KR20030037605A - Copolyester Polymer and process for preparing of it - Google Patents

Copolyester Polymer and process for preparing of it Download PDF

Info

Publication number
KR20030037605A
KR20030037605A KR1020010068865A KR20010068865A KR20030037605A KR 20030037605 A KR20030037605 A KR 20030037605A KR 1020010068865 A KR1020010068865 A KR 1020010068865A KR 20010068865 A KR20010068865 A KR 20010068865A KR 20030037605 A KR20030037605 A KR 20030037605A
Authority
KR
South Korea
Prior art keywords
less
copolyester
catalyst
weight
ptt
Prior art date
Application number
KR1020010068865A
Other languages
Korean (ko)
Other versions
KR100412183B1 (en
Inventor
양승철
손양국
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR10-2001-0068865A priority Critical patent/KR100412183B1/en
Publication of KR20030037605A publication Critical patent/KR20030037605A/en
Application granted granted Critical
Publication of KR100412183B1 publication Critical patent/KR100412183B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE: Provided are a copolyester having similar physical property as a copolymer produced from typical monomers, wherein the copolyester is produced by depolymerizing a product and copolymerizing the depolymerized product with monomers for other polyester, and a method for producing the same. CONSTITUTION: The copolyester represented by formula 1 is produced by using polytrimethylene terephthalate waste, and has a limiting viscosity of 0.5 dl/g or more, a melting temperature of 255 deg.C or less, a terminal carboxyl group value of 50 meq/Kg KOH or less, and contents of dihydroxypropyl ether, dihydroxyethyl ether, and tetrahydrofuran which are byproducts, of 4 wt% or less, 4 wt% or less, and 6 wt% or less respectively. In the formula 1, a is an integer of 2-6, m+n is 100, 0<=m<=n, and each of m and n is a mole fraction.

Description

코폴리에스터 중합물 및 그 제조방법{Copolyester Polymer and process for preparing of it}Copolyester polymer and its manufacturing method {Copolyester Polymer and process for preparing of it}

본 발명은 폴리트리메틸렌 테레프탈레이트(PTT) 폐기물로부터 제조한 일반식(1)의 코폴리에스터 중합물 및 그 제조방법에 관한 것이다.The present invention relates to a copolyester polymer of the general formula (1) prepared from polytrimethylene terephthalate (PTT) waste and a method for producing the same.

단, a는 2 ∼ 6의 정수이며, m + n은 100이며, 0 ≤ m ≤ n 100이며, m과 n은 각각의 몰분율을 나타낸다.However, a is an integer of 2-6, m + n is 100, 0 <= m <= n100, and m and n represent each mole fraction.

일반적으로 폴리에스터는 기계적 성질이 우수하고, 내약품성등 화학적 성질이 양호하여 섬유, 필름 및 엔지니어링 플라스틱 등에 널리 이용되고 있다.In general, polyester has excellent mechanical properties and chemical properties such as chemical resistance is widely used in fibers, films and engineering plastics.

하지만 환경에 대한 관심이 고조되면서 이의 재활용에 대한 연구가 고조되고 있다.However, with the growing interest in the environment, research on its recycling is increasing.

폴리에스터는 화학적인 해중합에 의해 모노머와 이들의 올리고머로 재생되어진다.Polyester is regenerated into monomers and oligomers thereof by chemical depolymerization.

그중에서 PTT는 해중합에 의해 테레프탈산(Terephthalic Acid, 이하 TPA로약칭) 혹은 디메틸테레프탈레이트(Dimethyl terephthalate, 이하 DMT로 약칭)와 1,3-프로판디올(1,3-Propanediol, 이하 PDO로 약칭), 그리고 비스하이드록시프로필 테레프탈레이트[Bis(hydroxy 1,3-propyl terephthalate), 이하 BHPT로 약칭]와 이들의 저중합도 올리고머로 분해되어진다.Among them, PTT is depolymerized by terephthalic acid (abbreviated as TPA) or dimethyl terephthalate (abbreviated as DMT) and 1,3-propanediol (abbreviated as PDO), And bishydroxypropyl terephthalate (Bis (hydroxy 1,3-propyl terephthalate), hereinafter abbreviated as BHPT) and their low polymerization oligomers.

PCT 특허 WO 01/19764에서는 이렇게 재생된 모노머를 이용, 중합해서 PTT 폴리머를 제조하고 있다.In PCT patent WO 01/19764, PTT polymers are prepared by polymerization using such regenerated monomers.

하지만 이 방법은 PTT 호모 폴리머의 제조방법에 대해서만 가능하다.However, this method is only possible for the preparation of PTT homopolymers.

그리고 PTT는 공업화된지가 얼마되지 않았으므로 이의 재생이나 분해에 대해서는 별로 알려져 있지 않다.And since PTT has been industrialized for a while, little is known about its regeneration or degradation.

PTT를 포함한 일반적인 폴리에스터는 섬유, 필름 및 엔지니어링 플라스틱 등에 널리 이용되고 있으나 용융온도가 높아 가공온도가 높다는 문제점을 지니고 있다.General polyester including PTT is widely used in fibers, films and engineering plastics, but has a high melting temperature and high processing temperature.

따라서 제 3의 공중합 모노머를 공중합하여 용융온도를 낮추어 가공성을 개선하는 연구도 병행하여 진행되고 있다.Therefore, studies are being conducted in parallel to improve the processability by copolymerizing a third copolymerization monomer to lower the melting temperature.

본 발명의 목적은 PTT 제품을 해중합 시킨 다음에 이를 다른 폴리에스터 중합 모노머와 공중합시켜서 일반 중합 모노머들로부터 제조되는 코폴리에스터와 유사한 물성을 지니는 상기 식(1)의 코폴리에스터 중합물을 제공하는데 있다.It is an object of the present invention to provide a copolyester polymer of formula (1) having the same physical properties as copolyesters prepared from general polymerization monomers by depolymerizing PTT products and then copolymerizing them with other polyester polymerization monomers. .

또 다른 목적은 해중합 반응조건과 투입되는 공중합 모노머의 조성을 조절해서 독특한 물성을 지니는 상기식(1)의 코폴리에스터의 제조방법을 제공하는데 있다.Another object is to provide a method for preparing the copolyester of the formula (1) having a unique physical property by adjusting the depolymerization reaction conditions and the composition of the copolymerized monomer to be added.

본 발명에 의한 식(1)의 코폴리에스터 중합물은 용도에 따라 물성의 차이는 있으나 극한점도(Intrinsic Viscosity, 이하 IV로 약칭) 0.5dl/g 이상, 용융온도(Melting Temperature, 이하 Tm으로 약칭) 255℃ 이하, 말단 카르복실기(Carboxyl End Group, 이하 CEG로 약칭) 값이 50meq/Kg KOH 이하, 그 외 부반응물로 생기는 디하이드록시프로필 에테르(Dihydroy propyl ether, 이하 DPE로 약칭), 디하이드록시에틸에테르(Dihydroxyethyl ether, 이하 DEG로 약칭), 테트라하이드로퓨란(Tetrahydrofuran, 이하 THF로 약칭)의 함량이 DPE 4중량% 이하, DEG 4중량% 이하, THF 6중량% 이하인 것을 특징으로 한다.Copolyester polymer of formula (1) according to the present invention has a difference in physical properties depending on the use, but the ultimate viscosity (Intrinsic Viscosity, hereinafter abbreviated as IV) 0.5dl / g or more, Melting Temperature (abbreviated as Tm) 255 ℃ or less, Carboxyl End Group (hereinafter abbreviated as CEG) value is 50 meq / Kg KOH or below, Dihydroxyy propyl ether (hereinafter abbreviated as DPE) resulting from other reaction products, Dihydroxyethyl The content of ether (Dihydroxyethyl ether, hereinafter abbreviated as DEG) and tetrahydrofuran (abbreviated as THF) is 4 wt% or less of DPE, 4 wt% or less of DEG, and 6 wt% or less of THF.

단, a는 2 ∼ 6의 정수이며, m + n은 100이며, 0 ≤ m ≤ n 100이며, m과 n은 각각의 몰분율을 나타낸다.However, a is an integer of 2-6, m + n is 100, 0 <= m <= n100, and m and n represent each mole fraction.

본 발명에서 해중합에 제공될 PTT 원료로는 PTT 중합물, 섬유, 의류, 카페트 등의 PTT 섬유로 구성된 제품, PTT 중합물로 제조된 병, 필름등이 모두 해당된다.The PTT raw material to be provided for depolymerization in the present invention includes all products made of PTT fibers such as PTT polymers, fibers, clothing, carpets, bottles made of PTT polymers, films, and the like.

이들 제품은 해중합 반응 전에 적당한 크기로 파쇄하여 사용하는 것이 바람직하다.It is preferable to use these products by crushing them to a suitable size before depolymerization.

PTT 중합물은 그 자체가 칩상이므로 그대로 사용하여도 좋고 섬유등은 약 10 cm 이하의 길이로 파쇄하여 사용하는 것이 좋다.Since the PTT polymer itself is in the form of a chip, it may be used as it is, or fibers and the like may be used after being crushed to a length of about 10 cm or less.

또한 PTT 중합이나 방사시 생성되는 불량품도 이 방법으로 재생 할 수 있다.In addition, defective products generated during PTT polymerization or spinning can be regenerated by this method.

원료를 적당한 크기로 파쇄하는 목적은 이들 원료의 표면적을 크게 하여 화학적인 해중합반응이 용이하게 하려는 데 있다.The purpose of crushing the raw materials to a suitable size is to increase the surface area of these raw materials to facilitate chemical depolymerization.

본 발명에서 해중합 반응은 글라이콜리시스(Glycolysis)나 알코올리시스 (Alcoholysis), 또는 하이드롤리시스(Hydrolysis) 의 방법을 사용한다.The depolymerization reaction in the present invention uses a method of glycolysis (Alcoholysis), or hydrolysis (Hydrolysis).

글라이콜리시스에서 사용하는 화학품으로는 α, ω-디올인 글라이콜을 사용한다.상세하게는 에틸렌 글라이콜(Ethylene Glycol, 이하 EG로 약칭), 프로필렌 글라이콜(Propylene Glycol, 이하 PG로 약칭), 1,4-부탄디올(1,4-Butanediol, 이하 BD로 약칭), 1,5-펜탄디올(1,5-Pentanediol, 이하 PD로 약칭), 1,6-헥산디올(1,6-Hexanediol, 이하 HD로 약칭)을 사용한다.Chemicals used in glycolissis are glycols which are α and ω-diol. Specifically, ethylene glycol (hereinafter abbreviated as EG) and propylene glycol (hereinafter referred to as PG) are used. Abbreviated), 1,4-butanediol (abbreviated to BD), 1,5-pentanediol (abbreviated to PD), 1,6-hexanediol (1, 6-Hexanediol, hereinafter abbreviated as HD).

글라이콜리시스 해중합 반응시 글라이콜의 투입량은 목적으로 하는 최종 제품의 공중합도에 따라 차이가 있으나 PTT의 단위 몰수에 비하여 0.5 ∼ 10배의 몰농도로 투입하는 것이 적당하다.In the glycolysis depolymerization reaction, the amount of glycol varies depending on the degree of copolymerization of the final product, but it is appropriate to add a molar concentration of 0.5 to 10 times that of the number of moles of PTT.

몰 농도가 0.5배 보다 작을 경우에는 반응계 내의 용융점도가 너무 높아 해반응의 진행이 어려우며, 10배 보다 높을 경우에는 반응속도는 빠르게 할 수 있으나 경제적이지 못하다.If the molar concentration is less than 0.5 times, the melt viscosity in the reaction system is too high, so that the progress of the reaction is difficult. If the molar concentration is higher than 10 times, the reaction rate can be increased but it is not economical.

또한 글라이콜리시스의 촉매로는 폴리에스터 해중합이 중합반응의 가역반응이므로 폴리에스터 중합시에 에스터 교환반응이나 공중합반응의 촉매로 사용되는 물질은 모두 사용이 가능하다.In addition, since the glycol depolymerization is a reversible reaction of the polymerization reaction, any material used as a catalyst for the transesterification reaction or the copolymerization reaction during the polyester polymerization can be used as the catalyst of the glycolissis.

상세하게는 안티몬 트리옥사이드나 안티몬 아세테이트 등의 안티몬계 화합물, 테트라부틸타이타네이트나 테트라부틸아이소프로필 타이타네이트 등의 타이타네이트계 화합물, 모노부틸틴 옥사이드 등의 주석계 화합물, 그리고 아연, 납, 코발트, 세륨, 망간, 카드뮴, 마그네슘, 칼슘, 포타슘, 소디움, 리튬 등의 초산염(Acetate) 등을 사용할 수 있다.Specifically, antimony compounds such as antimony trioxide and antimony acetate, titanate compounds such as tetrabutyl titanate and tetrabutyl isopropyl titanate, tin compounds such as monobutyl tin oxide, and zinc and lead Acetate such as cobalt, cerium, manganese, cadmium, magnesium, calcium, potassium, sodium, lithium, and the like can be used.

이들 촉매의 종류와 함량은 공중합 모노머의 종류와 양, 그리고 사용될 용도에 따라 변경이 가능하나 대개 해중합될 PTT 폐기물의 양에 따라 적당한 범위로 선정하는 것이 좋은데, 그 함량은 0.001 ∼ 5중량%가 적당하다.The type and content of these catalysts can be changed depending on the type and amount of copolymerized monomers and the intended use. However, it is generally appropriate to select a suitable range according to the amount of PTT waste to be depolymerized. Do.

촉매의 함량이 0.001중량% 보다 낮을 경우에는 촉매로서의 활성을 나타내기가 어려우며, 5중량% 보다 많을 경우에는 촉매가 최종 중합물내 이물로서 작용을 하여 작업공정성등이 낮아지며 또한 부반응이 많아져 여러 가지 부산물이 많아지게 되는 문제점이 있다.When the content of the catalyst is lower than 0.001% by weight, it is difficult to show activity as a catalyst. When the content of the catalyst is higher than 5% by weight, the catalyst acts as a foreign material in the final polymer, resulting in lower work processability and more side reactions. There is a problem that increases.

이러한 해중합반응으로 제조된 코폴리에스터 올리고머는 통상의 공중합반응에 의하여 고중합도의 코폴리에스터를 제조할 수 있다.The copolyester oligomer prepared by such depolymerization can produce a high degree of polymerization of the copolyester by a conventional copolymerization reaction.

해중합 반응과 공중합반응 과정 어느 시점에서나 중합물의 물성 개선을 위하여 다양한 종류의 첨가제를 투입할 수 있다.At any point in the depolymerization and copolymerization process, various kinds of additives may be added to improve the properties of the polymer.

첨가제의 종류는 다음과 같다.The types of additives are as follows.

섬유로 사용할 경우에 소광제를 투입할 수 있다.When used as a fiber, a quencher may be added.

소광제로는 거의 타이타니움 다이옥사이드를 주로 이용하며 사용되는 섬유의 용도에 따라 그 양은 5중량% 이하가 적당하다.As a matting agent, nearly titanium dioxide is mainly used, and the amount thereof is suitably 5% by weight or less depending on the use of the fiber used.

5중량% 보다 많으면 중합시 조대입자가 많이 생겨 방사시 팩압상승 등의 문제가 생길 수 있다.When more than 5% by weight, a large number of coarse particles are generated during polymerization, which may cause problems such as an increase in pack pressure during spinning.

투입되는 타이타니움 다이옥사이드의 입경은 0.01 ∼ 5 마이크론이 적당하다.The particle diameter of the titanium dioxide to be added is suitably 0.01 to 5 microns.

또한 용도에 따라 열안정제를 투입할 수 있다. 열안정제로는 대개 인산, 트리메틸포스페이트, 트리에틸포스페이트, 트리페닐포스페이트 등의 인 화합물이 주로 이용되며 그 함량은 인 원자 기준으로 500ppm 이하가 적당하다.In addition, a thermal stabilizer may be added depending on the application. As a thermal stabilizer, phosphorus compounds such as phosphoric acid, trimethyl phosphate, triethyl phosphate, and triphenyl phosphate are mainly used. The content of the thermal stabilizer is 500 ppm or less based on the phosphorus atom.

500ppm 보다 많은 경우에는 열안정제가 해중합 반응이나 공중합 반응과정에서 촉매의 활성을 저하시켜 반응이 지연되어 오히려 열분해를 유발시키는 문제점이 있다.In the case of more than 500ppm, the thermal stabilizer deteriorates the reaction by degrading the activity of the catalyst during the depolymerization reaction or the copolymerization reaction, thereby causing thermal decomposition.

또한 산화방지제 및 광안정제로 힌더드 페놀(Hindered phenol)계나 할스(Hindered Amine Light Stabilizer, HALS)계의 열안정제를 사용할 수 있다.In addition, a hindered phenol (Hindered phenol) or a HLS (Hindered Amine Light Stabilizer, HALS) thermal stabilizer may be used as an antioxidant and light stabilizer.

그 함량은 중합물 대비 2중량% 이하가 좋다.The content is preferably 2% by weight or less relative to the polymer.

2중량% 보다 많은 양을 투입할 경우에는 열안정제와 마찬가지로 중합이 지연되는 문제점이 발생한다.If the amount is more than 2% by weight, the polymerization is delayed like the heat stabilizer.

또한 색상을 개선하기 위해 조색제를 투입할 수 있다.You can also add colorants to improve the color.

조색제로는 코발트 아세테이트 등의 무기 첨가제와 클라리언트사의 폴리신세른 레드나 블루 등의 유기 토너를 사용할 수 있다.As the colorant, inorganic additives such as cobalt acetate and organic toners such as polyciner red or blue of Clariant can be used.

코발트 아세테이트 등의 무기 첨가제는 화합물의 금속 원자를 기준으로 중합물 대비 200ppm 이하 투입하는 것이 좋다.Inorganic additives such as cobalt acetate may be added at 200 ppm or less relative to the polymer based on the metal atom of the compound.

200ppm 보다 많으면 이들이 중합물내에서 석출되어 방사 작업성 저하 등의문제가 발생하기 쉽다.If it is more than 200 ppm, these precipitate in the polymer and are likely to cause problems such as deterioration in spinning workability.

유기 토너는 중합물 대비 50ppm 이하를 투입하는 것이 유리하다.The organic toner is advantageously added at 50 ppm or less relative to the polymer.

50ppm 보다 많을 경우에는 색상을 원하는 범위 내로 조절하기가 어려울 뿐만 아니라 유기 토너 가격이 고가이어서 제조 경비가 상승된다.If it is more than 50 ppm, it is difficult to adjust the color to the desired range, and the manufacturing cost is increased because the organic toner price is high.

코폴리에스터의 공중합 촉매로는 해중합에서 사용되는 모든 촉매나 일반적인 폴리에스터 공중합 촉매로 사용되는 안티모니 트리옥사이드나 안티모니 아세테이트 등의 안티몬계 촉매, 테트라부틸타이타네이트나 테트라아이소프로필타이타네이트 등의 타이타니움계 촉매 그리고 게르마늄 다이옥사이드 등의 게르마늄계 촉매를 모두 사용할 수 있으며 혹은 이들을 섞어서 사용하거나 또는 투입시점별로 별도 투입하는 방법을 모두 이용할 수 있다.Copolymers of copolyesters include all catalysts used in depolymerization, antimony-based catalysts such as antimony trioxide and antimony acetate used as general polyester copolymerization catalysts, tetrabutyl titanate and tetraisopropyl titanate, etc. Titanium-based catalysts and germanium-based catalysts such as germanium dioxide may be used, or all of them may be mixed or used separately.

이들의 함량은 촉매의 금속함량 기준으로 0.001 ∼ 0.5중량%가 좋다.Their content is preferably 0.001 to 0.5% by weight based on the metal content of the catalyst.

하지만 안티몬계 촉매를 단독으로 사용할 경우는 가격은 저렴하나 활성이 낮아 중합도를 높이는데 어려움이 있으므로 안티몬계 촉매의 단독사용은 곤란하다.However, when the antimony catalyst is used alone, the price is low but the activity is low, so it is difficult to increase the degree of polymerization, so it is difficult to use the antimony catalyst alone.

그리고 타이타니움계 촉매와 게르마늄계의 촉매는 안티몬계 촉매에 비해 가격이 비싸므로 안티몬계의 촉매를 병행해서 사용하는 것도 가능하다.In addition, since the titanium catalyst and the germanium catalyst are more expensive than the antimony catalyst, it is also possible to use an antimony catalyst in parallel.

따라서 안티몬계의 촉매를 사용하는 경우에는 반드시 타이타니움계 촉매나 게르마늄계 촉매를 병행해야 한다.Therefore, in the case of using an antimony catalyst, a titanium catalyst or a germanium catalyst must be used in parallel.

0.001중량% 보다 적을 경우에는 중합반응이 지연되어 위에서 설명한 바 있는 문제점이 생길 수 있으며 0.5중량% 보다 많을 경우에는 부반응이 많아질 뿐만 아니라 폴리머내에 이물이 많게 되는 문제점이 생긴다.If it is less than 0.001% by weight, the polymerization reaction may be delayed, and the above-described problems may occur. If the amount is more than 0.5% by weight, the side reactions may be increased, and there may be a lot of foreign matter in the polymer.

그리고 해중합 반응온도는 해중합반응에 참여하는 글라이콜의 비점(Boiling Point, 이하 Tb로 약칭)을 기준으로 Tb ∼ Tb+80℃의 범위가 좋다.The depolymerization reaction temperature is in the range of Tb to Tb + 80 ° C based on the boiling point of the glycol participating in the depolymerization reaction (hereinafter abbreviated as Tb).

Tb 보다 낮을 경우에는 PTT 중합물의 글라이콜에 대한 유동성이 낮아 반응의 진행이 더디며, Tb + 80℃ 보다 높을 경우에는 글라이콜의 돌비현상으로 반응을 제어하기 힘들게 된다.When it is lower than Tb, the fluidity of the PTT polymer to the glycol is low, and the progress of the reaction is slow. When it is higher than Tb + 80 ° C., it is difficult to control the reaction due to the dolby phenomenon of glycol.

또한 축중합 반응의 온도는 최종적으로 제조되는 코폴리에스터의 융점(Melting Point, 이하 Tm으로 약칭)을 기준으로 하여 Tm + 10℃ ∼ Tm + 80℃의 범위가 좋다.The temperature of the polycondensation reaction may be in the range of Tm + 10 ° C. to Tm + 80 ° C. on the basis of the melting point (hereinafter, abbreviated as Tm) of the copolyester finally produced.

Tm + 10℃ 보다 낮을 경우에는 반응물의 용융점도가 너무 높거나 반응물이 완전히 용해되지 않아 반응이 진행되지 않으며, Tm + 80℃ 보다 높으면 반응속도는 빠르지만 열분해와 부반응속도도 같이 빨라져 코폴리에스터의 품질이 저하된다.If it is lower than Tm + 10 ℃, the reaction does not proceed because the melt viscosity of the reactant is too high or the reactant is not completely dissolved.If it is higher than Tm + 80 ℃, the reaction rate is fast but pyrolysis and side reaction speed are also fast. The quality is degraded.

그리고 코폴리에스터가 무정형 코폴리머(Armophous Copolymer)로 제조되는 경우(일반적으로 PTT의 몰비가 전체 폴리머의 30 ∼ 70몰%를 차지할 경우)에 있어서는 중축합반응온도를 180℃ ∼ 280℃로 하는 것이 적당하다.In the case where the copolyester is made of an amorphous copolymer (generally, when the molar ratio of PTT occupies 30 to 70 mol% of the entire polymer), the polycondensation reaction temperature is 180 ° C to 280 ° C. It is suitable.

본 발명을 이하의 실시예에 의하여 자세히 설명하고자 한다.The present invention will be described in detail by the following examples.

본 발명에서 해중합의 원료인 PTT로는 (주)효성 섬유연구소에서 제조된 75데니어/36필라멘트의 PTT 연신사를 5cm로 잘라내어 사용하였다.In the present invention, PTT, which is a raw material for depolymerization, was cut to 75 cm of 75 denier / 36 filament manufactured by Hyosung Textile Research Institute.

본 발명에 의한 물성은 다음과 같이 평가하였다.Physical properties according to the present invention were evaluated as follows.

1. 극한점도(IV)Ultimate viscosity (IV)

용제로 페놀/1,1,2,2-테트라클로로에탄을 6/4(중량)로 혼합하여 25℃에서 우벨로데 점도계로 측정하였다.Phenol / 1,1,2,2-tetrachloroethane was mixed with 6/4 (weight) as a solvent, and it measured by the Ubelide viscometer at 25 degreeC.

2. 부산물의 측정2. Measurement of By-products

제조된 코폴리에스터를 모노에탄올아민으로 가수분해하여 가스크로마토그래피로 측정하였다.The prepared copolyester was hydrolyzed with monoethanolamine and measured by gas chromatography.

3. 말단 카르복실기의 측정3. Measurement of terminal carboxyl group

제조된 코폴리에스터를 벤질알코올에 녹여 KOH로 역적정하여 분석하였다.The prepared copolyester was dissolved in benzyl alcohol and analyzed by reverse titration with KOH.

4. 코폴리에스터내의 PTT 함량(몰%)4. PTT content (mol%) in copolyester

제조된 코폴리에스터를 트리플로로 아세틱 에시드로 녹여서 핵자기공명분석 (Nuclear Magnetic Resonance)을 이용하여 프로톤 NMR로 분석하였다.The prepared copolyester was dissolved in trichloroacetic acid and analyzed by proton NMR using Nuclear Magnetic Resonance.

5. 열분석5. Thermal Analysis

중합물의 용융온도(Melting Temperature, Tm)은 Perkin-Elmer사의 DSC-7을 이용하여 DSC(Differential Scanning Calorimetry, 시차주사열분석) 차트에서의 피크점의 온도로 정의하여 분석하였다.Melting temperature (Tm) of the polymer was analyzed by defining the temperature of the peak point in a differential scanning calorimetry (DSC) chart using Perkin-Elmer's DSC-7.

실시예 1Example 1

교반기와 유출수 칼럼등이 설치된 반응기에 PTT 412g과, 해중합 반응 촉매로 초산 아연(Zinc Acetate)을 0.4g 포함하는 EG 620g(EG가 PTT 반복단위의 5몰배임)을 투입하였다.Into a reactor equipped with a stirrer and an effluent column, EG 620g (EG is 5 mol times the PTT repeating unit) containing 0.4 g of zinc acetate (Zinc Acetate) was added as a depolymerization catalyst.

교반과 더불어 반응기 승온을 실시하여 반응기 내부온도가 220℃가 되면 교반을 지속하면서 2시간 방치하였다.In addition to stirring, the reactor was heated up and left for 2 hours while the stirring was continued when the temperature inside the reactor became 220 ° C.

이를 공중합 반응기로 이송하여 270℃로 승온한 후 공중합 촉매로 테트라부틸타이타네이트를 0.3g 함유한 120℃로 보온된 EG 10g을 투입한 후 진공을 실시하여 통상의 폴리에스터 공중합 반응과 마찬가지 반응으로 중합하여 코폴리에스터를 제조하였으며 제조된 코폴리에스터의 물성을 표 1에 나타내었다.This was transferred to a copolymerization reactor, the temperature was raised to 270 ° C., and then 10 g of EG kept at 120 ° C. containing 0.3 g of tetrabutyl titanate was added as a copolymerization catalyst, followed by vacuum, followed by a reaction similar to that of a conventional polyester copolymerization reaction. Copolymer was prepared by polymerization, and the physical properties of the prepared copolyester are shown in Table 1.

실시예 2Example 2

교반기와 유출수 칼럼등이 설치된 반응기에 PTT 412g과, 해중합 반응 촉매로 초산 아연(Zinc Acetate)을 0.4g 포함하는 1,4부탄디올(BD) 900g(BD가 PTT 반복단위의 5몰배임)을 투입하였다.Into a reactor equipped with a stirrer and an effluent column, 412 g of PTT and 900 g of 1,4 butanediol (BD) containing 0.4 g of zinc acetate (Zinc Acetate) as a depolymerization catalyst were added (BD is 5 moles of the PTT repeating unit). .

교반과 더불어 반응기 승온을 실시하여 반응기 내부온도가 240℃가 되면 교반을 지속하면서 2시간 방치하였다.In addition to stirring, the temperature of the reactor was increased, and the reaction temperature was allowed to stand for 2 hours while the stirring was continued.

이를 공중합 반응기로 이송하여 260℃로 승온한 후 공중합 촉매로 테트라부틸타이타네이트를 0.3g 함유한 120℃로 보온된 BD 10g을 투입한 후 진공을 실시하여 통상의 폴리에스터 공중합 반응과 마찬가지 반응으로 중합하여 코폴리에스터를 제조하였으며 제조된 코폴리에스터의 물성을 표 1에 나타내었다.This was transferred to a copolymerization reactor, the temperature was raised to 260 ° C., and then 10 g of BD kept at 120 ° C. containing 0.3 g of tetrabutyl titanate was added as a copolymerization catalyst, followed by vacuum, followed by a reaction similar to that of a conventional polyester copolymerization reaction. Copolymer was prepared by polymerization, and the physical properties of the prepared copolyester are shown in Table 1.

실시예 3Example 3

열안정제로 인산 0.05g를 초기 EG 투입분에 넣은 것을 제외하고는 실시예 1과 똑같이 실시하여 제조된 코폴리에스터의 물성을 표 1에 나타내었다.Table 1 shows the physical properties of the copolyester prepared in the same manner as in Example 1 except that 0.05 g of phosphoric acid was added to the initial EG feed as a heat stabilizer.

실시예 4Example 4

공중합 촉매로 게르마늄 다이옥사이드를 0.05g 용해시킨 EG 용액 10g을 투입한 후 5분 후에 테트라부틸타이타네이트를 0.2g 함유한 120℃로 보온된 EG 10g을 투입한 것을 제외하고는 실시예 1과 똑같이 실시하여 제조된 코폴리에스터의 물성을 표 1에 나타내었다.10 g of EG solution in which 0.05 g of germanium dioxide was dissolved as a copolymerization catalyst was added thereto, and 5 minutes thereafter, 10 g of EG kept at 120 ° C. containing 0.2 g of tetrabutyl titanate was added. Table 1 shows the physical properties of the prepared copolyester.

실시예 5Example 5

실시예 1에서 제조된 코폴리에스터를 이용하여 방사온도 275℃, 방사속도 3,200m/분으로 방사하여 115데니어/36필라멘트의 반연신사를 제조 후, 이를 연신하여 75데니어/36필라멘트의 연신사를 제조하였다.By using the copolyester prepared in Example 1 to spin at a spinning temperature of 275 ℃, spinning speed 3,200m / min to prepare a semi-drawn yarn of 115 denier / 36 filaments, and then stretched to draw a 75 denier / 36 filament Prepared.

강도가 4.5g/d, 신도 50%, 비수수축율 8.5%의 물성을 나타내었으며 PET, PTT로 제조된 동일한 사종(75데니어/36필라멘트)을 분산염료를 이용하여 110℃, 130℃에서 고압으로 각각 염색한 결과 어느 조건에서나 PET, PTT 보다 염료의 흡착량이 많았다.The strength was 4.5g / d, elongation 50%, non-shrinkage rate 8.5%, and the same yarns (75 denier / 36 filaments) made of PET and PTT were used at 110 ℃ and 130 ℃ using high pressure dyes, respectively. As a result of dyeing, the adsorption amount of dye was higher than that of PET and PTT under any conditions.

비교예 1Comparative Example 1

공중합촉매로 테트라부틸타이타네이트 대신에 안티모니 트리옥사이드를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Example 1 except that antimony trioxide was used instead of tetrabutyl titanate as a copolymer catalyst.

< 표 1 ><Table 1>

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 비교예 1Comparative Example 1 극한점도IV(dl/g)Intrinsic Viscosity IV (dl / g) 0.790.79 0.680.68 0.740.74 0.720.72 0.340.34 PTT 함량(몰%)PTT content (mol%) 7272 4444 7474 7373 7171 Tm(℃)*Tm (℃) * 197197 NDND 194194 196196 195195 CEG(meq/Kg)CEG (meq / Kg) 3434 3232 3636 3131 3636 DPE(중량%)DPE (% by weight) 0.70.7 0.60.6 0.70.7 0.70.7 0.70.7 DEG(중량%)DEG (% by weight) 0.30.3 00 0.40.4 0.30.3 0.40.4 THF(중량%)THF (% by weight) 00 3.13.1 00 00 00

* DSC상의 용융발열 피크가 너무 작아 정확한 값은 분석이 어려우며 ND는 전혀 나타나지 않음* The melting exothermic peak on DSC is so small that accurate values are difficult to analyze and no ND appears at all

본 발명은 PTT로 제조되는 수지 및 섬유와 이의 제조 중에 발생되는 폐기물들을 소각하지 않고 재생할 수 있어 환경을 보호할 수 있고, 또한 이러한 폐기물을 이용하여 제조된 코폴리에스터 중합물은 수지나 섬유용으로 사용이 가능하다.The present invention can protect the environment by recycling the resins and fibers made of PTT and the wastes generated during its manufacture without incineration, and the copolyester polymers prepared using such wastes are used for resins or fibers. This is possible.

본 발명의 코폴리머는 폐기물을 사용하지 않고 통상의 원료로 제조한 코폴리에스터와 거의 유사한 물성을 가지며, 특히 낮은 용융온도를 가지기 때문에 가공성을 개선할 수 있는 중합물의 제조가 가능하다.The copolymer of the present invention has substantially similar physical properties to copolyesters prepared from conventional raw materials without using waste, and in particular, has a low melting temperature, thereby making it possible to produce a polymer having improved processability.

Claims (6)

폴리트리메틸렌테레프탈레이트 폐기물을 이용하여 제조한 식(1)의 코폴리에스터로서, 극한점도 0.5dl/g 이상, 용융온도 255℃ 이하, 말단 카르복실기 값이 50meq/Kg KOH 이하이고, 제조후 생성된 부산물인 디하이드록시프로필 에테르, 디하이드록시에틸에테르, 테트라하이드로퓨란의 함량이 각각 4중량% 이하, 4중량% 이하, 6중량% 이하인 것을 특징으로 하는 코폴리에스터 중합물.Copolyester of formula (1) prepared using polytrimethylene terephthalate waste, having an ultimate viscosity of 0.5 dl / g or more, a melting temperature of 255 ° C. or less, and a terminal carboxyl group value of 50 meq / Kg KOH or less, A copolyester polymer, characterized in that the by-products dihydroxypropyl ether, dihydroxyethyl ether, tetrahydrofuran content of 4% by weight or less, 4% by weight or less, 6% by weight or less, respectively. 단, a는 2 ∼ 6의 정수이며 m + n은 100이며, 0 ≤ m ≤ n 100이며, m과 n은 각각의 몰분율을 나타낸다.However, a is an integer of 2-6, m + n is 100, 0 <= m <n100, and m and n represent each mole fraction. 제 1 항에 있어서, 폴리트리메틸렌 테레프탈레이트 폐기물은 섬유인 것을 특징으로 하는 코폴리에스터 중합물.The copolyester polymer according to claim 1, wherein the polytrimethylene terephthalate waste is a fiber. PTT로 이루어진 폐기물에 에틸렌 글라이콜, 프로필렌 글라이콜, 1,4-부탄디올, 1,5-펜탄디올, 1,6-헥산디올 중에서 선택한 것을 PTT단위 몰수에 대하여 0.5 ~ 10배로 투입하여 해중합시킨 후, 안티몬, 타이타니움, 게르마늄계 촉매중에서 한가지 이상을 선택하여 공중합함을 특징으로 하는 코폴리에스터 중합물의 제조방법.PTH wastes were depolymerized by ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol at 0.5 to 10 times the number of moles of PTT units. After, at least one selected from antimony, titanium, germanium-based catalyst copolymerization method characterized in that the copolymerization. 제 3 항에 있어서, 해중합 온도는 사용되는 글라이콜의 비점(Tb)을 기준으로 Tb~ Tb + 80℃의 범위인 것을 특징으로 하는 코폴리에스터 중합물의 제조방법.The method according to claim 3, wherein the depolymerization temperature is in the range of Tb to Tb + 80 ° C based on the boiling point (Tb) of the glycol used. 제 3 항에 있어서, 공중합 온도는 최종적으로 제조되는 코폴리에스터의 융점(Tm)을 기준으로 하여 Tm + 10℃ ~ Tm + 80℃이거나, Tm이 존재하지 않을 경우 180 ~ 280℃ 인 것을 특징으로 하는 코폴리에스터 중합물의 제조방법.The method of claim 3, wherein the copolymerization temperature is Tm + 10 ° C ~ Tm + 80 ° C based on the melting point (Tm) of the copolyester finally produced, or 180 ~ 280 ° C when Tm is not present Method for producing a copolyester polymer. 제 3 항에 있어서, 촉매의 함량은 첨가되는 촉매의 금속함량 기준으로 중합물 대비 0.001 ∼ 0.5중량%임을 특징으로 하는 코폴리에스터 중합물의 제조방법.The method according to claim 3, wherein the content of the catalyst is 0.001 to 0.5% by weight based on the metal content of the catalyst to be added.
KR10-2001-0068865A 2001-11-06 2001-11-06 Copolyester Polymer and process for preparing of it KR100412183B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0068865A KR100412183B1 (en) 2001-11-06 2001-11-06 Copolyester Polymer and process for preparing of it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0068865A KR100412183B1 (en) 2001-11-06 2001-11-06 Copolyester Polymer and process for preparing of it

Publications (2)

Publication Number Publication Date
KR20030037605A true KR20030037605A (en) 2003-05-14
KR100412183B1 KR100412183B1 (en) 2003-12-24

Family

ID=29568168

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0068865A KR100412183B1 (en) 2001-11-06 2001-11-06 Copolyester Polymer and process for preparing of it

Country Status (1)

Country Link
KR (1) KR100412183B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100971905B1 (en) * 2005-12-30 2010-07-22 주식회사 효성 Copolyester resin Chemically Recycled from polyethylene terephthalate and Manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2807501B2 (en) * 1989-09-19 1998-10-08 ポリプラスチックス株式会社 Transparent polyester film, sheet and method for producing the same
WO1995024442A1 (en) * 1994-03-11 1995-09-14 Monsanto Company Copolymers of recycled polyesters
EP0835446B1 (en) * 1995-06-26 2003-04-09 Perseptive Biosystems, Inc. High speed, automated, continuous flow, multi-dimensional molecular selection and analysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100971905B1 (en) * 2005-12-30 2010-07-22 주식회사 효성 Copolyester resin Chemically Recycled from polyethylene terephthalate and Manufacturing method thereof

Also Published As

Publication number Publication date
KR100412183B1 (en) 2003-12-24

Similar Documents

Publication Publication Date Title
JP2005320533A (en) Cationic dye-dyeable and flame-retardant polyester polymer and its manufacturing method
CN105940034B (en) Poly- (the terephthalic acid (TPA) alkylene ester) of the end-blocking of the modification prepared by using the titanium-containing catalyst in situ and composition from this
KR100764378B1 (en) Manufacturing method of flame retardant polyester polymer, polyester polymer and fiber therefrom
KR20120096165A (en) Biodegradable copolyester resin made from biomass resources
KR100841175B1 (en) Atmospheric cationic dye dyeable copolyester polymer, manufacturing method thereof, and atmospheric cationic dye dyeable copolyester fiber using the same
JP4342211B2 (en) Polyester and method for producing the same
KR100412183B1 (en) Copolyester Polymer and process for preparing of it
KR20110078934A (en) Recycled polyester yarn using waste polyester and method thereof
KR101430108B1 (en) Methods for biodegradable polyester using waste polyester
KR20110080271A (en) Method for chemical recycling polyester and thermalbonding fiber including the polyester
KR102043372B1 (en) Copolymerized Polyester for Low-melting Binder with Excellent Touch and Color and Polyester Binder Fiber Using Same
KR20150067797A (en) Method for Dyeability Co-polyester Resin Using Chemical Recycling Process
KR101285802B1 (en) Polymerizing of polyester
KR100456729B1 (en) A Process for manufacturing a cation dyeable polytrimethylene terephthalate copolymer
CN108659211B (en) Preparation method of hydrophobic alcohol metal compound and isosorbide modified polyester
CN111621004B (en) High-toughness biodegradable polyester and preparation method and application thereof
JP5216972B2 (en) Method for producing atmospheric pressure cationic dyeable polyester fiber
CN1473170A (en) Polytrimethylene terephthalate polyester
KR100531041B1 (en) Easily dyeable copolyester polymer prepared by terephthalic acid process, Fibers thereof and Method for preparing the same
KR102499138B1 (en) Copolyester Resin Dyable with a Cationic Dye for Nonwoven Fabrics
JP5216971B2 (en) Method for producing cationic dyeable polyester fiber
CN110520460B (en) Process for the preparation of poly (alkylene furandicarboxylate)
US3817934A (en) Sulfodicarboxylic acid caprolactam reaction product modified polyesters
KR101159841B1 (en) Manufacturing method of amorphous polyester using titanium compound as catalyst
KR100506891B1 (en) Copolyester polymer copolymerized with cyclohexane 1,4-dimethanol and deeply dyeable copolyester fiber made therefrom

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120619

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131105

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141105

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20151112

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20161114

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20171113

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20181113

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20191112

Year of fee payment: 17