KR100841175B1 - Atmospheric cationic dye dyeable copolyester polymer, manufacturing method thereof, and atmospheric cationic dye dyeable copolyester fiber using the same - Google Patents

Atmospheric cationic dye dyeable copolyester polymer, manufacturing method thereof, and atmospheric cationic dye dyeable copolyester fiber using the same Download PDF

Info

Publication number
KR100841175B1
KR100841175B1 KR1020070042569A KR20070042569A KR100841175B1 KR 100841175 B1 KR100841175 B1 KR 100841175B1 KR 1020070042569 A KR1020070042569 A KR 1020070042569A KR 20070042569 A KR20070042569 A KR 20070042569A KR 100841175 B1 KR100841175 B1 KR 100841175B1
Authority
KR
South Korea
Prior art keywords
polymer
cationic dye
acid
reactor
dibasic acid
Prior art date
Application number
KR1020070042569A
Other languages
Korean (ko)
Inventor
양승철
손양국
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020070042569A priority Critical patent/KR100841175B1/en
Priority to TW097113865A priority patent/TWI378949B/en
Priority to TR2008/02647A priority patent/TR200802647A2/en
Priority to JP2008115837A priority patent/JP2008274277A/en
Priority to CN2008100938365A priority patent/CN101298493B/en
Application granted granted Critical
Publication of KR100841175B1 publication Critical patent/KR100841175B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/10Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Coloring (AREA)
  • Artificial Filaments (AREA)

Abstract

A room temperature cationic dye dyeable copolyester polymer, a method for preparing the polymer, and a room temperature cationic dye dyeable copolyester fiber prepared by using the polymer are provided to improve dyeing property of a cationic dye at a low temperature of 100 deg.C or less and to lower the manufacturing cost of a copolyester fiber. A room temperature cationic dye dyeable copolyester polymer comprises 1-20 mol% of an aliphatic dibasic acid component; and 1.0-2.0 mol% of a bishydroxyethyl isophthalate containing a metal sulfonate represented by the formula 1 based on the total dibasic acid component, wherein M is an alkali metal. Preferably the polymer contains 1.5-3.5 wt% of diethylene glycol, 20 ppm or less of the unreacted terephthalic acid and 30-50 eq/ton of a carboxyl terminal group.

Description

상압 카치온 염료 가염성 코폴리에스터 중합물, 그 제조 방법 및 이를 이용한 상압 카치온 염료 가염성 코폴리에스터 섬유 {Atmospheric cationic dye dyeable copolyester polymer, manufacturing method thereof, and atmospheric cationic dye dyeable copolyester fiber using the same}Atmospheric cationic dye dyeable copolyester polymer, manufacturing method etc, and atmospheric cationic dye dyeable copolyester fiber using the same}

도 1은 본 발명의 중합물 제조에 사용되는 3관식 TPA중합반응기의 공정도이다.1 is a process diagram of a three-tube TPA polymerization reactor used to prepare a polymer of the present invention.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1 : 조제조 2 : 슬러리 보관조1 Preparation 2 Slurry Storage Tank

3 : DE-1 4 : 이송 라인 필터 3: DE-1 4: feed line filter

5 : DE-2 6 : 이송 라인 필터 5: DE-2 6: Feed Line Filter

7 : 중축합 반응조 8 : 펠렛 타이져(pelletizer)7: polycondensation reactor 8: pelletizer

본 발명은 상압 카치온 염료 가염성 코폴리에스터 중합물, 그 제조 방법 및 이를 이용한 상압 카치온 염료 가염성 코폴리에스터 섬유에 관한 것으로, 제조 경비가 저렴함 테레프탈산(terephthalic acid, 이하 TPA 로 약칭)을 원료로 하는 중합 공법을 이용하여, 100℃이하의 상압에서 카치온 염료에 대한 염색성이 우수한 코폴리에스터 중합물 및 그 섬유를 균일한 품질과 저렴한 제조 경비로 제공하기 위한 것이다.  The present invention relates to an atmospheric pressure cationic dye chlorinated copolyester polymer, a method for producing the same, and an atmospheric pressure cationic dye salted copolyester fiber using the same, which is inexpensive to manufacture, using terephthalic acid (hereinafter abbreviated as TPA) as a raw material. By using the polymerization method, to provide a copolyester polymer and the fiber excellent in the dyeability to the cationic dye at a normal pressure of 100 ℃ or less with uniform quality and low production cost.

100℃이하의 상압에서 카치온 염료에 의해 염색이 가능한 상압 카치온 염료 가염성 코폴리에스터 중합물과 그 섬유에 관해서는 다음과 같이 개시되어 있다. 일본 특허 특개2002-284863호 공보에는 상압 카치온 염료 가염성 폴리에스터 중합물을 연속적으로 제조하는 방법이 개시되어 있으며, 구체적으로, 상기 폴리에스터는, 금속 설포네이트염이 산성분의 2.0~3.0몰%이고, 400~1000의 분자량을 가진 폴리알킬렌 글라이콜이 중합물 중에 4.0~6.0중량%로 포함되며, 중합물 내 디에틸렌 글라이콜의 함량이 4.5~6.0몰%이고, 카르복실 말단기가 20~30당량/톤이며, 극한점도의 편차가 작은 물성을 가진다. Regarding atmospheric pressure cationic dye saltable copolyester polymers and fibers thereof which can be dyed with cationic dyes at atmospheric pressure of 100 ° C. or lower, the following is disclosed. Japanese Patent Application Laid-Open No. 2002-284863 discloses a method for continuously preparing an atmospheric pressure cationic dye saltable polyester polymer, specifically, the polyester has a metal sulfonate salt of 2.0 to 3.0 mol% of an acid component. , Polyalkylene glycol having a molecular weight of 400 to 1000 is included in the polymer as 4.0 to 6.0% by weight, the content of diethylene glycol in the polymer is 4.5 to 6.0 mol%, 20 to 30 carboxyl end groups Equivalent / tonne, and has a small physical variation with extreme viscosity.

하지만 이 발명에 의해 제조되는 상압 카치온 염료 가염성 폴리에스터 섬유는 금속 설포네이트 염의 함량이 많아 감량 가공시 감량속도가 너무 빨라 섬유로서의 형상을 유지하기 어려울 뿐만 아니라 반응중의 부산물인 디에틸렌 글라이콜의 함량이 너무 높아 중합물 및 제조되는 섬유의 내열성을 취약하게 하는 문제점이 있다.However, the atmospheric pressure cationic dye chlorinated polyester fibers produced by the present invention have a high content of metal sulfonate salts, so that the weight loss rate is too fast during weight loss processing, making it difficult to maintain the shape as a fiber and diethylene glycol as a by-product of the reaction. Too high a content of the polymer and a problem that makes the heat resistance of the fiber to be made weak.

일본특허 특개2001-55626호 공보에는 금속 설포네이트염이 0.1~10몰%로 공중 합 되어 있고 내열성을 향상시키기 위해 HO(CH2CH2O)l(RO)m(CH2CH2O)nH (단, 식중 R은 탄소수 3~25의 지방족 탄화 수소기, l, n은 동일하거나 다른 정수로 1≤l+n≤40, m은 2~50까지의 정수)로 표시되는 물질을 0.1~10중량% 함유하는 폴리에스터 섬유를 개시하고 있다. 하지만 이 발명에 의해 상압 카치온 가염형 폴리에스터 섬유를 제조하기 위해서는 HO(CH2CH2O)l(RO)m(CH2CH2 O)nH (단, 식중 R은 탄소수 3~25의 지방족 탄화수소기, l, n은 동일하거나 다른 정수로 1≤l+n≤40, m은 2~50까지의 정수)로 표시되는 물질을 사용해야 하나, 이 물질은 가격이 높아 제조경비가 상승하기 때문에 적당하지 않으며, 상기 발명의 실시예에서 개시되어 있는 디메틸 테레프탈레이트 제조법으로 제조할 경우 제조 경비가 더욱 상승한다. 또한 이 발명에서 개시되어 있는 카치온 염착좌석을 가지고 있는 공중합 성분들 중 아이소프탈산 유도체들은 가격이 높아 사용이 곤란하며, 이의 유도체중 공업적으로 상용화된 메틸 에스터형의 물질은 테레프탈산 중합 공법에 직접 적용이 어렵다.Japanese Patent Laid-Open No. 2001-55626 discloses that a metal sulfonate salt is copolymerized at 0.1 to 10 mol% and HO (CH 2 CH 2 O) l (RO) m (CH 2 CH 2 O) n to improve heat resistance. 0.1 to a substance represented by H (wherein R is an aliphatic hydrocarbon group having 3 to 25 carbon atoms, l and n are the same or different integers, 1 ≦ l + n ≦ 40, and m is an integer of 2 to 50). Disclosed is a polyester fiber containing 10% by weight. However, according to the present invention, in order to prepare an atmospheric pressure cationic salt type polyester fiber, HO (CH 2 CH 2 O) l (RO) m (CH 2 CH 2 O) n (wherein R is an aliphatic hydrocarbon group of 3 to 25 carbon atoms, l, n is the same or different integer, 1≤l + n≤40, m is an integer of 2-50) Although it should be used, this material is not suitable because of the high cost of manufacturing, and the manufacturing cost is further increased when the dimethyl terephthalate manufacturing method disclosed in the embodiment of the present invention is prepared. In addition, the isophthalic acid derivatives among the copolymerized components having the cation salted seat disclosed in the present invention are difficult to use because of their high price. it's difficult.

일본 특허 특개평5-331719호 공보에는 설폰산포스포니움염기와 폴리옥시알킬렌 글라이콜을 공중합하여 상압 가염화 섬유를 제조하는 것이 제안되어 있으나, 설폰산포스포니움염기의 가격이 너무 높기 때문에 공업적으로 적용하기가 어렵다. Japanese Patent Application Laid-Open No. 5-331719 proposes to produce atmospheric pressure chlorinated fiber by copolymerizing sulfonic acid phosphonium base and polyoxyalkylene glycol, but the price of sulfonic acid phosphonium base is too high. Therefore, it is difficult to apply industrially.

일본 특허 특개2006-63215호 공보에는 금속 설포네이트염을 0.5~8.0몰% 함유하고, 탄소수 5~10의 지방족 이염기산을 전체 산성분에 대비하여 0.5~8.0몰%로 공중합하며, 공중합 촉매로서는 마그네슘 화합물이나 알루미늄 화합물을 사용하는 방법이 개시되어 있으나, 공중합 촉매로 사용되는 화합물의 가격이 공업적으로 적용 하기에는 너무 비싼 단점이 있다.Japanese Patent Application Laid-Open No. 2006-63215 discloses 0.5 to 8.0 mol% of metal sulfonate salt, copolymerizes aliphatic dibasic acid having 5 to 10 carbon atoms at 0.5 to 8.0 mol% relative to the total acid component, and magnesium as a copolymerization catalyst. Although a method of using a compound or an aluminum compound is disclosed, there is a disadvantage that the price of the compound used as a copolymerization catalyst is too expensive for industrial application.

이에 저렴한 제조 경비와 품질이 우수한 상압 카치온 염료 가염성 코폴리에스터 중합물 및 그 섬유를 제공하기 위한 제조 공법의 연구가 요구되어 왔다.Therefore, there has been a demand for research into a manufacturing method for providing a low pressure manufacturing cost and excellent atmospheric pressure cationic dye salt copolyester polymer and its fiber.

본 발명이 이루고자 하는 기술적 과제는 폴리에스터의 제조원가를 낮출 수 있는 TPA중합공법을 이용하여, 100℃이하의 상압에서 카치온 염료에 의해 염색이 가능한 상압 카치온 염료 가염성 코폴리에스터 섬유용 중합물 및 그 제조 방법을 제공하는 것이다. . The technical problem to be achieved by the present invention is to use a TPA polymerization method that can lower the production cost of the polyester, the polymer for atmospheric pressure cationic dye saltable copolyester fibers that can be dyed by the cationic dye at a normal pressure of 100 ℃ or less and the preparation thereof To provide a way. .

본 발명은 상기 방법을 이용하여, 유리전이온도가 낮고 염색성이 우수한 상압 카치온 염료 가염성 코폴리에스터 섬유를 제공하는 것이다.The present invention, by using the above method, to provide a low-pressure cationic dye salt-coating copolyester fiber having a low glass transition temperature and excellent dyeability.

본 발명의 기술적 과제는 하기 설명하는 본 발명에 의해 모두 달성될 수 있다.The technical problem of the present invention can be achieved by the present invention described below.

본 발명의 하나의 양상은, 전체 이염기산 성분에 대하여, 지방족 이염기산의 성분 1 ~ 20몰% 및 금속 설포네이트염을 함유하는 비스하이드록시 에틸아이소프탈레이트 1.0 ~ 2.0 몰%을 포함하는 상압 카치온 염료 가염성 코폴리에스터 섬유용 중합물에 관한 것이다..One aspect of the present invention is an atmospheric pressure cationic dye comprising 1 to 20 mol% of an aliphatic dibasic acid and 1.0 to 2.0 mol% of bishydroxy ethylisophthalate containing a metal sulfonate salt, based on the total dibasic acid component. The present invention relates to a polymer for caustic copolyester fibers.

본 발명의 다른 양상은, (a) 테레프탈산과 에틸렌 글라이콜를 혼합하여 슬러리를 제조하고, 상기 슬러리에 지방족 이염기산을 첨가하여 슬러리를 제조하는 단계,
(b) 상기 제조된 슬러리를 제 1 반응조에 투입하여 에스터화 반응을 수행하는 단계,
(c) 상기 (b)단계의 생성물을 제 2 반응조로 이송하고, 본 발명의 화학식 1로 대표되는 비스하이드록시 에틸아이소프탈레이트를 제 2 반응조에 투입하여 혼련하는 단계,
(d) 상기 (c)단계의 생성물을 중축합 반응조로 이송하여 난연 폴리에스터를 중축합하는 단계, 및
(e) 상기 (d)단계의 생성물을 펠렛 타이져에서 배출하여 폴리머를 칩(Chip)화하는 단계를 포함하는 상압 카치온 염료 가염성 코폴리에스터 중합물의 제조방법에 관한 것이다.
본 발명의 또 다른 양상은, 상압 카치온 염료 가염성 코폴리에스터 중합물을 이용한 그 섬유에 관한 것이다.
Another aspect of the invention, (a) mixing the terephthalic acid and ethylene glycol to prepare a slurry, and adding a aliphatic dibasic acid to the slurry to prepare a slurry,
(b) adding the prepared slurry to a first reactor to perform an esterification reaction,
(c) transferring the product of step (b) to a second reactor and kneading by adding bishydroxy ethylisophthalate represented by Chemical Formula 1 of the present invention to a second reactor;
(d) polycondensing the flame retardant polyester by transferring the product of step (c) to a polycondensation reactor; and
(e) a method for preparing an atmospheric pressure cationic dye saltable copolyester polymer comprising the step of discharging the product of step (d) from a pelletizer to chip the polymer.
Another aspect of the present invention relates to a fiber using an atmospheric pressure cationic dye saltable copolyester polymer.

이하에서, 첨부도면을 참조하여 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

본 발명은 염색 온도를 낮추기 위해서 중합물의 유리전이온도를 낮추는 방법으로 개발을 진행하였다. 중합물의 유리전이온도가 낮아야만 저온에서의 분자쇄의 거동이 자유로워 염색 분자가 섬유내부로의 침투가 용이하며, 이를 위한 공중합 단량체로는 폴리옥시알킬렌 글라이콜보다는 지방족 이염기산이 더 유리하다. 상기 폴리옥시알킬렌 글라이콜은 중합물의 유리전이 온도를 낮추는 데는 효과가 있으나, 전체적인 분자쇄의 유동성 향상에는 부적합하다. 따라서 지방족 이염기산을 중심으로 연구를 진행하였으며, 그 함량은 전체 이염기산 성분의 1~20몰%가 적당하다. 지방족 이염기산 성분이 전체 이염기산 성분의 1몰% 미만이면 유리전이온도를 낮추는 효과가 적으며, 20몰%를 초과하면 중합물의 결정성이 너무 낮아져 방사 등의 작업성이 불량하게 된다. 또한 지방족 이염기산의 중합 공정내 투입위치는 TPA와 EG(ethylene glycol, 이하 EG로 약칭)의 슬러리 제조시에 투입하였다. 지방족 이염기산은 EG에 용해되고 또한 반응성이 TPA보다 높으므로 슬러리에 투입하는 것이 반응률을 높이는 면에서도 유리하다. The present invention has been developed in a way to lower the glass transition temperature of the polymer in order to lower the dyeing temperature. Only when the glass transition temperature of the polymer is low, the molecular chain at low temperature is free, so that the dye molecules can easily penetrate into the fiber, and as a copolymerization monomer, aliphatic dibasic acid is more preferable than polyoxyalkylene glycol. Do. The polyoxyalkylene glycol is effective in lowering the glass transition temperature of the polymer, but is not suitable for improving the fluidity of the entire molecular chain. Therefore, the study was conducted mainly on aliphatic dibasic acids, and its content is suitably 1-20 mol% of the total dibasic acids. If the aliphatic dibasic acid component is less than 1 mol% of the total dibasic acid component, the effect of lowering the glass transition temperature is less. If the aliphatic dibasic acid component is more than 20 mol%, the crystallinity of the polymer is too low, and workability such as spinning is poor. In addition, the injection position of the aliphatic dibasic acid in the polymerization process was introduced during the production of slurry of TPA and EG (hereinafter, abbreviated as EG). Since aliphatic dibasic acid is dissolved in EG and its reactivity is higher than that of TPA, it is advantageous in terms of increasing the reaction rate.

카치온 염료 가염성을 발휘하게 하기 위해 첨가하는 금속 설포네이트 성분으로는 화학식 1로 대표되는 금속 설포네이트염 함유 비스하이드록시 에틸 아이소 프탈레이트(이하 DES로 약칭)를 사용하였다.Metal sulfonate salt-containing bishydroxy ethyl isophthalate (hereinafter abbreviated as DES) represented by the formula (1) was used as the metal sulfonate component to be added to exhibit the cationic dye saltability.

Figure 112007032965837-pat00001
Figure 112007032965837-pat00001

상기 식에서, M은 알칼리 금속이다.
상기 화학식 1의 알칼리 금속은, 예를 들어, Na, Li, K 등이 있으나, 이에 제한되는 것은 아니다.
Wherein M is an alkali metal.
The alkali metal of Formula 1 may include, for example, Na, Li, K, but is not limited thereto.

비스하이드록시 에틸아이소프탈레이트(DES) 이외에 통상 상업적으로 이용 되는 금속 설포네이트 함유 디알킬 아이소프탈레이트를 사용하는 경우, TPA 중합공정에서 반응이 되지 않아 미반응물로 잔존하게 되며 이들이 방사공정 등에서 팩압상승 등의 공정성 악화를 유발하게 된다.  In addition to bishydroxy ethyl isophthalate (DES), when a metal sulfonate-containing dialkyl isophthalate which is usually commercially used is used, it is not reacted in the TPA polymerization process and remains as an unreacted product. It will cause a fair deterioration.

DES의 열분해에 의한 겔 생성 같은 부반응 생성을 억제하기 위하여 중합은 도 1로 표시되는 3관식 중합반응기를 사용하였다. TPA 중합공법에서 사용되는 2관식(에스터화 반응조와 중축합 반응조로 구성) 중합반응기에서는 첨가제의 투입위치 선정이 어려우며 또한 첨가제에 의한 베이스 올리고머의 품질 변화가 있어 다양한 첨가제가 투입되는 중합물에는 적당하지 않다. DES의 투입은 DE-2에 투입하여 반응 기내에서 장기체류를 억제하였다. In order to suppress side reaction formation such as gel formation by pyrolysis of DES, the polymerization was used with a three-tube polymerization reactor shown in FIG. In the two-pipe type (consisting of esterification and polycondensation reaction tanks) used in the TPA polymerization method, it is difficult to select the input position of the additives and the quality of the base oligomer by the additives is not suitable for the polymer to which various additives are added. . Injecting DES was added to DE-2 to inhibit long-term residence in the reactor.

또한 중축합 촉매로는 현재 대부분의 폴리에스터 제조에 사용되고 있으며, 그 가격 대비하여 성능 및 물성이 양호한 안티모니계 화합물을 사용한다.In addition, polycondensation catalysts are currently used in the manufacture of most polyesters, and antimony compounds having good performance and physical properties are used for the price.

이하, 도 1을 참조하여 보다 구체적으로 설명한다. Hereinafter, with reference to FIG. 1, it demonstrates more concretely.

(a) 조제실 1에서 반응 원료인 테레프탈산과 에틸렌 글라이콜의 슬러리 (slurry)를 조제하며, 본 발명에서의 지방족 이염기산은 이 단계에서 첨가되어 슬러리를 제조한다. 상기 테레프탈산과 지방족 이염기산의 몰비는 20:80~1:99이다. (a) A slurry of terephthalic acid and ethylene glycol, which are reaction raw materials, is prepared in Preparation Room 1, and the aliphatic dibasic acid in the present invention is added in this step to prepare a slurry. The molar ratio of terephthalic acid and aliphatic dibasic acid is 20:80 to 1:99.

(b) 상기 (a)에서 제조된 슬러리를 보관조 2에서 보관한다. (b) The slurry prepared in (a) is stored in storage tank 2.

(c) 세미 배치(Semi-batch) 공정으로 반응조내에 항상 베이스 올리고머가 일정한 온도를(통상 250~260℃) 유지하며 체류하는 제 1 반응조(DE-1) 3으로 상기 보관조 2의 슬러리를 반응조 내온을 유지하며 지속적으로 투입하며 반응을 진행시킨다. 에스터화(Esterification) 반응의 종료는 반응조에서 유출되는 유출수의 양과 올리고머의 반응률로 결정하며 초기의 베이스 올리고머의 양은 DE-1 반응조로 남기고 남은 양은 질소압에 의하여 필터를 통하여 제 2 반응조(DE-2) 5로 이송한다.(c) Slurry of the storage tank 2 to the first reactor (DE-1) 3 in which the base oligomer is maintained in the reaction tank at a constant temperature (typically 250-260 ° C.) in a semi-batch process. Maintain the internal temperature and continuously inject the reaction. The end of the esterification reaction is determined by the amount of effluent flowing out of the reactor and the reaction rate of the oligomer. The initial amount of base oligomer is left in the DE-1 reactor and the remaining amount is passed through the filter by the nitrogen pressure in the second reactor (DE-2). ) Transfer to 5.

(d) 상기 DE-1 반응조에서 에스터화 반응이 진행된 올리고머를 이송라인 필터(바스켓 필터로 구성) 4를 통해서 DE-2 반응조로 이송하여 추가로 반응을 진행하고, 본 발명에서는 화학식 1로 대표되는 DES를 투입한다.(d) the oligomer having undergone the esterification reaction in the DE-1 reactor is transferred to the DE-2 reactor through a transfer line filter (consisting of a basket filter) 4 to further proceed with the reaction, which is represented by Chemical Formula 1 in the present invention. Inject DES.

(e) 상기 DE-2에서 반응이 진행된 난연 올리고머를 이송라인 필터 (바스켓 필터로 구성) 6을 통해서 중축합 반응조 7로 이송하여 올리고머를 반응시켜 난연 폴리에스터를 반응하고 난연 폴리에스터를 중축합한다.(e) The flame-retardant oligomer in which the reaction proceeded in DE-2 is transferred to a polycondensation reactor 7 through a transfer line filter (composed of a basket filter) 6 to react the oligomer to react the flame-retardant polyester and polycondens the flame-retardant polyester.

(f) 펠렛 타이져 8에서 상기 반응조 7에서 제조된 폴리머를 배출하여 칩(Chip)화한다.(f) The polymer produced in the reactor 7 is discharged from the pelletizer 8 to chip.

TPA 중합 공정에서는 TPA의 산성분에 의하여 디에틸렌 글라이콜((Diethylene Glycol,이하 DEG로 약칭)이 부반응으로 생성된다. 본 발명에서의 중합물에서의 DEG의 함량은 전체 중합물 대비 1.5~3.5중량%이다. 본 발명에 따른 중합 처방에서는, DEG의 함량을 1.5중량% 미만으로 생성할 수 없고, 생성되는 DEG가 1.5중량% 이상이면 중합물의 유리전이온도를 낮추는 효과가 있다. 하지만 DEG의 함량이 3.5중량%를 초과하는 경우에는 중합물의 열안정성이 너무 낮아져서 중합물의 방사공정성이 악화된다.In the TPA polymerization process, diethylene glycol ((Diethylene Glycol, hereinafter abbreviated as DEG)) is generated as a side reaction by the acid component of TPA. The content of DEG in the polymer in the present invention is 1.5 to 3.5% by weight relative to the total polymer. In the polymerization formulation according to the present invention, the content of DEG cannot be produced in less than 1.5% by weight, and when the resultant DEG is 1.5% by weight or more, the glass transition temperature of the polymer can be lowered, but the content of DEG is 3.5. When the weight percentage is exceeded, the thermal stability of the polymer is too low, and the spinning processability of the polymer is deteriorated.

미반응 TPA에 의한 말단 카르복실기와 열분해에 의해 생성되는 말단 카르복실기의 함량은 전체 중합물 내 30~50당량/톤으로 한다. 카르복실 말단기의 함량이 30당량/톤 미만이면 반응온도를 낮추거나 혹은 EG의 함량을 높이는 것이 가능하지만, 각각의 경우에 있어서 반응시간이 장기화되어 중합물의 열화와 부반응물인 DEG의 증가라는 문제가 부수적으로 발생한다. 또한 카르복실 말단기의 함량이 50당량/톤을 초과하면 대부분이 열분해에 의한 말단 카르복실기이므로, 중합물의 열화에 의한 겔화 등의 문제가 발생하게 된다.The content of terminal carboxyl groups by thermal decomposition by unreacted TPA is 30 to 50 equivalents / ton in the total polymer. If the content of the carboxyl end group is less than 30 equivalents / ton, it is possible to lower the reaction temperature or increase the content of EG, but in each case, the reaction time is prolonged, resulting in deterioration of the polymer and increase of DEG, a side reaction product. Happens incidentally. In addition, when the content of the carboxyl end groups exceeds 50 equivalents / ton, most of them are terminal carboxyl groups due to pyrolysis, thereby causing problems such as gelation due to deterioration of the polymer.

중합물 내에 미반응 TPA의 함량은 20ppm 이하로 한다. 미반응 TPA는 용융되지도 않고 용매에 용해되기도 어려운 물질이므로, 20ppm을 초과하면, 미반응 상태로 잔류하는 TPA로 인하여, 방사작업의 공정성 악화를 유발한다.The content of unreacted TPA in the polymer is 20 ppm or less. Since unreacted TPA is a material that is neither melted nor difficult to dissolve in a solvent, if it exceeds 20 ppm, TPA remaining in an unreacted state causes deterioration of fairness of spinning.

상기 중합물의 용융온도는 215~240℃가 적당하다. 215℃보다 낮을 경우에는 내열성이 저하되어 방사공정성이 악화될 뿐만 아니라, 원사의 내열성이 문제가 된다. 폴리에틸렌 테레프탈레이트에서의 공중합이 충분히 진행되면 융점저하가 발생하게 되어 용융 온도가 240℃보다 높은 중합물은 제조가 어려울 뿐만 아니라, 240℃보다 용융점이 높을 경우에는 공중합 단량체들이 미반응 상태로 중합물 내에 잔류하게 되므로 중합물 및 원사의 품질이 저하된다. As for the melting temperature of the said polymer, 215-240 degreeC is suitable. When lower than 215 degreeC, heat resistance will fall and a spin processability will worsen, and the heat resistance of a yarn will become a problem. If the copolymerization in polyethylene terephthalate proceeds sufficiently, the melting point decreases, and it is difficult to prepare a polymer having a melting temperature higher than 240 ° C, and when the melting point is higher than 240 ° C, copolymerization monomers remain unreacted in the polymer. As a result, the quality of the polymer and yarn decreases.

본 발명의 실시예 및 비교예의 물성은 다음의 방법으로 분석하였다. Physical properties of Examples and Comparative Examples of the present invention were analyzed by the following method.

1. 테레프탈산의 에스터 반응률 : 에스터 반응된 올리고머를 이용하여 카르복실릭 에시드의 농도를 적정하여 계산하였다. 1. Ester reaction rate of terephthalic acid: The concentration of carboxylic acid was titrated using ester-reacted oligomer.

2. 극한점도(Intrinsic Viscosity, 이하 IV로 약칭) : 페놀과 1,1,2,2-테트라클로로에탄이 6:4 중량비로 섞여 있는 용액에 중합물을 녹여 30℃의 항온조에서 우벨로데관을 이용하여 측정하였다. 2. Intrinsic Viscosity (hereinafter abbreviated as IV): Melt the polymer in a solution containing phenol and 1,1,2,2-tetrachloroethane in a 6: 4 weight ratio and use the Uvelode tube in a 30 ℃ thermostat. It was measured by.

3. 용융온도 및 유리전이 온도 : Perkin Elmer社의 DSC 7(Differential Scanning Calorimetry)을 이용하여 10℃/分으로 승온하여 용융범위내의 피크로 분석하였다. 3. Melting temperature and glass transition temperature: Using Perkin Elmer's DSC 7 (Differential Scanning Calorimetry), the temperature was raised to 10 ℃ / min and analyzed as a peak within the melting range.

4. 이염기산 및 DES의 함량 : 400MHz NMR을 이용하여 분석하였다.4. Content of dibasic acid and DES: analyzed using 400MHz NMR.

5. DEG 함량 : ethanol amine을 이용하여 중합물을 분해한 후 Gas Chromatography로 분석하였다.5. DEG content: The polymer was decomposed using ethanol amine and analyzed by Gas Chromatography.

이하 실시예로 본 발명을 상세히 설명하고자 한다. 하지만 본 실시예에 의해 본 발명의 범위가 제한되어지는 것은 아니다. Hereinafter, the present invention will be described in detail with reference to Examples. However, the scope of the present invention is not limited by this embodiment.

[실시예 1]Example 1

TPA대 지방족 이염기산은 20:80~1:99몰비로 구성되며, 지방족 이염기산으로 아디픽 에시드(이하 AA)를 사용하였다. TPA:AA:EG를 600:315:50 (부피비)으로 혼합하여 슬러리를 조제하였다. 이 슬러리를 아디픽 에시드가 전체 이염기산 대비 8.7몰% 섞여 있으며 베이스 올리고머 1.3톤이 255℃에서 용융되어 있는 도 1의 DE-1 반응조에 255℃를 유지하며 지속적으로 투입하였다. 중합물이 1.5톤이 되게 슬러리를 투입하고, 30분 동안 에스터화 반응을 지속한 후 계량펌프를 이용하여 DE-2 반응조로 1.5톤의 올리고머를 이송하였다. 이송된 올리고머에 화학식 1로 대표되는 DES 중 M이 Na인 물질(분자량 356이며 35중량%의 농도로 EG에 녹아 있는 상태임)를 전체 이염기산(TPA, AA, DES) 대비하여 1.3몰% 투입하였다. 교반을 충분히 한 후 도 1의 중축합 반응조로 이송을 하였으며, 안티모니 트리옥사이드 2% EG 용액을 중합물 대비 안티모니 트리옥사이드 기준으로 250ppm 투입하여 285℃, 1토르 이하에서 반응을 진행하였다. 제조된 중합물의 물성을 표 1에 나타내었다.TPA to aliphatic dibasic acid is composed of 20:80 ~ 1:99 molar ratio, and adipic acid (hereinafter AA) was used as aliphatic dibasic acid. A slurry was prepared by mixing TPA: AA: EG at 600: 315: 50 (volume ratio). The slurry was continuously added to the DE-1 reactor of FIG. 1 in which adipic acid was mixed with 8.7 mol% of the total dibasic acid and 1.3 tons of the base oligomer was melted at 255 ° C. The slurry was added so that the polymer became 1.5 ton, and the esterification reaction was continued for 30 minutes, and then 1.5 tons of oligomer was transferred to the DE-2 reactor using a metering pump. 1.3 mol% of the DES represented by the formula (1) in the DES represented by Formula 1 (molecular weight 356 and dissolved in EG at a concentration of 35% by weight) was added to the transferred oligomer compared to the total dibasic acids (TPA, AA, DES). It was. After sufficient stirring, the polycondensation reaction tank was transferred to FIG. 1, and 250 ppm of antimony trioxide 2% EG solution was added to the antimony trioxide based on the polymer, and the reaction was performed at 285 ° C. and 1 torr or less. Physical properties of the prepared polymer are shown in Table 1.

[실시예 2]Example 2

AA 대신에 아젤라익 에시드(azelaic acid, 이하 AZA로 약칭)를 전체 이염기산 대비 8.5몰%를 투입한 것을 제외하고는 실시예 1과 동일하게 실시하여 제조된 중합물의 물성을 표1에 나타내었다.Table 1 shows the physical properties of the polymer prepared in the same manner as in Example 1, except that 8.5 mol% of azelaic acid (abbreviated to AZA) was added to the total dibasic acid instead of AA.

[실시예 3]Example 3

화학식 1로 대표되는 DES중 M이 Li인 물질을 투입한 것을 제외하고는 실시예 1과 동일하게 실시하여 제조된 중합물의 물성을 표1에 나타내었다.Table 1 shows the physical properties of the polymer prepared in the same manner as in Example 1, except that M is Li in the DES represented by Chemical Formula 1.

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 지방족 이염기산 함량 (몰%)Aliphatic dibasic acid content (mol%) 8.328.32 8.238.23 8.358.35 00 8.28.2 알카리 금속(M)Alkali metal (M) NaNa NaNa LiLi NaNa -- DES 함량 (몰%)DES content (mol%) 1.311.31 1.241.24 1.321.32 1.351.35 00 DEG 함량 (중량%)DEG content (% by weight) 2.192.19 2.402.40 2.322.32 1.561.56 1.211.21 CEG (당량/톤)CEG (equivalent / ton) 3535 3333 3636 3131 2727 용융온도(℃)Melting temperature (℃) 232232 231231 234234 243243 241241 유리전이돈도(℃)Glass transition degree (℃) 6565 6363 6666 7676 6464

[비교예 1]Comparative Example 1

AA를 투입하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하여 제조된 중합물의 물성을 표1에 나타내었다.Except that AA was not added, the physical properties of the polymer prepared in the same manner as in Example 1 are shown in Table 1.

[비교예 2] Comparative Example 2

DES를 투입하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하여 제조된 중합물의 물성을 표1에 나타내었다.Except that DES was not added, the physical properties of the polymer prepared in the same manner as in Example 1 are shown in Table 1.

[실시예 4] Example 4

실시예 1에 의해 제조된 중합물을 140℃ 진공건조기에서 진공 건조한 후(수분율 15ppm) 295℃에서 80℃의 제 1고뎃 롤러 속도 1750m/분, 120℃의 제 2고뎃 롤러 속도 3700m/분으로 하여 방사하였다. 이를 편직하여 일본화약의 Kayacryl 염료로 95℃에서 염색하였다. 염색결과 양호한 염색성을 얻을 수 있었다.The polymer produced in Example 1 was vacuum dried in a 140 ° C. vacuum dryer (15 ppm water content) and spun at a first high roller speed of 1750 m / min at 295 ° C. and 80 ° C., and a second high roller speed of 3700 m / min at 120 ° C. It was. It was knitted and dyed at 95 ° C. with Kayacryl dye of Nippon Gunpowder. As a result of dyeing, good dyeability was obtained.

[비교예 3] Comparative Example 3

비교예 1에 의해 제조된 중합물을 사용한 것을 제외하고는 실시예 4와 동일하게 실시하였다. 염색결과 오염수준의 불량한 염색결과를 얻었다. It carried out similarly to Example 4 except using the polymer manufactured by the comparative example 1. The staining resulted in poor staining of the contamination level.

본 발명의 코폴리에스터 중합물은 100℃ 이하의 염색온도에서 카치온 염료에 의한 우수한 염색을 발휘하는 상압 카치온 염료 가염성 코폴리에스터 섬유를 저렴한 비용으로 제공할 수 있으며, 본 발명의 제조 방법은 올리고머 필터 교체 주기가 우수하고 중합 공정성이 양호하여 생산 원가를 낮출 수 있다. The copolyester polymer of the present invention can provide a low pressure atmospheric cationic dye chlorinated copolyester fibers exhibiting excellent dyeing with a cationic dye at a dyeing temperature of less than 100 ℃, the production method of the present invention is an oligomer filter Good replacement cycle and good polymerization process can reduce production cost.

Claims (9)

전체 이염기산 성분에 대하여 지방족 이염기산 성분 1 ~ 20몰% 및 하기 화학식 1로 대표되고 금속 설포네이트염을 함유하는 비스하이드록시 에틸아이소프탈레이트 1.0 ~ 2.0 몰%을 포함하는 상압 카치온 염료 가염성 코폴리에스터 중합물:Atmospheric pressure cationic dye chlorinated copolyoleic acid containing 1-20 mol% of aliphatic dibasic acid components and 1.0-2.0 mol% of bishydroxy ethylisophthalate containing a metal sulfonate salt, based on the total dibasic acid component. Ester Polymers: [화학식 1][Formula 1]
Figure 112008014467655-pat00004
Figure 112008014467655-pat00004
M은 알칼리 금속이다.M is an alkali metal.
제1항에 있어서, 상기 중합물은 디에틸렌 글라이콜이 전체 중합물에 대비하여 1.5 ~ 3.5 중량%, 미반응 테레프탈산은 20ppm 이하, 및 카르복실 말단기 30 ~ 50 당량/톤을 포함하는 것을 특징으로 하는 중합물.According to claim 1, wherein the polymer is diethylene glycol is 1.5 to 3.5% by weight relative to the total polymer, unreacted terephthalic acid is 20ppm or less, characterized in that it comprises 30 to 50 equivalents / ton of carboxyl end groups Polymer. 제1항에 있어서, 상기 중합물의 용융온도는 215 ~ 240 ℃인 것을 특징으로 하는 중합물.The polymer of claim 1, wherein the polymer has a melting temperature of 215 to 240 ° C. 제1항에 있어서, 상기 중합물은 테레프탈산 중합공법으로 제조되는 것을 특징으로 하는 중합물.The polymer of claim 1, wherein the polymer is prepared by a terephthalic acid polymerization method. (a) 테레프탈산과 에틸렌 글라이콜를 혼합하여 슬러리를 제조하고, 상기 슬러리에 지방족 이염기산을 첨가하여 슬러리를 제조하는 단계; (a) mixing terephthalic acid and ethylene glycol to prepare a slurry, and adding a aliphatic dibasic acid to the slurry to prepare a slurry; (b) 상기 제조된 슬러리를 제 1 반응조에 투입하여 에스터화 반응을 수행하는 단계;(b) adding the prepared slurry to a first reactor to perform an esterification reaction; (c) 상기 (b)단계의 생성물을 제 2 반응조로 이송하고, 상기 화학식 1로 대표되는 비스하이드록시 에틸아이소프탈레이트를 제 2 반응조에 투입하여 혼련하는 단계;(c) transferring the product of step (b) to a second reactor and kneading by adding bishydroxy ethylisophthalate represented by Formula 1 to a second reactor; (d) 상기 (c)단계의 생성물을 중축합 반응조로 이송하여 난연 폴리에스터를 중축합하는 단계; 및(d) polycondensing the flame retardant polyester by transferring the product of step (c) to a polycondensation reactor; And (e) 상기 (d)단계의 생성물을 펠렛 타이져에서 배출하여 폴리머를 칩(Chip)화하는 단계를 포함하는 상압 카치온 염료 가염성 코폴리에스터 중합물의 제조방법.(e) a method for preparing an atmospheric pressure cationic dye saltable copolyester polymer, comprising the step of discharging the product of step (d) from a pelletizer to chip the polymer. 제5항에 있어서, 상기 제조 방법은 3관식 테레프탈산 중합 반응기를 이용하는 것을 특징으로 하는 제조방법.The method according to claim 5, wherein the production method uses a three-tube terephthalic acid polymerization reactor. 제5항에 있어서, 상기 지방족 이염기산은 아딕픽 에시드 또는 아젤라익 에시드인 것을 특징으로 하는 제조방법.The method of claim 5, wherein the aliphatic dibasic acid is adipic acid or azelaic acid. 제5항에 있어서, 상기 (a)단계에서 지방족 이염기산과 테레프탈산의 몰비는 20:80~1:99인 것을 특징으로 하는 제조방법. The method of claim 5, wherein the molar ratio of aliphatic dibasic acid and terephthalic acid in the step (a) is 20:80 ~ 1:99. 제1항 내지 제4항 중 어느 한 항에 따른 중합물을 이용하여 제조되는 상압 카치온 염료 가염성 코폴리에스터 섬유.Atmospheric pressure cationic dye saltable copolyester fiber prepared using the polymer according to any one of claims 1 to 4.
KR1020070042569A 2007-05-02 2007-05-02 Atmospheric cationic dye dyeable copolyester polymer, manufacturing method thereof, and atmospheric cationic dye dyeable copolyester fiber using the same KR100841175B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020070042569A KR100841175B1 (en) 2007-05-02 2007-05-02 Atmospheric cationic dye dyeable copolyester polymer, manufacturing method thereof, and atmospheric cationic dye dyeable copolyester fiber using the same
TW097113865A TWI378949B (en) 2007-05-02 2008-04-16 Atmospheric cationic dye dyeable copolyester polymer, manufacturing method thereof, and atmospheric cationic dye dyeable copolyester fiber using the same
TR2008/02647A TR200802647A2 (en) 2007-05-02 2008-04-16 Atmospheric cationic dye can be dyed copolyester polymer, its production method and the same can be dyed with atmospheric cationic dye copolyester fiber.
JP2008115837A JP2008274277A (en) 2007-05-02 2008-04-25 Atmospheric pressure cationic dyeable copolyester polymer, its production method, and atmospheric pressure cationic dyeable copolyester fiber produced by using this polymer
CN2008100938365A CN101298493B (en) 2007-05-02 2008-04-30 Atmospheric cationic dye dyeable copolyester polymer, manufacturing method thereof, and atmospheric cationic dye dyeable copolyester fiber using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070042569A KR100841175B1 (en) 2007-05-02 2007-05-02 Atmospheric cationic dye dyeable copolyester polymer, manufacturing method thereof, and atmospheric cationic dye dyeable copolyester fiber using the same

Publications (1)

Publication Number Publication Date
KR100841175B1 true KR100841175B1 (en) 2008-06-24

Family

ID=39772424

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070042569A KR100841175B1 (en) 2007-05-02 2007-05-02 Atmospheric cationic dye dyeable copolyester polymer, manufacturing method thereof, and atmospheric cationic dye dyeable copolyester fiber using the same

Country Status (5)

Country Link
JP (1) JP2008274277A (en)
KR (1) KR100841175B1 (en)
CN (1) CN101298493B (en)
TR (1) TR200802647A2 (en)
TW (1) TWI378949B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101473079B1 (en) 2013-01-17 2014-12-15 주식회사 효성 Continuous process for preparing cation dyeable polyester
KR20210029500A (en) 2019-09-06 2021-03-16 도레이첨단소재 주식회사 Polyester resion for preparing cation dye-PET fiber, Composite resin containing the same, Cation dye-PET fiber using the same, and Manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2492390B1 (en) 2009-10-20 2018-06-06 Teijin Frontier Co., Ltd. Polyester fibers, process for production of the polyester fibers, cloth, and fiber product
CN102061533B (en) * 2009-11-18 2014-06-25 东丽纤维研究所(中国)有限公司 Easy cation-dyeable polyester (ECDP) fibers and production method thereof
WO2012027885A1 (en) * 2010-08-31 2012-03-08 东华大学 Preparation methods for copolyester and its fiber modified by aliphatic diol with side chains and isophthalic acid binary ester 5-sodium or potassium sulfonate
CN111019105B (en) * 2018-10-10 2021-08-24 中国石油化工股份有限公司 Modified polyester and preparation method thereof
CN113166387B (en) * 2019-03-20 2023-04-18 东丽纤维研究所(中国)有限公司 Cationic dyeable polyester composition and process for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117530A (en) 1981-01-13 1982-07-22 Toray Ind Inc Preparation of modified polyester
JPS58138731A (en) 1982-02-15 1983-08-17 Toray Ind Inc Preparation of modified polyester
KR20030024191A (en) * 2001-09-17 2003-03-26 주식회사 효성 Alkali soluble copolyester for composite fibre and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08850B2 (en) * 1986-06-26 1996-01-10 帝人株式会社 Method for producing modified polyester
JP3294385B2 (en) * 1993-07-06 2002-06-24 帝人株式会社 Method for producing modified polyester
JP3690768B2 (en) * 1997-03-10 2005-08-31 日本エステル株式会社 Continuous production method of polyester
JP2004217939A (en) * 1999-03-05 2004-08-05 Kanebo Ltd Polyester resin and its manufacturing process
TW550274B (en) * 2000-03-24 2003-09-01 Kanebo Ltd Modified polyester and continuous process for manufacturing the same
JP2003096177A (en) * 2001-09-21 2003-04-03 Toyobo Co Ltd Process for producing polyester and polyester

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117530A (en) 1981-01-13 1982-07-22 Toray Ind Inc Preparation of modified polyester
JPS58138731A (en) 1982-02-15 1983-08-17 Toray Ind Inc Preparation of modified polyester
KR20030024191A (en) * 2001-09-17 2003-03-26 주식회사 효성 Alkali soluble copolyester for composite fibre and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101473079B1 (en) 2013-01-17 2014-12-15 주식회사 효성 Continuous process for preparing cation dyeable polyester
KR20210029500A (en) 2019-09-06 2021-03-16 도레이첨단소재 주식회사 Polyester resion for preparing cation dye-PET fiber, Composite resin containing the same, Cation dye-PET fiber using the same, and Manufacturing method thereof

Also Published As

Publication number Publication date
JP2008274277A (en) 2008-11-13
TW200906899A (en) 2009-02-16
CN101298493A (en) 2008-11-05
TWI378949B (en) 2012-12-11
TR200802647A2 (en) 2008-12-22
CN101298493B (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP4098787B2 (en) Cationic dye-dyeable and flame-retardant polyester polymer and process for producing the same
KR100984908B1 (en) Ester-modified Dicarboxylate Polymers
KR100841175B1 (en) Atmospheric cationic dye dyeable copolyester polymer, manufacturing method thereof, and atmospheric cationic dye dyeable copolyester fiber using the same
CN108003332B (en) Easily hydrolyzed polyester and synthesis method thereof
KR100894780B1 (en) Flame Retardant Cationic Dye Dyeable Copolyester Polymer, Manufacturing method thereof and Flame Retardant Cationic Dye Dyeable Copolyester Fibers
KR100764378B1 (en) Manufacturing method of flame retardant polyester polymer, polyester polymer and fiber therefrom
AU2005294576B2 (en) Process for producing polytrimethylene terephthalate
JP2017531723A (en) Polycyclohexylenedimethylene terephthalate resin with improved crystallization rate and method for producing the same
KR101317767B1 (en) Biodegradable polyester and manufacturing method thereof
KR100867196B1 (en) Manufacturing method of and polyester fiber having flame retardant and basic dyeable
KR100525064B1 (en) Alkaline easily soluble copolyester polymer for polyester composite fiber and its manufacturing method using terephthalic acid process, and polyester composite fiber therefrom.
CN114989406A (en) Application of non-metallic organic compound in synthesis of polyester by DMT method, DMT method functional copolyester and preparation method thereof
KR20190115965A (en) Poly(1,4-cyclohexylenedimethylene terephthalate) resin, preparation method thereof and fiber comprising thereof
KR100861023B1 (en) Manufaturing method of sulfonated isophtalates glycol ester and manufaturing method of copolyester resin using the same
JPH0563506B2 (en)
JP2002030137A (en) Process for producing modified polyester
JP5216971B2 (en) Method for producing cationic dyeable polyester fiber
KR20190117022A (en) Process for producing poly (alkylene furandicarboxylate)
CN114057612B (en) Method for preparing diethylene glycol 5-sodium isophthalate by direct esterification of 5-sodium isophthalate
TW202315905A (en) Polyester and molded article
KR950002610B1 (en) Method of producing polyester-composition
KR19990053610A (en) Production method of polyester
KR19980030465A (en) Manufacturing method of flame retardant polyester
KR101249577B1 (en) Flame-retardant polyester resin having high intrinsic viscosity and preparing method thereof
CN115746280A (en) Water-soluble polyester and preparation method of solution with high solid content

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121220

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140512

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150514

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160513

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170516

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180514

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190514

Year of fee payment: 12