KR100469885B1 - Method of making semiconductor back-electret - Google Patents

Method of making semiconductor back-electret Download PDF

Info

Publication number
KR100469885B1
KR100469885B1 KR10-2002-0045014A KR20020045014A KR100469885B1 KR 100469885 B1 KR100469885 B1 KR 100469885B1 KR 20020045014 A KR20020045014 A KR 20020045014A KR 100469885 B1 KR100469885 B1 KR 100469885B1
Authority
KR
South Korea
Prior art keywords
electret
thin film
silicon
manufacturing
silicon wafer
Prior art date
Application number
KR10-2002-0045014A
Other languages
Korean (ko)
Other versions
KR20040011242A (en
Inventor
박성호
송청담
Original Assignee
주식회사 비에스이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 비에스이 filed Critical 주식회사 비에스이
Priority to KR10-2002-0045014A priority Critical patent/KR100469885B1/en
Publication of KR20040011242A publication Critical patent/KR20040011242A/en
Application granted granted Critical
Publication of KR100469885B1 publication Critical patent/KR100469885B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/08Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material

Abstract

본 발명은 습도의 변화에도 전하의 손실을 방지하여 전하를 반영구적으로 유지할 수 있도록 한 반도체 백-일렉트릿의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a semiconductor back- electret that can maintain charge semi-permanently by preventing charge loss even with changes in humidity.

이러한 본 발명의 반도체 백-일렉트릿을 제조하는 방법은 콘덴서 마이크로폰용 백-일렉트릿의 제조방법에 있어서, 실리콘 웨이퍼 위에 화학기상증착법(CVD)을 이용하여 실리콘 무기질을 다층으로 증착하여 다층박막을 형성하는 제1 단계; 상기 다층박막 위에 스핀 코팅(Spin Coating) 방법으로 테프론 박막을 형성하는 제2 단계; 상기 테프론 박막이 코팅된 실리콘 웨이퍼를 고온 열처리하는 제3 단계; 및 상기 실리콘 웨이퍼를 소정 크기로 커팅하여 전하를 충전하는 제4 단계로 이루어진 것을 특징으로 한다.Such a method for manufacturing a semiconductor back- electret of the present invention is a method for manufacturing a back electret for a condenser microphone, by depositing a silicon inorganic material in multiple layers on a silicon wafer by chemical vapor deposition (CVD) to form a multilayer thin film. A first step of doing; A second step of forming a Teflon thin film on the multilayer thin film by spin coating; A third step of high temperature heat treatment of the silicon wafer coated with the Teflon thin film; And a fourth step of charging the charge by cutting the silicon wafer to a predetermined size.

따라서, 본 발명에 따르면 반도체 공정으로 신뢰성이 높은 일렉트릿을 구현하기가 용이하며, 습도의 변화에도 일렉트릿의 전하 손실을 방지할 수 있어 외부 공급전원을 사용하지 않아도 되는 이점이 있다.Therefore, according to the present invention, it is easy to implement a highly reliable electret in a semiconductor process, and it is possible to prevent charge loss of the electret even with a change in humidity, thereby eliminating the need for using an external power supply.

Description

반도체 백-일렉트릿의 제조방법{ METHOD OF MAKING SEMICONDUCTOR BACK-ELECTRET}Manufacturing Method of Semiconductor Back-Electret {METHOD OF MAKING SEMICONDUCTOR BACK-ELECTRET}

본 발명은 일렉트릿 콘덴서 마이크로폰에 사용되는 백-일렉트릿의 제조방법에 관한 것으로, 특히 습도의 변화에도 전하의 손실을 방지하여 전하를 반영구적으로 유지할 수 있도록 한 반도체 백-일렉트릿의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a back- electret used in an electret condenser microphone, and more particularly, to a method for manufacturing a semiconductor back- electret capable of maintaining the charge semi-permanently by preventing the loss of the charge even when the humidity changes. will be.

일반적으로, 마이크로폰은 기계적인 진동을 전기적인 신호로 변환하는 방식에 따라 탄소입자의 전기적 저항 특성을 이용한 카본형과, 로셀염(rochelle salt)의 압전기 효과를 이용한 결정형, 코일이 장착된 진동판을 자기장 속에 진동시켜 유도전류를 발생시키는 가동 코일형, 자기장 내에 장치된 금속박이 음파를 받아 진동하면 유도전류를 발생시키는 진동박형, 음파에 의한 막의 진동으로 정전용량이 변하는 것을 이용한 콘덴서형 등으로 구분된다.In general, the microphone is a magnetic field of the diaphragm equipped with a carbon-type using the electrical resistance characteristics of the carbon particles, the crystalline form using the piezoelectric effect of the rochelle salt, and the coil according to the method of converting the mechanical vibration into an electrical signal It is divided into a movable coil type that vibrates and generates an induced current in the inside, a metal foil installed in a magnetic field, and a vibration type that generates an induced current when the metal foil is vibrated, and a capacitor type that uses a change in capacitance due to vibration of the film caused by sound waves.

전형적인 콘덴서 마이크로폰은 전압 바이어스 요소(통상 일렉트릿으로 이루어진다)와, 음압(sound pressure)에 대응하여 변화하는 커패시터(C)를 형성하는 다이어프램/백플레이트 쌍, 그리고 출력신호를 버퍼링하기 위한 전계 효과 트랜지스터(JFET)로 이루어진다.A typical condenser microphone is a voltage bias element (usually made of an electret), a diaphragm / backplate pair that forms a capacitor (C) that changes in response to sound pressure, and a field effect transistor to buffer the output signal. JFET).

여기서, 종래의 일렉트릿 콘덴서 마이크로폰은 다이어프램(Diaphragm)이나 백 플레이트(Back plate)중 어느 하나에 일렉트릿이 형성되어 있는데, 다이어프램에 일렉트릿이 형성된 것을 프론트 일렉트릿이라 하고, 백 플레이트상에 형성된 것을 백-일렉트릿이라 한다. 통상적으로 일렉트릿은 유기 필름에 전하를 강제적으로 주입시켜 형성된다.Here, in the conventional electret condenser microphone, an electret is formed on either a diaphragm or a back plate, and the electret is formed on the diaphragm as a front electret. Called the back electret. Typically, electrets are formed by forcing charges into an organic film.

도 1은 다이어프램이나 백 플레이트에 일렉트릿을 형성하는 일반적인 개념을 도시한 도면이다.1 is a diagram illustrating a general concept of forming an electret in a diaphragm or a back plate.

도 1을 참조하면, 일렉트릿을 주입하기 위한 다이어프램이나 백 플레이트는 금속판(112) 위에 유기 필름(114)이 융착되어 있다. 이와 같이 유기 필름(114)이 융착된 금속판(112)을 코로나 방전 챔버에 넣고, 양 전극(102,104) 사이에 고압을 인가하면 코로나 방전이 일어나면서 전자가 유기 필름(114)에 강제로 주입되어 일렉트릿을 형성하게 된다. 즉, 코로나 방전을 이용한 일렉트릿 형성은 높은 전압을 걸어서 공기중의 전자들을 유기 혹은 무기 필름에 트랩되도록 해서 일렉트릿을 형성하는 기술이다.Referring to FIG. 1, in the diaphragm or the back plate for injecting the electret, the organic film 114 is fused onto the metal plate 112. In this way, the metal plate 112 in which the organic film 114 is fused is placed in a corona discharge chamber, and when a high pressure is applied between both electrodes 102 and 104, the corona discharge is generated and electrons are forcibly injected into the organic film 114. It will form a treat. In other words, electret formation using corona discharge is a technique of forming an electret by applying electrons in the air to the organic or inorganic film under high voltage.

한편, 전자제품의 제조기술이 발전하면서 모든 제품이 보다 소형화되는 추세에 있고, 이러한 소형제품의 제조를 위해 표면실장기술(SMT:Surface Mount Technology)이 널리 사용되고 있다. 표면실장기술(SMT)은 전자기판(PCB)위에 부품을 올려놓는 공정이나 시스템이다. 표면실장부품은 기판의 표면에 있는 랜드에 결합(납땜)되기 위해서 아주 작은 리드를 가지거나 리드가 없다. 표면실장기술을 적용하면 제품의 가격과 성능을 향상시킬 수 있으나 리플로우시에 부품에 고온이 가해지기 때문에 온도에 약한 부품은 SMT기술을 적용할 수 없다.Meanwhile, as the manufacturing technology of electronic products is developed, all products are becoming more compact, and surface mount technology (SMT) is widely used for manufacturing such small products. Surface mount technology (SMT) is a process or system that places components on an electromagnetic board (PCB). Surface-mount components have very small leads or no leads to join (braze) to lands on the surface of the substrate. The application of surface mount technology can improve the price and performance of the product. However, SMT technology cannot be applied to components that are sensitive to temperature because high temperatures are applied to the components during reflow.

그런데 일렉트릿 콘덴서 마이크로폰에 사용되는 종래의 일렉트릿은 앞서 설명한 바와 같이 금속판 위에 융착되는 유기 필름(예컨대, FEP, PET, PTFE 등)에 전자를 강제로 주입하여 생성되기 때문에 표면실장기술을 적용할 수 없어 마이크로폰을 이용한 여러 제품, 예컨대 휴대폰 단말기 등의 제조원가를 낮출 수 없는 문제점이 있다. 즉, 기존의 일렉트릿(Electrets)은 충전(Charging) 공정에서 코로나 방전에 의해 강제로 전하를 주입하여 충전하지만 습도가 높거나 온도가 올라가면 충전된 전자가 쉽게 이탈되어 일렉트릿의 성능이 열하되는 문제점이 있다.However, conventional electrets used in electret condenser microphones can be applied to surface mount technology because they are generated by forcibly injecting electrons into organic films (eg, FEP, PET, PTFE, etc.) fused onto a metal plate as described above. There is a problem that can not lower the manufacturing cost of various products, such as a mobile phone terminal using a microphone. That is, conventional electrets charge by injecting electric charge by corona discharge in charging process, but when the humidity is high or the temperature rises, the charged electrons are easily released and the performance of the electret is degraded. There is this.

이에 본 발명은 전술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로,실리콘 무기질(SiO2, Si3N4)을 화학기상증착법(CVD)의 연속적인 공정을 이용하여 다층으로 증착하고 적층된 다층박막 상부에는 테프론(Teflon) 박막을 형성하여, 습도에 의한 특성 저하를 방지하고, 전하의 손실을 줄임으로써 전하의 충전효율을 높일 수 있는 반도체 백-일렉트릿의 제조방법을 제공하는데 그 목적이 있다.Accordingly, the present invention has been made in order to solve the problems described above, by depositing a multi-layer silicon film (SiO 2 , Si 3 N 4 ) by using a continuous process of chemical vapor deposition (CVD) and laminated multilayer thin film An object of the present invention is to provide a method for manufacturing a semiconductor back- electret by forming a Teflon thin film on the upper part, preventing degradation of characteristics due to humidity, and reducing charge loss.

도 1은 종래에 일렉트릿을 제조하는 개념을 설명하기 위해 도시한 도면,1 is a view illustrating a conventional concept of manufacturing an electret,

도 2는 본 발명에 따른 반도체 백-일렉트릿을 제조하는 절차를 도시한 순서도,2 is a flowchart illustrating a procedure for manufacturing a semiconductor back- electret according to the present invention;

도 3은 본 발명에 따른 마이크로폰용 백-일렉트릿의 구조를 도시한 도면이다.3 is a diagram showing the structure of a back- electret for a microphone according to the present invention.

**도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings

30: 백-일렉트릿 32: 실리콘30: back electret 32: silicon

34-1~34-3: 무기박막 35: 테프론 막34-1 ~ 34-3: Inorganic thin film 35: Teflon membrane

40: 스페이서 50: 다이어프램40: spacer 50: diaphragm

전술한 목적을 달성하기 위하여 본 발명의 방법은, 콘덴서 마이크로폰용 백-일렉트릿의 제조방법에 있어서, 실리콘 웨이퍼 위에 화학기상증착법(CVD)을 이용하여 실리콘 무기질을 다층으로 증착하여 다층박막을 형성하는 제1 단계; 상기 다층박막 위에 스핀 코팅(Spin Coating) 방법으로 테프론 박막을 형성하는 제2 단계; 상기 테프론 박막이 코팅된 실리콘 웨이퍼를 고온 열처리하는 제3 단계; 및 상기 실리콘 웨이퍼를 소정 크기로 커팅하여 전하를 충전하는 제4 단계로 이루어진것을 특징으로 한다.In order to achieve the above object, the method of the present invention, in the manufacturing method of the back-electret for the condenser microphone, by depositing a silicon inorganic material in multiple layers on the silicon wafer by chemical vapor deposition (CVD) to form a multilayer thin film First step; A second step of forming a Teflon thin film on the multilayer thin film by spin coating; A third step of high temperature heat treatment of the silicon wafer coated with the Teflon thin film; And a fourth step of charging the charge by cutting the silicon wafer to a predetermined size.

한편, 상기 제3 단계에서는 150도 내지 260도의 온도에서 90초 내지 180초 동안 열처리를 하여 테프론 forming과 에이징하는 것을 특징으로 하며, 상기 테프론 박막의 두께는 수백 Å에서 수 ㎛ 범위내에서 제어가 가능함을 특징으로 한다.On the other hand, in the third step is characterized in that the heat treatment for 90 seconds to 180 seconds at a temperature of 150 to 260 degrees to form the Teflon forming and aging, the thickness of the Teflon thin film can be controlled in the range of several hundreds of microns to several μm It is characterized by.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 자세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 반도체 백-일렉트릿을 제조하는 절차를 도시한 순서도이다.2 is a flow chart illustrating a procedure for manufacturing a semiconductor back- electret according to the present invention.

본 발명에 따라 백-일렉트릿을 제조하는 절차는 도 2에 도시된 바와 같이, 실리콘 웨이퍼(Silicon bare wafer)를 준비하는 단계(S1), 실리콘 웨이퍼를 세척(HF cleaning)하는 단계(S2), 실리콘 웨이퍼에 무기박막을 다층으로 증착(deposition)하는 단계(S3), 테프론 코팅(Teflon coating)하는 단계(S4), 소정 온도에서 소정 시간 베이킹(baking)하는 단계(S5), 실리콘 소자를 소정 크기로 커팅(Die size cutting)하는 단계(S6), 커팅된 소자에 충전(Corona charge)하여 일렉트릿을 형성하는 단계(S7)로 이루어진다.As shown in FIG. 2, the procedure for manufacturing the back- electret according to the present invention includes preparing a silicon bare wafer (S1), cleaning a silicon wafer (SF), Deposition of an inorganic thin film on a silicon wafer in multiple layers (S3), Teflon coating (S4), Baking at a predetermined temperature for a predetermined time (S5), Silicon device to a predetermined size The die cutting step (S6), and the charge to the cut device (Corona charge) to form an electret (S7).

도 2를 참조하면, 단계 S1에서 실리콘 베어 웨이퍼를 준비한 후, 단계 S2 세척공정에서 HF 클리닝을 수행하여 웨이퍼에 부착된 오염물을 제거한다. 이어 단계 S3에서는 화학기상증착법(CVD: Chemical Vapor Deposition)을 이용하여 실리콘 웨이퍼상에 실리콘 무기질 즉, 산화 실리콘(SiO2)과 질화 실리콘(Si3N4)을 교번적으로 증착하여 다층 박막을 형성한다. 이와 같이 무기질(SiO2, Si3N4) 박막을 다층으로 형성하여 하전특성을 향상시킬 수 있다. 여기서, CVD는 실리콘 웨이퍼 표면에 보호막(Passivation)을 형성하도록 하기 위한 공정으로, 유입된 반응가스로 인한 화학반응으로 형성된 입자들을 실리콘 웨이퍼, 유리(glass), 알루미나 등의 기판위에 증착하여 절연막이나 전도성막을 형성시키는 공정이다. 이러한 공정은 용매를 사용하지 않기 때문에 폐기물이나 공해발생을 최소화할 수 있는 이점이 있다.Referring to FIG. 2, after the silicon bare wafer is prepared in step S1, the contaminants attached to the wafer are removed by performing HF cleaning in the step S2 cleaning process. Subsequently, in step S3, a multilayer thin film is formed by alternately depositing a silicon inorganic material, ie, silicon oxide (SiO 2 ) and silicon nitride (Si 3 N 4 ), on a silicon wafer by using chemical vapor deposition (CVD). do. As such, the inorganic (SiO 2 , Si 3 N 4 ) thin film may be formed in a multilayer to improve charge characteristics. Here, CVD is a process for forming a passivation layer on the surface of the silicon wafer, by depositing particles formed by a chemical reaction due to the introduced reaction gas on a substrate such as silicon wafer, glass, alumina, etc. It is a process of forming a film. Since this process does not use a solvent, there is an advantage in minimizing waste or pollution.

이어 단계 S4에서는 박막의 상부에 스핀 코팅(Spin Coating)방법으로 테프론 박막을 코팅한다. 여기서 스핀 코팅은 고분자의 박막화 기술로 화학기상증착법 (CVD)에 비해 박막을 생성하는 속도가 빠르나, 용매를 사용하기 때문에 용매를 제거해주는 부가적인 공정이 필요하다. 그리고 테프론 박막을 고온 열처리하여 습기를 방지함으로써 습기에 의한 전자방출로 인한 일렉트릿의 특성저하를 방지한다. 테프론 박막의 두께는 수백 Å에서 수 ㎛ 정도까지 형성이 가능하여 두께 제어가 용이하고, 테프론 박막을 실리콘 무기물 다층 박막 상부에 형성하여 실리콘 무기물 다층박막이 외부전압을 사용하지 않는 일렉트릿으로 동작하게 한다.Subsequently, in step S4, the Teflon thin film is coated on the top of the thin film by spin coating. Here, spin coating is a technique for thinning polymers, which produces a thin film faster than chemical vapor deposition (CVD). However, since the solvent is used, an additional process of removing the solvent is required. In addition, the Teflon thin film is heat treated at high temperature to prevent moisture, thereby preventing deterioration of the electret due to electron emission by moisture. The thickness of the Teflon thin film can be formed from several hundreds of micrometers to several micrometers for easy thickness control, and the Teflon thin film is formed on the silicon inorganic multilayer thin film so that the silicon inorganic multilayer thin film operates as an electret without using external voltage. .

이어 단계 S5에서는 약 150 ℃ 내지 260 ℃의 온도에서 90초 내지 180초 동안 구워 테프론 forming과 에이징을 하여 일렉트릿을 형성할 웨이퍼를 완성하고, 단계 S6에서는 웨이퍼를 적당한 크기로 잘라 개별소자로 만든다. 이어 단계 S7에서는 각 개별소자들을 코로나 방전 챔버에 넣고 코로나 방전을 일으켜 전자를 강제적으로 주입하여 일렉트릿을 생성한다. 통상적으로, 일렉트릿은 무기물 박막의 표면에서만 일어나기 때문에 단층의 실리콘 박막은 알렉트릿의 특성이 약해 외부 전압을 인가해줘야 하나 본 발명에 따른 다층 실리콘 박막은 각 층의 표면마다 전자가 트랩되어 보다 강한 특성의 일렉트릿을 형성할 수 있다.Subsequently, in step S5, the wafer is baked at a temperature of about 150 ° C. to 260 ° C. for 90 seconds to 180 seconds to complete the wafer to form the electret by aging with Teflon forming. In step S6, the wafer is cut into appropriate sizes to form individual elements. Subsequently, in step S7, each individual element is placed in a corona discharge chamber to generate a corona discharge to forcibly inject electrons to generate an electret. Typically, since the electret occurs only on the surface of the inorganic thin film, the single layer silicon thin film is weak in the nature of the electret and should be applied with an external voltage. However, in the multilayer silicon thin film according to the present invention, electrons are trapped on each surface of the layer to provide stronger characteristics. The electret of can be formed.

도 3은 본 발명에 따른 마이크로폰용 백-일렉트릿의 구조를 도시한 도면이다.3 is a diagram showing the structure of a back- electret for a microphone according to the present invention.

도 3을 참조하면, 본 발명에 따른 백-일렉트릿(Electrect)(30)은 실리콘 웨이퍼(32) 상부에 다층으로 증착된 실리콘 무기질의 박막필름(34-1~34-3)이 적층되고, 이 다층박막 필름(34-1~34-3) 상부에는 스핀 코팅(Spin coating) 방법으로 형성된 테프론(Teflon) 박막 필름(35)이 차례로 적층되어 이루어진다.Referring to FIG. 3, in the back-electret 30 according to the present invention, silicon inorganic thin films 34-1 to 34-3 deposited in multiple layers are stacked on the silicon wafer 32. The Teflon thin film 35 formed by spin coating is sequentially stacked on the multilayer thin film 34-1 to 34-3.

다층 박막은 산화실리콘(SiO2)과 질화실리콘(Si3N4)을 교번적으로 증착하여 형성된 산화 실리콘 막(34-1,34-3)과 질화 실리콘 막(34-2)으로서, 막과 막 사이의 계면에 전자들이 용이하게 트랩되어 단층의 박막보다 일렉트릿 특성을 향상시킬 수 있다. 그리고 테프론(Teflon)은 플루오르를 함유한 플라스틱으로 수분을 흡수하지 않으며 단열효과가 뛰어나고 타지 않는 특성을 가지고 있어, 이 테프론의 성분을 함유한 불화탄소수지 또한 높은 내열성을 가지며 수분을 흡수하지 않아 습도가 적은 특성이 있다. 이러한 불화탄소수지의 종류에는 플루오르 에틸렌 플로필렌(Fluoro Ethylene Propylene: FEP)이나 폴리 테트라 플루오르 에틸렌(Poly Tetra Fluoro Ethylene: PTFE)이 대표적이며, 그 외PFA(Perfiuoroalkoxypolymeric), ETFE, PETP 등이 있다.The multilayer thin film is a silicon oxide film 34-1,34-3 and a silicon nitride film 34-2 formed by alternately depositing silicon oxide (SiO 2 ) and silicon nitride (Si 3 N 4 ). Electrons can easily be trapped at the interface between the films to improve the electret properties over a single layer thin film. Teflon is a fluorine-containing plastic that does not absorb moisture and has excellent thermal insulation and non-burning properties.The fluorocarbon resin containing Teflon also has high heat resistance and does not absorb moisture, resulting in high humidity. There are few characteristics. Fluoro Ethylene Propylene (FEP) and Poly Tetra Fluoro Ethylene (PTFE) are typical examples of such fluorocarbon resins, and others include Perfiuoroalkoxypolymeric (PFA), ETFE, and PETP.

이와 같이 본 발명에 따라 제조된 실리콘 백-일렉트릿(30)은 실리콘 웨이퍼(32) 위에 다층의 실리콘 무기물막(34-1~34-3)이 적층되어 있고, 각 층에는 충전공정을 통해 전자들이 트랩되어 일렉트릿을 형성하고 있다. 이와 같은 백-일렉트릿(30)은 도 4에 도시된 바와 같이, 스페이서(40)를 통해 다이어프램(50)과 마주함으로써 마이크로폰의 음향부를 구성한다.As described above, in the silicon back- electret 30 manufactured according to the present invention, multilayer silicon inorganic films 34-1 to 34-3 are stacked on the silicon wafer 32, and electrons are formed in each layer through a charging process. Are trapped to form an electret. As shown in FIG. 4, the back electret 30 forms a sound portion of the microphone by facing the diaphragm 50 through the spacer 40.

본 발명은 전술한 실시예에 국한되지 않고, 본 발명의 기술사상이 허용되는 범위 내에서 다양하게 변형하여 실시할 수 있다.The present invention is not limited to the above embodiments, and various modifications can be made within the scope of the technical idea of the present invention.

이상에서 설명한 바와 같이, 본 발명에 따라 실리콘 무기질의 다층 박막 필름으로 제작된 백-일렉트릿은 열에 강하고 가공성이 우수하여 신뢰성이 높은 이점이 있다. 특히 다층박막의 최상층에 테프론으로 코팅하여 습도에 의한 특성저하를 방지하여 일렉트릿의 전하 손실을 줄임으로써 부가적인 외부 공급전원을 사용하지 않고도 감도가 양호한 마이크로폰을 제공할 수 있다.As described above, the back- electret made of a silicon inorganic multilayer thin film according to the present invention has an advantage of being highly resistant to heat and excellent in workability. In particular, by coating with a Teflon on the top layer of the multilayer thin film to prevent the degradation of the characteristics due to humidity to reduce the charge loss of the electret can provide a good sensitivity microphone without using an additional external power supply.

또한, 본 발명에 따른 백-일렉트릿은 통상의 반도체 제조공정을 적용할 수 있어 신뢰성이 높은 일렉트릿을 구현하기 용이하며, 일괄공정에 따라 제조비용이 절감되는 이점이 있다.In addition, the back- electret according to the present invention can be applied to a conventional semiconductor manufacturing process, it is easy to implement a highly reliable electret, there is an advantage that the manufacturing cost is reduced according to the batch process.

Claims (5)

콘덴서 마이크로폰용 백-일렉트릿의 제조방법에 있어서,In the manufacturing method of the bag electret for a condenser microphone, 실리콘 웨이퍼 위에 화학기상증착법(CVD)을 이용하여 산화실리콘(SiO2)과 질화실리콘(Si3N4)을 교번적으로 증착하여 다층 박막을 형성하는 제1 단계;A first step of alternately depositing silicon oxide (SiO 2 ) and silicon nitride (Si 3 N 4 ) using chemical vapor deposition (CVD) on a silicon wafer to form a multilayer thin film; 상기 다층박막 위에 스핀 코팅(Spin Coating) 방법으로 테프론 박막을 형성하는 제2 단계;A second step of forming a Teflon thin film on the multilayer thin film by spin coating; 상기 테프론 박막이 코팅된 실리콘 웨이퍼를 고온 열처리하는 제3 단계;및A third step of heat-treating the silicon wafer coated with the Teflon thin film; and 상기 실리콘 웨이퍼를 소정 크기로 커팅하여 상기 다층박막에 전하를 충전하는 제4 단계로 이루어진 것을 특징으로 하는 반도체 백-일렉트릿의 제조방법.And cutting a silicon wafer into a predetermined size to charge an electric charge in the multilayer thin film. 삭제delete 삭제delete 삭제delete 삭제delete
KR10-2002-0045014A 2002-07-30 2002-07-30 Method of making semiconductor back-electret KR100469885B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0045014A KR100469885B1 (en) 2002-07-30 2002-07-30 Method of making semiconductor back-electret

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0045014A KR100469885B1 (en) 2002-07-30 2002-07-30 Method of making semiconductor back-electret

Publications (2)

Publication Number Publication Date
KR20040011242A KR20040011242A (en) 2004-02-05
KR100469885B1 true KR100469885B1 (en) 2005-02-02

Family

ID=37319556

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0045014A KR100469885B1 (en) 2002-07-30 2002-07-30 Method of making semiconductor back-electret

Country Status (1)

Country Link
KR (1) KR100469885B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100774303B1 (en) 2006-06-05 2007-11-08 (주)상아프론테크 Electret for high temperature, process for preparing the same, and microphone comprising the electret

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699441B1 (en) * 2005-03-07 2007-03-28 주식회사 씨에스티 Back electret for a condenser microphone and method for fabricating the same
KR100789129B1 (en) * 2006-06-05 2007-12-27 (주)상아프론테크 Electret for high temperature, process for preparing the same, and microphone comprising the electret
DE102014208645A1 (en) * 2014-05-08 2015-11-12 Robert Bosch Gmbh Method for producing a multilayered electret component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037310A (en) * 1974-03-25 1977-07-26 U.S. Philips Corporation Method of manufacturing a homopolar electret from a foil
JPS57132150A (en) * 1981-02-09 1982-08-16 Toshiba Corp Electrostatic recording medium
US4527218A (en) * 1981-06-08 1985-07-02 At&T Bell Laboratories Stable positively charged Teflon electrets
US5486423A (en) * 1993-01-14 1996-01-23 Lewiner; Jacques SiO2 electrets and process of making it
KR200218653Y1 (en) * 2000-11-01 2001-04-02 주식회사비에스이 An electret condenser microphone
KR20020024100A (en) * 2002-01-25 2002-03-29 김주연 soldering method of condenser microphone using SMD formula

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037310A (en) * 1974-03-25 1977-07-26 U.S. Philips Corporation Method of manufacturing a homopolar electret from a foil
JPS57132150A (en) * 1981-02-09 1982-08-16 Toshiba Corp Electrostatic recording medium
US4527218A (en) * 1981-06-08 1985-07-02 At&T Bell Laboratories Stable positively charged Teflon electrets
US5486423A (en) * 1993-01-14 1996-01-23 Lewiner; Jacques SiO2 electrets and process of making it
KR200218653Y1 (en) * 2000-11-01 2001-04-02 주식회사비에스이 An electret condenser microphone
KR20020024100A (en) * 2002-01-25 2002-03-29 김주연 soldering method of condenser microphone using SMD formula

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE Transactions on Electrical Insulation vol.24, no. 3, pp.495-498, 19 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100774303B1 (en) 2006-06-05 2007-11-08 (주)상아프론테크 Electret for high temperature, process for preparing the same, and microphone comprising the electret

Also Published As

Publication number Publication date
KR20040011242A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
CN1653850B (en) Capacitor sensor
US7620192B2 (en) Electret covered with an insulated film and an electret condenser having the electret
US4524247A (en) Integrated electroacoustic transducer with built-in bias
US6818092B2 (en) Multi-layer electret having ultra-high charge stability and method of manufacturing thereof
KR20070038449A (en) Thermostable electret condenser microphone
WO2005086534A1 (en) Electret capacitor microphone unit
KR101903420B1 (en) Microphone and method of fabricating thereof
KR20030003126A (en) Piezoelectric electroacoustic transducer and manufacturing method of the same
US20110303994A1 (en) Mems device and process
KR100469885B1 (en) Method of making semiconductor back-electret
JP2006245398A (en) Electret structure and its forming method
JP4419563B2 (en) Electret condenser
JP2008047953A (en) Case of microphone, and microphone
JP4419551B2 (en) Electret condenser and manufacturing method thereof
KR100469886B1 (en) Method of making multi-layer diaphragm for condenser microphone
KR101937149B1 (en) Method of manufacturing mems microphone using perovskite piezoelectric thin film
JP2008021787A (en) Electret, manufacturing method thereof, and acoustic-sensitive device having capacitor equipped with electret
KR200389793Y1 (en) Back electret for a condenser microphone
KR101657652B1 (en) Capacitive mems microphone and method of making the same
KR100699441B1 (en) Back electret for a condenser microphone and method for fabricating the same
KR101692717B1 (en) Capacitive mems microphone and method of making the same
KR100774303B1 (en) Electret for high temperature, process for preparing the same, and microphone comprising the electret
JPH06316766A (en) Production of improved silicon dioxide electret and said improved electret obtained
KR100789129B1 (en) Electret for high temperature, process for preparing the same, and microphone comprising the electret
KR100792502B1 (en) Electret, Manufacturing method thereof and Condensor microphone

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111230

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee