strength were measured at 5 fish juice points for each tow, and the average value, maximum value, minimum value, and standard deviation were calculated. Furthermore, in order to check the electrode consumption and the degree of solution contamination, we measured the weight of the electrode plate and the Cu''+ concentration in the electrolyte before and after the test.For comparison with the conventional technology, all partition plates were removed from the experimental apparatus shown in Figure 3. This was then connected to a parallel power supply type experimental device (Figure 4).
). On the other hand, a test was conducted under exactly the same conditions as the above-mentioned series power supply experiment, and this was used as a comparative example.

ILSS平均値(kg/−2)     8.5   
 8.0最大値(kg/mm2)     8.7  
  8.7最小値(kg/mm2)     8.3 
   7.0漂準偏差 (kg/mm2)      
0.13      0.58ストランド強度 平均値
(kg/wn2)    322      308最
犬値(kg/lll1n2)   330    32
7最小値(kg/mm2)   310    282
標準偏差 (kg/m2)     6,3     
16.3電極板重量(試験前)  (g)      
   218.53    351.8311   (
試験後)  (g)        218.51  
  351.65重量減(g)     0.02  
0.18電解液中Cu2+濃度(mg#り      
    0.6     4.1上記の結果をもとにト
ウ間のILSS及びストランド強度ともにバラツキが小
さくなりかつ平均値も高い値で安定しており、均一処理
の達成されたことが判定できる。
ILSS average value (kg/-2) 8.5
8.0 Maximum value (kg/mm2) 8.7
8.7 Minimum value (kg/mm2) 8.3
7.0 drift standard deviation (kg/mm2)
0.13 0.58 Strand strength average value (kg/wn2) 322 308 Most dog value (kg/lll1n2) 330 32
7 Minimum value (kg/mm2) 310 282
Standard deviation (kg/m2) 6,3
16.3 Weight of electrode plate (before test) (g)
218.53 351.8311 (
(after test) (g) 218.51
351.65 weight loss (g) 0.02
0.18 Cu2+ concentration in electrolyte (mg#ri)
0.6 4.1 Based on the above results, it can be determined that the variations in ILSS and strand strength between tows are small, and the average value is stable at a high value, and that uniform processing has been achieved.

また電極板の重量も大幅に減少している。これは電解液
中のCu2+濃度の増加が少ないこととよく符号してい
る。
The weight of the electrode plate has also been significantly reduced. This corresponds well with the fact that the increase in Cu2+ concentration in the electrolyte is small.

(注1)マストリスク粉としてエポキシ樹脂(大日本イ
ンキ化学製エビクロン850) 、硬化剤(日立化成製
0N−5500)及び硬化促進剤(四国化成製エチルメ
チルイミダゾール)を重量部で100対84対1で混合
したものを用い、炭素繊維の容積含有率は60%として
、ILSS測定用の炭素繊維強化複合材試験片を作成し
た。ILSS測定はショートビーム法によった。
(Note 1) As Mastrisk powder, epoxy resin (Evicron 850 manufactured by Dainippon Ink Chemical Co., Ltd.), curing agent (0N-5500 manufactured by Hitachi Chemical Co., Ltd.), and curing accelerator (ethyl methyl imidazole manufactured by Shikoku Kasei Co., Ltd.) are mixed in a ratio of 100 to 84 parts by weight. A carbon fiber-reinforced composite material test piece for ILSS measurement was prepared by using the mixture in step 1 and setting the volume content of carbon fiber to 60%. The ILSS measurement was performed using the short beam method.

実施例2 糸径;7μm、ストランド強度; 324kg/mo1
.弾性率:21.5Ton/−及びILSS;4.9k
g/−である市販のレーヨン系炭素繊維を用いて、実施
例1と同一装置により同一の実験を実施した。以下に実
験条件と実験結果を示す。
Example 2 Thread diameter: 7 μm, strand strength: 324 kg/mo1
.. Elastic modulus: 21.5Ton/- and ILSS; 4.9k
The same experiment was conducted using the same equipment as in Example 1 using commercially available rayon-based carbon fiber having a weight of 1.5 g/-. The experimental conditions and experimental results are shown below.

凋該丑 電極板           グラファイト板電解液 
          5wt%NaOH水溶液電解液量
          504 トウ本数           10本トウあたりのフ
ィラメント数 6,000本トウあたりの電流    
  0.3AILSS、ストランド強度については各ト
ウにつき1゜魚汁100点の測定データから平均値、最
大値、最小値及び標準偏差を算出した。
Graphite plate electrolyte
5wt% NaOH aqueous electrolyte amount 504 Number of tows Number of filaments per 10 tows 6,000 Current per tow
Regarding 0.3AILSS and strand strength, the average value, maximum value, minimum value, and standard deviation were calculated from the measurement data of 100 points of 1° fish juice for each tow.

ILSS平均値(kg/mm2)     8.6  
 8.2最大値(kg/a2)     8.7   
8.8最小値(kg/+nm2)     8.3  
 7.5標準偏差 (kg/mm’)      、 
0.11     0.35ストランド強度 平均値 
(kg/mm2)   327     305最太値
 (kg/mm2)  335   331最小値 (
kg/m+n2)  313   294標準偏差 (
kg/mm2)    5.8     13.5電極
板重量(試験前)  (g)      281.08
    452.54(試験後)  (g)     
 280.86    450.22重量減(g)  
  0.22   2.32なおグラファイトの酸化溶
解による溶液の汚染度は、比較例の方が本発明よりも高
いことが濃い茶褐色に着色したことから明らがである。
ILSS average value (kg/mm2) 8.6
8.2 Maximum value (kg/a2) 8.7
8.8 Minimum value (kg/+nm2) 8.3
7.5 standard deviation (kg/mm'),
0.11 0.35 Strand strength average value
(kg/mm2) 327 305 maximum value (kg/mm2) 335 331 minimum value (
kg/m+n2) 313 294 standard deviation (
kg/mm2) 5.8 13.5 Electrode plate weight (before test) (g) 281.08
452.54 (after test) (g)
280.86 450.22 weight loss (g)
0.22 2.32 It is clear that the degree of contamination of the solution due to oxidative dissolution of graphite is higher in the comparative example than in the present invention because it was colored dark brown.

実施例3 流動接触分解装置がらの分解油残渣より調製したメソ相
ピッチを溶融紡糸、不融化、炭化焼成して得た炭素繊維
を用いて、実施例1と同一の装置により同一の実験を実
施した。炭素繊維は糸径:10μm、ストランド強度:
 268kg/wA、弾性率:31.8Ton/−及び
I L S S : 3.2kg/nJであった。以下
に実験条件と実験結果を示す。
Example 3 The same experiment was carried out using the same equipment as in Example 1 using carbon fiber obtained by melt spinning, infusibility, and carbonization firing mesophase pitch prepared from cracked oil residue from a fluid catalytic cracker. did. Carbon fiber thread diameter: 10 μm, strand strength:
268 kg/wA, elastic modulus: 31.8 Ton/-, and ILSS: 3.2 kg/nJ. The experimental conditions and experimental results are shown below.

実験条件 電極板           グラファイト坂電解液 
          5wt%N a OH水溶液電解
液量         50β トウ本数          10本 トつあたりのフィラメント数 6,000本トウあたり
の電流      0.42A滞留時間       
   60秒 連続処理時間        10時間(新液−実験終
了まで)実験結果 測定点数は各トウにつき10点計重00点である。
Experimental conditions Electrode plate Graphite slope electrolyte
5wt%N a OH aqueous electrolyte amount 50β Number of tows Number of filaments per 10 tows 6,000 Current per tow 0.42A residence time
Continuous processing time of 60 seconds 10 hours (new solution - until the end of the experiment) The number of experimental results measured is 10 points for each tow, and the weight is 00 points.

ILSS平均値(kg/mm2)     8.2  
 7.8最大値(kg/rom”)     8.5 
  8.6最小値(kg/mm2)     8.0 
  6.7標準偏差 (kg/mm2)       
0.13     0.45ストランド強度 平均値 
(kg/rran2)     266     23
5最大値(kg/mm2)   275   271最
小値(kB/mm2)   259   201標準偏
差(kg/++m”)     6.4     20
.5電極板重量(試験前) (g)         
279.74    431.72(試験後) (g)
         279.33    428.32
重量減軸)     0.41   3.40なお実施
例2と同様に溶液汚染度の定量はしなかったが、目視で
は比較例の方が茶褐色の着色が濃く、汚染度は高いこと
が判明した。
ILSS average value (kg/mm2) 8.2
7.8 Maximum value (kg/rom”) 8.5
8.6 Minimum value (kg/mm2) 8.0
6.7 standard deviation (kg/mm2)
0.13 0.45 Strand strength average value
(kg/rran2) 266 23
5 Maximum value (kg/mm2) 275 271 Minimum value (kB/mm2) 259 201 Standard deviation (kg/++m”) 6.4 20
.. 5 Electrode plate weight (before testing) (g)
279.74 431.72 (after test) (g)
279.33 428.32
Weight reduction) 0.41 3.40 Although the degree of solution contamination was not quantified as in Example 2, visual inspection revealed that the comparative example was more brownish in color and had a higher degree of contamination.

(発明の効果) 以上の説明から明らかな如く本発明に係る直列給電によ
る電解酸化を採用することによりトウ間での電流のハラ
ツキが少なくなり、均一な処理が可能となった。更に給
電rf、極を通る電流が低下するので電極消費金が少な
くなり。
(Effects of the Invention) As is clear from the above description, by employing the electrolytic oxidation using series power supply according to the present invention, the unevenness of the current between the tows is reduced, and uniform processing becomes possible. Furthermore, the power supply rf and the current passing through the pole are reduced, so the electrode consumption is reduced.

電極取替頻度が減少する。更に給電電極は最端部の1t
1″1のみに限られるため、該給電電極のオーバフロー
液だけ独自にリサイクルすることで電解液の汚染がごく
一部に限ら九、炭素繊維への悪影コを最小に抑制できる
6なお木装固は原理上、PAN系、ピッチ系、レーヨン
系の炭素繊維のみならず他の厚料をプリカーサとする炭
素繊維にも適用できる。
Electrode replacement frequency is reduced. Furthermore, the power supply electrode is 1t at the end
1"1, by independently recycling only the overflow liquid of the power supply electrode, contamination of the electrolyte is limited to a small part. In principle, the method can be applied not only to PAN-based, pitch-based, and rayon-based carbon fibers, but also to carbon fibers using other thick materials as precursors.

【図面の簡単な説明】[Brief explanation of the drawing]

図−1は本発明において開示する非接触式直列給電型装
置の一例を示す。図−2は従来技術である非接触式並列
給電型装置の一例である。図−3及び図−4は本発明の
実施例において使用した実験装置の概略図であり、曲名
は直列給′ポ型及び後者は並列給電型の装置である。
FIG. 1 shows an example of a non-contact series power feeding device disclosed in the present invention. FIG. 2 is an example of a conventional non-contact parallel power feeding device. Figures 3 and 4 are schematic diagrams of the experimental equipment used in the embodiments of the present invention, and the latter is a series-feed type and the latter is a parallel-fed type.

Claims (4)

【特許請求の範囲】[Claims] (1)炭素繊維を電解液中に浸漬して表面電解処理する
に際して、2以上の整数Nに対してN個の槽を有し、第
1槽液中に陽極板を配置し、該陽極板に給電し、第N槽
液中に陰極板を配置し該陰極板から放電する表面電解処
理装置において、2以上かつN以下の整数nに対して適
当な本数のトウから成る(N−1)個の炭素繊維のグル
ープがあって、第(n−1)グループの炭素繊維は第(
n−1)槽液中を通過し次に第n槽液中を通過すること
を特徴とする炭素繊維の表面電解処理装置。
(1) When subjecting carbon fibers to surface electrolytic treatment by immersing them in an electrolytic solution, N tanks are provided for an integer N of 2 or more, an anode plate is placed in the first tank solution, and the anode plate is In a surface electrolytic treatment device that supplies power to the tank, disposes a cathode plate in the N-th tank liquid, and discharges from the cathode plate, the tow is composed of an appropriate number of tows for an integer n of 2 or more and N or less (N-1). There are groups of carbon fibers, and the (n-1)th group of carbon fibers is the (n-1)th group of carbon fibers.
n-1) An apparatus for surface electrolytic treatment of carbon fibers, characterized by passing through a bath liquid and then passing through an n-th bath liquid.
(2)第1槽と第N槽を除いて第n槽には、第(n−1
)グループ及び第nグループの炭素繊維が通過しかつ両
グループが互いに接触しない特許請求の範囲第1項に記
載する炭素繊維の表面電解処理装置。
(2) Except for the first tank and the Nth tank, the nth tank has the (n-1th tank)
2. The carbon fiber surface electrolytic treatment apparatus according to claim 1, wherein the carbon fibers of the group ) and the n-th group pass through and the groups do not come into contact with each other.
(3)第1槽において陽極板と接触しない状態で第1グ
ループの炭素繊維が通過し、第N槽において陰極板と接
触しない状態で第(N−1)グループの炭素繊維が通過
する特許請求の範囲第1項記載の炭素繊維の表面電解処
理装置、
(3) A patent claim in which the carbon fibers of the first group pass through the first tank without contacting the anode plate, and the carbon fibers of the (N-1) group pass through the Nth tank without contacting the cathode plate. The carbon fiber surface electrolytic treatment device according to item 1,
(4)第(n−1)グループの炭素繊維に対して第(n
−1)槽において電解液から炭素繊維への給電及び第n
槽において炭素繊維から電解液への放電は電解液を介し
て非接触的に行われる特許請求の範囲第1項記載の炭素
繊維の表面電解処理装置。
(4) For the (n-1)th group of carbon fibers,
-1) Power supply from the electrolyte to the carbon fiber in the tank and the nth
2. The surface electrolytic treatment apparatus for carbon fibers according to claim 1, wherein the discharge from the carbon fibers to the electrolyte in the tank is performed in a non-contact manner via the electrolyte.
JP18904785A 1985-08-28 1985-08-28 Surface electrolytic treatment device for carbon fiber Pending JPS6250495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18904785A JPS6250495A (en) 1985-08-28 1985-08-28 Surface electrolytic treatment device for carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18904785A JPS6250495A (en) 1985-08-28 1985-08-28 Surface electrolytic treatment device for carbon fiber

Publications (1)

Publication Number Publication Date
JPS6250495A true JPS6250495A (en) 1987-03-05

Family

ID=16234399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18904785A Pending JPS6250495A (en) 1985-08-28 1985-08-28 Surface electrolytic treatment device for carbon fiber

Country Status (1)

Country Link
JP (1) JPS6250495A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193320A (en) * 1987-10-29 1989-08-03 General Electric Co <Ge> Amide-ether amide copolymer and its production
KR100572995B1 (en) * 2001-12-17 2006-04-24 한국화학연구원 Manufacturing process of nickel-plated carbon fibers by electroplating method
US20110166255A1 (en) * 2008-07-11 2011-07-07 Nissin Kogyo Co., Ltd. Sealing member for piping component having excellent chlorine resistance, method for producing sealing member for piping component having excellent chlorine resistance, sealing member for piping component having excellent oil resistance, and piping component having excellent oil resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193320A (en) * 1987-10-29 1989-08-03 General Electric Co <Ge> Amide-ether amide copolymer and its production
KR100572995B1 (en) * 2001-12-17 2006-04-24 한국화학연구원 Manufacturing process of nickel-plated carbon fibers by electroplating method
US20110166255A1 (en) * 2008-07-11 2011-07-07 Nissin Kogyo Co., Ltd. Sealing member for piping component having excellent chlorine resistance, method for producing sealing member for piping component having excellent chlorine resistance, sealing member for piping component having excellent oil resistance, and piping component having excellent oil resistance

Similar Documents

Publication Publication Date Title
US4704196A (en) Process for surface treatment of carbon fiber
WO2017162155A1 (en) Method for continuously preparing graphene oxide nanoplatelet
US4401533A (en) Surface-treatment of carbon fiber
AU1688799A (en) Carbon fibers and a method of producing them
JPS6250495A (en) Surface electrolytic treatment device for carbon fiber
US4925539A (en) Metal fibers obtained by bundled drawing
Varentsova et al. Effect of surface state of carbon fiber electrode on copper electroplating from sulfate solutions
EP1388595A1 (en) Process and apparatus for the formation of alkaline earth carbonates
DE2853166A1 (en) REGENERATIVE FUEL CELL
DE2252128A1 (en) CHEMICALLY EQUIPPED CARBON FIBERS AND FIBERS
KR20190019297A (en) Method for preparing carbon fiber
US2358029A (en) Process of electrodepositing indium
CN220846313U (en) Overflow type surface treatment device for carbon fiber and carbon wire
KR20190084187A (en) Apparatus and method for treating surface of carbon fiber
US5078840A (en) Process for the surface treatment of carbon fiber strands
NEGISHI et al. Characterization of carbon electrode materials for flow type batteries
JPH02269867A (en) Method for carrying out surface electrolytic oxidation of carbon fiber tow having high elasticity
JPH0433907B2 (en)
Viala et al. Mechanical properties and corrosion behavior of lead-silicon carbide fiber and lead-carbon fiber composites made by electrodeposition
CN211005708U (en) Copper foil surface treatment device and equipment
US20210087704A1 (en) Method and apparatus for electrochemical surface treatment of discontinuous conductive materials
CN213417102U (en) Carbon fiber precursor carbonization electrolytic tank
JPS62177278A (en) Apparatus for electrolytic treatment of carbon fiber tow
JPS58115123A (en) Surface treatment of carbon fiber
SU1121327A1 (en) Anode for electroplating processes