KR20030033270A - The surface reforming method of a piezoelectric or pyroelectric material using an ion-beam - Google Patents
The surface reforming method of a piezoelectric or pyroelectric material using an ion-beam Download PDFInfo
- Publication number
- KR20030033270A KR20030033270A KR1020010064791A KR20010064791A KR20030033270A KR 20030033270 A KR20030033270 A KR 20030033270A KR 1020010064791 A KR1020010064791 A KR 1020010064791A KR 20010064791 A KR20010064791 A KR 20010064791A KR 20030033270 A KR20030033270 A KR 20030033270A
- Authority
- KR
- South Korea
- Prior art keywords
- piezoelectric
- pyroelectric
- ion
- polymer material
- ion beam
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000010884 ion-beam technique Methods 0.000 title claims abstract description 24
- 239000000463 material Substances 0.000 title claims abstract description 12
- 238000002407 reforming Methods 0.000 title abstract description 5
- 239000002861 polymer material Substances 0.000 claims abstract description 28
- 229920000642 polymer Polymers 0.000 claims abstract description 12
- 238000002347 injection Methods 0.000 claims abstract description 11
- 239000007924 injection Substances 0.000 claims abstract description 11
- 150000002500 ions Chemical class 0.000 claims description 33
- 239000007789 gas Substances 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 238000002715 modification method Methods 0.000 claims description 11
- 238000012986 modification Methods 0.000 claims description 8
- 230000004048 modification Effects 0.000 claims description 8
- 125000000524 functional group Chemical group 0.000 claims description 7
- 238000005468 ion implantation Methods 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 6
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- -1 polytrifluoroethylene Polymers 0.000 claims description 5
- 229920002620 polyvinyl fluoride Polymers 0.000 claims description 5
- FCYVWWWTHPPJII-UHFFFAOYSA-N 2-methylidenepropanedinitrile Chemical compound N#CC(=C)C#N FCYVWWWTHPPJII-UHFFFAOYSA-N 0.000 claims description 4
- 239000004677 Nylon Substances 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- 229920001778 nylon Polymers 0.000 claims description 4
- 229920000131 polyvinylidene Polymers 0.000 claims description 4
- 229940117958 vinyl acetate Drugs 0.000 claims description 4
- XLOFNXVVMRAGLZ-UHFFFAOYSA-N 1,1-difluoroethene;1,1,2-trifluoroethene Chemical group FC(F)=C.FC=C(F)F XLOFNXVVMRAGLZ-UHFFFAOYSA-N 0.000 claims description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims description 3
- 239000001272 nitrous oxide Substances 0.000 claims description 3
- 239000002033 PVDF binder Substances 0.000 claims description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims 1
- 239000000853 adhesive Substances 0.000 abstract description 3
- 230000001070 adhesive effect Effects 0.000 abstract description 3
- 229920006254 polymer film Polymers 0.000 abstract description 3
- 238000004381 surface treatment Methods 0.000 description 16
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 239000010409 thin film Substances 0.000 description 10
- 239000007772 electrode material Substances 0.000 description 8
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 3
- 229920000265 Polyparaphenylene Polymers 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000001659 ion-beam spectroscopy Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920001197 polyacetylene Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/16—Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/002—Component parts, details or accessories; Auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/005—Surface shaping of articles, e.g. embossing; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D7/00—Producing flat articles, e.g. films or sheets
- B29D7/01—Films or sheets
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/857—Macromolecular compositions
Landscapes
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Abstract
Description
본 발명은 이온빔을 이용한 압전 또는 초전체 고분자 재료의 표면 개질 방법에 관한 것으로서, 특히 압전 또는 초전체 고분자 필름을 이온 보조 반응법으로 표면 처리하여 접착력과 내구성을 향상시키는 압전 또는 초전체 고분자 재료의 표면 개질 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of surface modification of piezoelectric or pyroelectric polymer materials using ion beams, and more particularly to the surface of piezoelectric or pyroelectric polymer materials for improving adhesion and durability by surface treatment of piezoelectric or pyroelectric polymer films by ion assist reaction method. It is about a reforming method.
종래에는 석영 결정이나 바륨 티탄산염(barium titanate) 등 세라믹 재료를 포함하는 압전(piezoelectric) 및 초전체(pyroelectric material) 재료가 주를 이루었으나, 최근 들어 폴리비닐리덴플로라이드(PVDF: Polyvinyliden Fluoride; 이는 PVDF라고 약술한다.)를 비롯한 압전 및 초전체 고분자 재료를 이용한 많은 소자 연구 및 실용화가 진행되고 있다.Conventionally, piezoelectric and pyroelectric material materials including ceramic materials such as quartz crystals or barium titanate have been mainly used, but recently, polyvinyliden fluoride (PVDF); Many devices have been researched and commercialized using piezoelectric and pyroelectric polymer materials, including PVDF.
상기 압전 및 초전체 고분자 재료는 기존의 재료에 비해 유연하며 경량이다.또한, 넓은 진동 영역을 갖고 있어 기존 압전 및 초전소자의 대체 및 이를 이용한 새로운 소자의 개발이 적극적으로 시도되고 있으며, 그 일례로서 PVDF를 이용한 필름형 스피커가 개발된지 오래되었다.The piezoelectric and pyroelectric polymer materials are more flexible and lighter than conventional materials. In addition, the piezoelectric and pyroelectric polymer materials have a wide vibration range, and thus, the replacement of existing piezoelectric and pyroelectric devices and the development of new devices using the same are being actively attempted. It has been a long time since film-type speakers using PVDF were developed.
그러나, 현재 실용화 단계에있는 압전 및 초전체 고분자 재료들은 낮은 표면에너지로 인하여 소자 구현에 필수적인 전극재료와의 접착이 용이하지 않아 소자 구현이 불가능하거나 제작된 소자의 수명이 제한을 받는 등의 문제점이 있었다.However, piezoelectric and pyroelectric polymer materials that are currently in practical use are not easily adhered to the electrode materials necessary for device implementation due to low surface energy, which makes it impossible to implement the device or to limit the lifetime of the manufactured device. there was.
본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 압전 및 초전체 고분자 재료를 이온 보조 반응법으로 표면 처리하여 접착성을 향상시킴으로써, 이로부터 내구성이 우수한 압전 또는 초전 소자의 제작 및 새로운 개념의 소자를 제작할 수 있는 표면 개질 방법을 제공하는 것이다.The present invention has been made to solve the above problems, an object of the present invention is to improve the adhesion by surface treatment of the piezoelectric and pyroelectric polymer material by ion assist reaction method, thereby improving the durability of the piezoelectric or pyroelectric element It is to provide a surface modification method for fabrication and fabrication of a new concept device.
도 1은 본 발명에 따른 이온빔을 이용한 압전 또는 초전체 고분자 재료의 표면 개질 방법을 실시하기 위한 이온빔 표면 처리 장치의 종단면도.1 is a longitudinal sectional view of an ion beam surface treatment apparatus for performing a method for surface modification of piezoelectric or pyroelectric polymer materials using an ion beam according to the present invention;
도 2는 본 발명에 따른 표면 개질 방법으로 표면처리된 PVDF와 물과의 접촉각 변화를 나타낸 그래프.Figure 2 is a graph showing the change in contact angle between the surface treated PVDF and water by the surface modification method according to the present invention.
도 3은 본 발명에 따른 표면 개질 방법으로 표면 처리된 PVDF의 XPS C1s core level spectra 분석 결과를 나타낸 그래프.Figure 3 is a graph showing the XPS C1s core level spectra analysis of the surface treated PVDF surface modification method according to the present invention.
도 4는 본 발명에 따른 표면 개질 방법으로 표면 처리된 PVDF의 XPS O1s core level spectra 분석 결과를 나타낸 그래프.Figure 4 is a graph showing the XPS O1s core level spectra analysis of the surface treated PVDF surface modification method according to the present invention.
도 5는 본 발명에 따른 표면 개질 방법으로 표면 처리된 PVDF의 표면에너지 변화를 나타낸 그래프.5 is a graph showing the surface energy change of the surface treated PVDF by the surface modification method according to the present invention.
도 6은 PVDF 위에 증착된 백금 전극의 끓임 시험 결과를 나타낸 그래프로서, (a)는 상기 PVDF가 표면 처리되지 않은 상태를 나타내고, (b) 내지 (d)는 상기 PVDF가 각각 5 × 1014Ar+/cm2, 1 × 1015Ar+/cm2, 1 × 1017Ar+/cm2의 주입량으로 표면 처리된 상태를 나타낸 결과를 나타낸 그래프.Figure 6 is a graph showing the boiling test results of the platinum electrode deposited on the PVDF, (a) is a state in which the PVDF is not surface-treated, (b) to (d) is 5 × 10 14 Ar + / cm 2 , 1 × 10 15 Ar + / cm 2 , 1 × 10 17 Ar + / cm 2 The graph showing the results of the surface treatment state with the injection amount.
도 7은 본 발명의 적용예에 따른 고분자 기판에 증착된 ITO 박막의 두께에 따른 면저항과 투과도 변화를 나타낸 그래프.7 is a graph showing the sheet resistance and transmittance change according to the thickness of the ITO thin film deposited on the polymer substrate according to the application of the present invention.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
1: 진공조 2: 시료(압전 또는 초전체 고분자 재료)1: vacuum chamber 2: sample (piezoelectric or pyroelectric polymer material)
3: 이온건 4: 가스주입관3: ion gun 4: gas injection pipe
5: 진공 펌프 6: 이온빔5: vacuum pump 6: ion beam
상기한 목적을 달성하기 위하여, 압전 또는 초전체 소자의 제조에 사용되는 압전 또는 초전체 재료의 표면 개질 방법에 있어서, 진공조내에 위치된 압전 또는 초전체 고분자 재료를 진공조 내에 위치시킨 후, 이온건으로부터 소정의 이온주입에너지로 소정량의 이온빔을 생성하여, 이를 상기 압전 또는 초전체 고분자 재료 표면에 조사하면서 상기 진공조의 가스주입관을 통하여 소정량의 반응성 가스를 주입함으로써, 상기 압전 또는 초전체 고분자 재료의 표면에 친수성 작용기를 형성시키는 것을 특징으로 하여 구성된다.In order to achieve the above object, in the method of surface modification of piezoelectric or pyroelectric materials used in the manufacture of piezoelectric or pyroelectric elements, the piezoelectric or pyroelectric polymer material located in a vacuum chamber is placed in a vacuum chamber, and then ion The piezoelectric or pyroelectric body is formed by generating a predetermined amount of ion beam from a gun with a predetermined amount of ion beam, and injecting a predetermined amount of reactive gas through the gas injection tube of the vacuum chamber while irradiating the surface of the piezoelectric or pyroelectric polymer material. It is characterized by forming a hydrophilic functional group on the surface of a high molecular material.
또한, 상기 반응성 가스는 산소, 공기, 암모니아, 수소, 일산화탄소, 이산화탄소, 질소, 아산화질소, 탄화수소 중 어느 하나인 것을 특징으로 한다.In addition, the reactive gas is characterized in that any one of oxygen, air, ammonia, hydrogen, carbon monoxide, carbon dioxide, nitrogen, nitrous oxide, hydrocarbons.
그리고, 상기 이온건에서 생성된 이온빔의 이온주입에너지는 100 내지 10000 eV 범위인 것을 특징으로 하며,And, the ion implantation energy of the ion beam generated in the ion gun is characterized in that the range of 100 to 10000 eV,
상기 압전 또는 초전체 고분자 재료 표면에 조사되는 이온빔의 이온주입량은 1 × 1012내지 1 × 1020이온/cm2인 것을 특징으로 한다.The ion implantation amount of the ion beam irradiated on the surface of the piezoelectric or pyroelectric polymer material is 1 × 10 12 to 1 × 10 20 ions / cm 2 .
또한, 상기 반응성 가스의 주입량은 1 내지 500 sccm 인 것을 특징으로 하고,In addition, the injection amount of the reactive gas is characterized in that 1 to 500 sccm,
상기 반응조내의 진공도는 1 × 10-1torr 내지 1 × 10-6torr인 것을 특징으로 한다.The degree of vacuum in the reactor is characterized in that 1 × 10 -1 torr to 1 × 10 -6 torr.
그리고, 상기 압전 또는 초전체 고분자 재료는 폴리비닐리덴플로라이드, 비닐리덴 플로라이드 트리플루오르에틸렌, 홀수 나일론, 비닐라이덴 시안나이드, 폴리(비닐라이덴 시안닌-비닐아세테이트), 폴리(메틸 메타크라이레이트-폴리트리부틸레인), 폴리트리플루에틸렌, 폴리(비닐 플로라이드)로 구성된 압전 또는 초전 특성을 갖는 압전 또는 초전체 고분자와 그의 공중합체 물질 또는 PZT, PbTiO3, Ca-PbTiO3로 구성된 압전세라믹을 포함하는 복합체 물질인 것을 특징으로 한다.The piezoelectric or pyroelectric polymer material may be polyvinylidene fluoride, vinylidene fluoride trifluoroethylene, odd nylon, vinylidene cyanide, poly (vinylidene cyanine-vinylacetate), poly (methyl methacrylate- Piezoelectric or pyroelectric polymers having a piezoelectric or pyroelectric property composed of polytributyllane, polytrifluethylene and poly (vinyl fluoride) and copolymer materials thereof, or piezoceramic composed of PZT, PbTiO 3 , and Ca-PbTiO 3 . It is characterized in that the composite material containing.
이하, 첨부한 도면들을 참조로 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 압전 또는 초전체 고분자 재료의 표면 개질을 위하여 이온보조 반응법을 이용하였다.The present invention uses an ion assist reaction method for surface modification of piezoelectric or pyroelectric polymer materials.
도 1은 본 발명에 따른 이온빔을 이용한 압전 또는 초전체 고분자 재료의 표면 개질 방법을 실시하기 위한 이온빔 표면 처리 장치의 종단면도이다. 도 1에 도시된 바와 같이 진공 펌프(5)에 의해 진공을 유지하는 진공조(1) 내에 시료(2)를 이온건(3)의 상부에 위치시킨 후, 이온건(3)에서 이온빔을 생성하여 이를 상기 시료(2)에 조사한다. 여기서, 상기 진공조내의 진공도는 1 × 10-1torr 내지 1 × 10-6torr 인 것이 바람직하며, 상기 이온빔의 이온주입에너지는 10 내지 10000eV의 범위내에서 조사되는 것이 바람직하다. 또한, 상기 시료(2)의 표면에 조사되는 이온빔의 이온주입량 1 × 1012내지 1 × 1020이온/cm2인 것이 바람직하다.1 is a longitudinal sectional view of an ion beam surface treatment apparatus for carrying out a method for surface modification of a piezoelectric or pyroelectric polymer material using an ion beam according to the present invention. As shown in FIG. 1, after placing the sample 2 in the upper part of the ion gun 3 in the vacuum chamber 1 holding the vacuum by the vacuum pump 5, the ion gun 3 generates an ion beam. This is irradiated to the sample (2). Here, the degree of vacuum in the vacuum chamber is preferably 1 × 10 -1 torr to 1 × 10 -6 torr, and the ion implantation energy of the ion beam is preferably irradiated within the range of 10 to 10000 eV. In addition, it is preferable that the ion implantation amount of the ion beam irradiated to the surface of the said sample 2 is 1 * 10 <12> -1 * 10 <20> ion / cm <2> .
상기 시료(2)는 압전 또는 초전체 고분자 재료이며, 상기 압전 또는 초전체 고분자 재료는 PVDF, 비닐리덴 플로라이드 트리플루오르에틸렌(VDF-TrFE: vinylydene fluoride-trifluoroethylene), 홀수 나일론(Odd nylon(nylon 7, nylon 11)), 비닐라이덴 시안나이드(VDCN: vinylidene cyanide), 폴리(비닐라이덴 시안닌-비닐아세테이트)(P(VDCN-VAcpoly(vinylidene cyanine-vinylacetate))), 폴리(메틸 메타크라이레이트-폴리트리부틸레인)(P(TBTM-MMA: Poly (methyl methacrylate-polytributyline methacrylate))), 폴리트리플루에틸렌(PtrFE: polytrifluorethylene), 폴리(비닐 플로라이드)(PVF: poly(vinyl fluoride))등의 압전 또는 초전체 고분자와 그의 공중합체, 또는 PZT, PbTiO3, Ca-PbTiO3등의 압전세라믹을 포함하는 복합체 물질이다.The sample (2) is a piezoelectric or pyroelectric polymer material, the piezoelectric or pyroelectric polymer material is PVDF, vinylidene fluoride-trifluoroethylene (VDF-TrFE), odd nylon (nylon 7 , nylon 11)), vinylidene cyanide (VDCN: vinylidene cyanide), poly (vinylidene cyanine-vinylacetate) (P (VDCN-VAcpoly (vinylidene cyanine-vinylacetate)), poly (methyl methacrylate-poly Piezoelectrics such as tributyllane (P (TBTM-MMA: Poly (methyl methacrylate-polytributyline methacrylate))), polytrifluorethylene (PtrFE), poly (vinyl fluoride) (PVF: poly (vinyl fluoride)) Or a composite material containing a piezoelectric polymer and a copolymer thereof or piezoceramic such as PZT, PbTiO 3 , Ca-PbTiO 3, or the like.
이와 동시에, 상기 진공조(1) 외부의 가스 주입관(4)을 통해 반응성 가스를 주입하여 이온을 발생시키는데, 상기 반응성 가스는 산소, 공기, 암모니아, 수소, 일산화탄소, 이산화탄소, 질소, 아산화질소, 탄화수소 중 어느 하나를 사용할 수 있다. 또한, 상기 반응성 가스 대신에 헬륨, 아르곤, 질소, 네온, 제논, 크립톤 등의 불화성 가스를 주입할 수도 있다. 여기서, 상기 반응성 가스의 주입량은 1 내지 500 sccm 인 것이 바람직 하다.At the same time, a reactive gas is injected through a gas injection pipe 4 outside the vacuum chamber 1 to generate ions, which are oxygen, air, ammonia, hydrogen, carbon monoxide, carbon dioxide, nitrogen, nitrous oxide, Any of the hydrocarbons can be used. In addition, instead of the reactive gas, a fluorinated gas such as helium, argon, nitrogen, neon, xenon, krypton or the like may be injected. Here, the injection amount of the reactive gas is preferably 1 to 500 sccm.
상기 이온 보조 반응법을 살펴보면, 0.1 keV에서 10 keV까지의 저에너지 이온빔을 고분자 표면에 조사함과 동시에 고분자 주위에 반응성 가스를 불어넣어 줌으로써 고분자 표면에 새로운 친수성 작용기를 생성시키는 것이다. 이렇게 생성된 친수성 작용기에 의해서 압전 및 초전체 고분자위에 전극 물질을 증착할 경우, 상기 증착되는 전극 재료와 물리, 화학적 결합을 이루어 Pt나 Au와 같은 귀금속 경우까지도 뛰어난 접착력을 갖게된다.Looking at the ion-assisted reaction method, by irradiating a low energy ion beam of 0.1 keV to 10 keV on the surface of the polymer and blowing a reactive gas around the polymer to create a new hydrophilic functional group on the surface of the polymer. When the electrode material is deposited on the piezoelectric and pyroelectric polymers by the hydrophilic functional groups generated as described above, physical and chemical bonding is performed with the electrode material to be deposited, thereby obtaining excellent adhesion even in precious metals such as Pt and Au.
도 2는 본 발명에 따른 표면 개질 방법으로 표면처리된 PVDF와 물과의 접촉각 변화를 나타낸 그래프로서, 압전체 고분자의 일종인 PVDF에 이온 보조 반응법을 이용하여 표면 처리한 결과중 이온조사량에 따른 PVDF와 물과의 접촉각 변화를 보여주는 그래프이다.Figure 2 is a graph showing the change in contact angle between the surface treated PVDF and water by the surface modification method according to the present invention, PVDF according to the amount of ion irradiation in the result of the surface treatment using PVDF, a kind of piezoelectric polymer using the ion assisted reaction method This graph shows the change of contact angle with water.
상기 PVDF는 소수 특성으로 인해 이온 보조 반응법을 이용하여 표면 처리하기 전에는 75o의 높은 값을 보인다. 그러나, 반응성 가스 O2로 표면에 불어넣어줌과동시에 1 × 1015이온/cm2의 이온조사량으로 표면처리한 후 최저 31o까지 낮아짐을 보인다.Due to its hydrophobic nature, PVDF has a high value of 75 ° before surface treatment using ion assisted reaction. However, it is shown to be lowered to 31 o after surface treatment with an ion irradiation amount of 1 × 10 15 ions / cm 2 at the same time as the surface is blown with the reactive gas O 2 .
상기 표면 처리후 접촉각이 감소한 결과는 이온보조 반응법에 의해 PVDF 표면에 새롭게 형성된 친수성 작용에 의한 것이다.The result of decreasing the contact angle after the surface treatment is due to the hydrophilic action newly formed on the PVDF surface by the ion assist reaction method.
도 3은 본 발명에 따른 표면 개질 방법으로 표면 처리된 PVDF의 XPS C1s core level spectra 분석 결과를 나타낸 그래프로서, 표면 처리 전과 표면 처리 후의 XPS C1s core level spectra의 비교를 나타낸 그래프이다.Figure 3 is a graph showing the results of XPS C1s core level spectra analysis of the surface treated PVDF by the surface modification method according to the present invention, a graph showing the comparison of XPS C1s core level spectra before and after the surface treatment.
상기 PVDF 표면에 친수성 작용기의 형성은 XPS(X-ray Photoelectron Spectroscopy) 분석을 이용하여 표면 처리 전후의 PVDF 표면의 화학적 구조 변화를 비교함으로서 확인할 수 있다.The formation of hydrophilic functional groups on the PVDF surface can be confirmed by comparing the chemical structure change of the PVDF surface before and after the surface treatment using XPS (X-ray Photoelectron Spectroscopy) analysis.
상기 표면 처리하기 전인 PVDF의 C1s core level spectra 에서는 -CH2-(286.2eV)와 -CF2-(290.8eV)의 고유한 피크(peak) 만이 관찰된다. 그러나 이온 보조 반응법을 이용하여 반응성 가스로 표면 처리된 PVDF의 경우 -CF2- 피크가 급격히 감소하는 반면 -C-O-(286.1eV), -(C=O)-O-(289.0eV) 등의 피크는 새로 생겨나거나 증가함을 관찰할 수 있다. 상기 결합들은 친수성이 형성된 것으로 상기 설명한 도 2에 나타난 것과 같이 접촉각이 감소하는 효과를 얻을 수 있다.Only inherent peaks of -CH 2- (286.2 eV) and -CF 2- (290.8 eV) are observed in the C1s core level spectra of PVDF before the surface treatment. However, in case of PVDF surface-treated with reactive gas using ion assisted reaction, the -CF 2 -peak is drastically reduced while -CO- (286.1eV),-(C = O) -O- (289.0eV) Peaks can be observed to emerge or increase. The bonds are hydrophilic, so that the contact angle may be reduced as shown in FIG. 2.
도 4는 본 발명에 따른 표면 개질 방법으로 표면 처리된 PVDF의 XPS O1s core level spectra 분석 결과를 나타낸 그래프이다. 도시된 바와같이 상기 O1s core level spectra의 경우 표면 처리하지 않은 PVDF에서는 산소가 거의 존재하지않으나, 5 × 1014이온/cm2의 이온조사량으로 개질한 PVDF에서부터는 산소의 결합이 증가하였음을 확인할 수 있으며 이는 상기 도 3의 결과와 잘 일치한다.Figure 4 is a graph showing the XPS O1s core level spectra analysis of the surface treated PVDF by the surface modification method according to the present invention. As shown, in the case of the O1s core level spectra, oxygen is hardly present in the surface-treated PVDF, but the binding of oxygen increased from the PVDF modified with an ion irradiation amount of 5 × 10 14 ions / cm 2 . This is in good agreement with the results of FIG. 3.
도 5는 본 발명에 따른 표면 개질 방법으로 표면 처리된 PVDF의 표면에너지 변화를 나타낸 그래프로서, 이온 조사량에 따라 처리된 PVDF의 표면에너지 변화를 나타낸 것이다.Figure 5 is a graph showing the surface energy change of the surface treated PVDF by the surface modification method according to the present invention, showing the surface energy change of the treated PVDF according to the ion irradiation amount.
상기 PVDF의 표면에너지는 두 개의 극성 용액인 물과 포름아미드(formamide)와의 접촉각을 측정하고 이를 이용하여 분산력(dispersion force)과 쌍극자력(polar force)을 계산한 후, 상기 계산된 각각의 값을 합하여 표면에너지 값을 계산할 수 있다.The surface energy of the PVDF is measured by the contact angle between two polar solutions, water and formamide, and calculates the dispersion force and the polar force, and then calculates the calculated values. Can be summed to calculate surface energy values.
도 5에 도시된 바와같이 표면 처리를 하기 전에는 36 에르그/cm2이었던 것이 1 × 1015이온/cm2이온조사량으로 표면 처리를 한 경우 최대 64 에르그/cm2까지 증가하였다. 여기서, 표면 에너지 증가는 상기 설명된 친수성 작용기의 형성에 의한 것이며, 이러한 친수성 작용기들은 PVDF 위에 증착되는 전극 재료와 상호 물리, 화학적 결합을 함으로써 접착력을 크게 증대시킨다.As shown in FIG. 5, the amount of 36 ergs / cm 2 before the surface treatment increased to 64 ergs / cm 2 when the surface treatments were performed with 1 × 10 15 ions / cm 2 ion dosage. Here, the increase in surface energy is due to the formation of the hydrophilic functional groups described above, and these hydrophilic functional groups greatly increase adhesion by mutual physical and chemical bonding with the electrode material deposited on the PVDF.
따라서, 현재 사용되고 있는 금속 전극(Pt, Au, Ag, Al, Ni, Ti, Cu 등)뿐만 아니라 지금까지 전극과의 접착성이 약하여 소자 제조에 사용이 제한된 여러 가지 전극 물질들(귀금속: Pt,Au, Ag 등, 전도성 산화물: ITO, SnO2, ZnO, CeO2등 및 이들의 도핑된 전도성 산화물, 도핑된 폴리아세틸렌(PA:Polyacetylene), 폴리에틸렌디옥시티오펜 폴리스트레인 설폰레이드(PEDT:Polyethylene dioxythiophene polystyrene sulphonate), 폴리아닐린(PAN:Polyaniline), 폴리(p-펜닐린) (PPV:Poly(p-phenylene)), 폴리(p-펜닐렌비닐렌)(PPP:Poly(p-phenylenevinylene)), 폴리피놀(PPy:Polypyrrole), 폴리티오펜(PT:Polythiophene) 및 이들의 유도체들인 전도성 고분자(π-공액 고분자) 및 그의 유도체들 및 도핑된 유기 분자들)을 소자 제조에 사용할 수 있게 되었다.Therefore, various electrode materials (precious metals: Pt, Au, Ag, Al, Ni, Ti, Cu, etc.) currently used, as well as various electrode materials limited in use in device fabrication due to weak adhesiveness with electrodes until now. Au, Ag, etc., conductive oxides: ITO, SnO 2 , ZnO, CeO 2, etc. and their doped conductive oxides, doped polyacetylene (PA), polyethylene dioxythiophene polysulfone sulfidede (PEDT: Polyethylene dioxythiophene polystyrene) sulphonate), polyaniline (PAN: Polyaniline), poly ( p- phenylene) (PPV: Poly ( p- phenylene)), poly (p-phenylenevinylene) (PPP: Poly ( p- phenylenevinylene)), polypinol (PPy: Polypyrrole), polythiophene (PT) and derivatives thereof, conductive polymers (π-conjugated polymers) and their derivatives and doped organic molecules, have been made available for device fabrication.
도 6은 PVDF 위에 증착된 백금 전극의 끓임 시험 결과를 나타낸 그래프로서, (a)는 상기 PVDF가 표면 처리되지 않은 상태를 나타내고, (b) 내지 (d)는 상기 PVDF가 각각 5 × 1014Ar+/cm2, 1 × 1015Ar+/cm2, 1 × 1017Ar+/cm2의 주입량으로 표면 처리된 상태를 나타낸 결과이다. 여기서, 표면 처리를 위해 Ar+이온이 사용되었지만, 그 박의 다른 이온들도 사용할 수 있다.Figure 6 is a graph showing the boiling test results of the platinum electrode deposited on the PVDF, (a) is a state in which the PVDF is not surface-treated, (b) to (d) is 5 × 10 14 Ar It is the result which showed the surface-treated state by the injection amount of + / cm <2> , 1 * 10 <15> Ar + / cm <2> , 1 * 10 <17> Ar + / cm <2> . Here, Ar + ions have been used for the surface treatment, but other ions of the foil can also be used.
도 6의 (a)에 도시된 바와같이, 표면 처리하지 않은 PVDF 위에 증착된 Pt 박막은 넓은 면적에 걸쳐서 박리현상(buckling)이 일어나는 것을 알 수 있다. 그러나 Ar+이온으로 표면 처리한 도 6의 (b) 내지 (d)는 도시된 바와같이 증착된 백금 박막은 박리현상이 크게 감소하였으며, 1 × 1015이온/cm2의 이온조사량 이 후에는 박리현상 대신 박막내에 균열(crack)이 진행되었음을 알 수 있다. 이러한 균열의 발생은 계면에서의 접착력이 우수할 때 열팽창계수 차이에 의해 발생되는 응력이 박막의 박리 대신 균열의 형성으로 해결되기 때문이며, PVDF와 백금 전극간의 결합력이 향상되었음을 알 수 있다.As shown in (a) of FIG. 6, it can be seen that the Pt thin film deposited on the surface-treated PVDF is buckling over a large area. However, as shown in FIGS. 6 (b) to (d) surface treated with Ar + ions, the deposited platinum thin film was significantly reduced as shown in FIG. 6, and after the ion irradiation amount of 1 × 10 15 ions / cm 2 , It can be seen that cracks have progressed in the thin film instead of the phenomenon. The occurrence of such cracks is because the stress generated by the difference in coefficient of thermal expansion when the adhesion at the interface is excellent is solved by the formation of cracks instead of peeling the thin film, it can be seen that the bonding force between the PVDF and the platinum electrode is improved.
본 발명의 적용예로서, 투명전도성 산화물 ITO 박막을 전극으로 사용한 원형 PVDF 필름 스피커를 들 수 있다.As an application of the present invention, a circular PVDF film speaker using a transparent conductive oxide ITO thin film as an electrode may be mentioned.
일반적으로, 투명 전도성 산화물인 ITO(Indium Tin Oxidel) 박막의 경우 금속 전극에 비하여 연성이 적어 압전소자 작동시 발생하는 미소 진동에 대한 저항성이 부족하며, ITO 박막이 전극으로 사용되기 위해서는 전기적 손실을 최소화하기 위해 낮은 저항이 요구된다.In general, an indium tin oxide (ITO) thin film, which is a transparent conductive oxide, is less ductile than a metal electrode, and thus, lacks resistance to micro-vibration generated when a piezoelectric element is operated. Low resistance is required to do this.
또한, PVDF의 경우 녹는점이 낮아 높은 온도로 가열하는 것이 불가능하여 낮은 온도에서 가열해야 하는데, 이 경우 금속 전극에 준하는 낮은 저항을 얻는 것이 어려우며, 기존의 스퍼터링 증착법을 사용할 경우 PVDF와 플라즈마가 직접적으로 접촉함으로써 고에너지 입자의 충돌로 인해 PVDF의 표면처리 효과가 급격히 저하된다.In addition, in the case of PVDF, it is impossible to heat to a high temperature because the melting point is low, so it is difficult to obtain a low resistance comparable to that of a metal electrode. In the case of using the conventional sputtering deposition method, PVDF and plasma are directly contacted. As a result, the surface treatment effect of PVDF is drastically lowered due to the collision of high energy particles.
따라서, 본 발명에서는 ITO 전극의 증착방법으로 기존의 스퍼터링법 대신, 이온빔 스퍼터링을 사용하였으며, 상기 이온빔 스퍼터링은 플라즈마와 기판을 격리시킴으로써 기판의 손상을 최소화하며 저온에서 우수한 특성을 갖는 박막을 증착할 수 있다.Therefore, in the present invention, ion beam sputtering is used instead of the conventional sputtering method as the deposition method of the ITO electrode. The ion beam sputtering separates the plasma from the substrate, thereby minimizing damage to the substrate and depositing a thin film having excellent characteristics at low temperature. have.
본 발명에 따른 이온빔 스퍼터링 방법을 사용하여, 50℃에서 증착된 ITO 박막의 두께에 따른 면저항과 550 nm에서의 투과도 변화를 살펴보면, 도 7에 도시된 바와같이, 두께 2000Å에서 20 Ω/□의 낮은 면저항과 82%의 높은 투과도를 갖는 ITO 박막을 얻을 수 있으며, Pt를 500Å 증착하였을 경우에 비하여 면저항의 값이10배 이하로 감소되어 전극으로서의 역할이 가능하다.Using the ion beam sputtering method according to the present invention, the sheet resistance and the transmittance change at 550 nm according to the thickness of the ITO thin film deposited at 50 ° C., as shown in FIG. An ITO thin film having a sheet resistance and a high transmittance of 82% can be obtained, and the sheet resistance value is reduced to 10 times or less as compared to the case where Pt is deposited at 500 Å, thereby serving as an electrode.
따라서, 상기 ITO나 투명한 전도성 고분자 및 도핑된 유기 단분자를 전극물질로하여 TV 브라운관, 컴퓨터 모니터, 프로젝센 TV, PDA, 모바일 폰(Mobile phone)등의 스피커로 이용할 수 있다.Therefore, the ITO or transparent conductive polymer and the doped organic monomolecule may be used as an electrode material as a speaker of a TV CRT, a computer monitor, a projection TV, a PDA, a mobile phone, and the like.
본 발명은 스피커 일체형 디스플레이 장치(모니터) 제조와 고분자 압전체를 이용한 잉크젯 프린터 헤드에 사용되는 마이크로 펌프(micro pump)의 제조에 적용할 수 있으며, 이 외에도 다양한 분야에도 적용할 수 있다.The present invention can be applied to the manufacture of a speaker integrated display device (monitor) and the manufacture of a micro pump used in an inkjet printer head using a polymer piezoelectric material, and can be applied to various fields.
또한, 이온 보조 반응법으로 표면 처리되어 전극과의 접착력이 향상된 압전 및 초전체 고분자 소자는 압전 및 초전특성을 이용하여 기계적 힘 및 열 에너지를 전기적 신호로 전환하는 마이크, 압전체 트랜스듀서 (transducer), 동작 센서, 적외선 영상 센서, 광 센서, 수소 센서, 초음파 진동소자 제조등에 활용될 수 있다.In addition, piezoelectric and pyroelectric polymer devices surface-treated by ion-assisted reaction method to improve adhesion to electrodes have a microphone, piezoelectric transducer, which converts mechanical force and thermal energy into electrical signals using piezoelectric and pyroelectric properties. It can be used for motion sensor, infrared image sensor, light sensor, hydrogen sensor, ultrasonic vibration device manufacturing, and the like.
이상에서 본 발명에 대해 상세히 기술하였지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구범위에 정의된 본 발명의 정신 및 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형 또는 변경하여 실시할 수 있음은 자명하며, 따라서 본 발명의 실시예에 따른 단순한 변경은 본 발명의 기술을 벗어날 수 없을 것이다.Although the present invention has been described in detail above, those of ordinary skill in the art to which the present invention pertains may variously modify the present invention without departing from the spirit and scope of the present invention as defined in the appended claims. It is apparent that the present invention may be modified or modified. Therefore, a simple change according to an embodiment of the present invention will not be possible without departing from the technology of the present invention.
이상에서 설명한 본 발명에 따른 표면 개질 방법에 의하면, 압전 또는 초전특성을 갖는 압전 또는 초전체 고분자 필름의 표면을 개질시킴으로써 압전 또는 초전 소자의 제조시 전극간의 접착력을 향상시키고 이로 부터 내구성이 우수한 압전또는 초전 소자의 제작 및 새로운 개념의 소자 제작이 가능하고, 부가적으로 접착력이 향상되어 압전 또는 초전 소자의 수명을 연장시킬 수 있는 잇점이 있다.According to the surface modification method according to the present invention described above, by modifying the surface of the piezoelectric or pyroelectric polymer film having a piezoelectric or pyroelectric properties to improve the adhesion between the electrodes in the production of piezoelectric or pyroelectric elements, from which piezoelectric or excellent durability It is possible to manufacture a pyroelectric element and a new concept of the element, and additionally, adhesive strength may be improved to extend the life of the piezoelectric or pyroelectric element.
또한, 지금까지 사용에 제한을 받아오던 여러 가지 전극 물질들을 소자 제작에 사용할 수 있는 효과를 가지고 있다.In addition, various electrode materials, which have been limited in use until now, have an effect that can be used in device fabrication.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010064791A KR20030033270A (en) | 2001-10-19 | 2001-10-19 | The surface reforming method of a piezoelectric or pyroelectric material using an ion-beam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010064791A KR20030033270A (en) | 2001-10-19 | 2001-10-19 | The surface reforming method of a piezoelectric or pyroelectric material using an ion-beam |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20030033270A true KR20030033270A (en) | 2003-05-01 |
Family
ID=29565567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020010064791A KR20030033270A (en) | 2001-10-19 | 2001-10-19 | The surface reforming method of a piezoelectric or pyroelectric material using an ion-beam |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20030033270A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100957803B1 (en) * | 2007-09-04 | 2010-05-12 | 한국원자력연구원 | A Polymer vibration plate of micro or thin film speaker and its manufacture method by ion beam irradiation |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996033293A1 (en) * | 1995-04-19 | 1996-10-24 | Korea Institute Of Science And Technology | Modification of surfaces of polymers, metal or ceramic |
JPH08313912A (en) * | 1995-05-18 | 1996-11-29 | Sumitomo Bakelite Co Ltd | Liquid crystal oriented film |
WO2000032294A1 (en) * | 1998-12-02 | 2000-06-08 | Lg Chemical Ltd. | Methods for reforming polymer surface for improved wettability |
KR20000065896A (en) * | 1999-04-10 | 2000-11-15 | 성재갑 | Method of modificating surface of polymeric materials |
US6251472B1 (en) * | 1989-05-18 | 2001-06-26 | Canon Kabushiki Kaisha | Method of depositing electrode material onto a piezoelectric substrate whereby the substrate is masked and the unmasked portions are cleaned by a plasma or ion beam prior to deposition |
KR100307806B1 (en) * | 1998-12-23 | 2001-11-30 | 김윤 | Surface-Modified Polymer Membrane Using Ion Beam and Method for Surface Modification |
-
2001
- 2001-10-19 KR KR1020010064791A patent/KR20030033270A/en not_active Application Discontinuation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6251472B1 (en) * | 1989-05-18 | 2001-06-26 | Canon Kabushiki Kaisha | Method of depositing electrode material onto a piezoelectric substrate whereby the substrate is masked and the unmasked portions are cleaned by a plasma or ion beam prior to deposition |
WO1996033293A1 (en) * | 1995-04-19 | 1996-10-24 | Korea Institute Of Science And Technology | Modification of surfaces of polymers, metal or ceramic |
KR100288500B1 (en) * | 1995-04-19 | 2001-05-02 | 박호군 | Method for modifying surface of nitride materials and surface modified nitride materials by means of the same |
KR100316586B1 (en) * | 1995-04-19 | 2002-02-28 | 박호군 | Method of modification of material surface and material having surface modified by the method |
JPH08313912A (en) * | 1995-05-18 | 1996-11-29 | Sumitomo Bakelite Co Ltd | Liquid crystal oriented film |
WO2000032294A1 (en) * | 1998-12-02 | 2000-06-08 | Lg Chemical Ltd. | Methods for reforming polymer surface for improved wettability |
KR100307806B1 (en) * | 1998-12-23 | 2001-11-30 | 김윤 | Surface-Modified Polymer Membrane Using Ion Beam and Method for Surface Modification |
KR20000065896A (en) * | 1999-04-10 | 2000-11-15 | 성재갑 | Method of modificating surface of polymeric materials |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100957803B1 (en) * | 2007-09-04 | 2010-05-12 | 한국원자력연구원 | A Polymer vibration plate of micro or thin film speaker and its manufacture method by ion beam irradiation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Design, synthesis and processing of PVDF‐based dielectric polymers | |
US10056542B2 (en) | Piezoelectric device | |
Shrestha et al. | Transparent tunable acoustic absorber membrane using inkjet-printed PEDOT: PSS thin-film compliant electrodes | |
JP5989002B2 (en) | Method for producing gas barrier film, and electronic member or optical member provided with gas barrier film | |
JP2008251598A (en) | Piezoelectric element and manufacturing method therefor | |
KR101471161B1 (en) | Piezoelectric element having β-phase PVDF film prepared by spray coating | |
JP2005141981A (en) | Crystalline ito film, crystallization method of ito film, transparent conductive film, touch panel and dye-sensitized solar cell | |
Lee et al. | An approach to durable poly (vinylidene fluoride) thin film loudspeaker | |
Lee et al. | An approach to durable PVDF cantilevers with highly conducting PEDOT/PSS (DMSO) electrodes | |
JP2016156825A (en) | Piezoelectric device | |
KR20030033270A (en) | The surface reforming method of a piezoelectric or pyroelectric material using an ion-beam | |
JP2004072049A (en) | Organic tft element and method of manufacturing same | |
JP3105645B2 (en) | Piezoelectric element and method of manufacturing the same | |
JP2006024862A (en) | Organic transistor and method of manufacturing the same | |
WO2018225736A1 (en) | Method for improving electrical conductivity of graphene sheet and electrode structure which uses graphene sheet having improved electrical conductivity | |
WO2002088415A1 (en) | Film forming method | |
KR100530319B1 (en) | A manufacturing method of plastic film for display panel | |
WO2003033759A1 (en) | The surface reforming method of a piezoelectric or pyroelectric material using an ion-beam | |
WO2021105258A1 (en) | Polymeric electronic circuit and method for manufacturing same | |
KR20210129866A (en) | Method of fabricating stretchable electrode using magnetron co―sputtering | |
KR100469885B1 (en) | Method of making semiconductor back-electret | |
KR101824204B1 (en) | Method of manufacturing a secondary battery adhesion utilizing inverse opal structure | |
JP5005592B2 (en) | Laminate production method, laminate and vinylidene fluoride oligomer film | |
CN111867843A (en) | Ink jet head and method of manufacturing the same | |
TWI842220B (en) | Stretchable composite electrode and fabricating method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |