KR20030028990A - Soft magnetic core for power factor correction inductors manufactured with permalloy alloy powder - Google Patents

Soft magnetic core for power factor correction inductors manufactured with permalloy alloy powder Download PDF

Info

Publication number
KR20030028990A
KR20030028990A KR1020010061456A KR20010061456A KR20030028990A KR 20030028990 A KR20030028990 A KR 20030028990A KR 1020010061456 A KR1020010061456 A KR 1020010061456A KR 20010061456 A KR20010061456 A KR 20010061456A KR 20030028990 A KR20030028990 A KR 20030028990A
Authority
KR
South Korea
Prior art keywords
soft magnetic
magnetic core
powder
power factor
core
Prior art date
Application number
KR1020010061456A
Other languages
Korean (ko)
Inventor
김광윤
김구현
정인범
최광보
Original Assignee
(주)창성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)창성 filed Critical (주)창성
Priority to KR1020010061456A priority Critical patent/KR20030028990A/en
Publication of KR20030028990A publication Critical patent/KR20030028990A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: A soft magnetic core is provided to achieve excellent DC superposition characteristics, while reducing total resistance and magnetic core loss. CONSTITUTION: A soft magnetic core contains molybdenum 2 to 4 weight%, nickel 38 to 48 weight% and ferrum. The nickel is dissolved at the temperature of 1650 to 1700 Deg.C for 1 or more hours, and ferrum-molybdenum alloy is added to the resultant structure and dissolved at the temperature of 1700 to 1800 Deg.c. Subsequently, ferrum is added and dissolve.

Description

퍼멀로이 합금분말로 제조되는 역률개선 인덕터용 연자성 코아{SOFT MAGNETIC CORE FOR POWER FACTOR CORRECTION INDUCTORS MANUFACTURED WITH PERMALLOY ALLOY POWDER}SOFT MAGNETIC CORE FOR POWER FACTOR CORRECTION INDUCTORS MANUFACTURED WITH PERMALLOY ALLOY POWDER}

본 발명은 퍼멀로이(PERMALLOY) 합금분말로 제조되는 역률개선 인덕터용 연자성 코아에 관한 것으로, 보다 상세하게는 직류중첩특성이 우수함과 동시에 총 저항이 낮으며, 온도 안정성이 우수하고 소음이 적은 퍼멀로이 합금분말로 제조되는 역률개선 인덕터용 연자성 코아에 관한 것이다.The present invention relates to a soft magnetic core for a power factor improving inductor manufactured from a PERMALLOY alloy powder, and more particularly, a permalloy alloy having excellent DC overlapping characteristics and low total resistance, excellent temperature stability, and low noise. A soft magnetic core for a power factor improving inductor made of powder.

일반적으로 역률개선용 인덕터(Inductor)로 사용되는 연자성 코아는 규소강판이나 비정질(Amorphous) 합금을 소재로 하여 제조하였는데, 규소강판을 이용한규소강 코아의 경우, 압연한 규소강판을 여러 층을 적층하고 용접하여 제조하였고, 비정질 합금을 이용한 비정질 코아의 경우 용탕을 급냉 응고법을 이용하여 리본을 제조한 후 이를 여러 겹으로 적층하여 환형 코아(Toroidal Core)로 만들고 에어 갭(Air Gap)을 형성하여 제조하였다.In general, soft magnetic cores used as inductors for power factor improvement are manufactured from silicon steel sheets or amorphous alloys.In the case of silicon steel cores using silicon steel sheets, multiple layers of rolled silicon steel sheets are laminated. In the case of amorphous core using an amorphous alloy, a ribbon was manufactured by quenching and solidifying a ribbon, and then laminated in multiple layers to form a toroidal core and an air gap was formed. It was.

역률개선용 인덕터에 사용되는 코아에 요구되는 주요 특성은 우수한 직류중첩특성과 낮은 코아 손실 및 낮은 소음과 진동, 그리고 낮은 발열량 등이다.The main characteristics required for cores used in power factor improving inductors are excellent DC overlapping characteristics, low core loss, low noise and vibration, and low heat generation.

직류중첩특성이란 전원장치에서 교류입력을 직류로 변환하는 과정에서 발생하는 미약한 교류에 직류가 중첩된 파행에 대한 자성 코아의 특성으로서, 통상 교류에 직류가 중첩된 경우 직류 전류에 비례하여 코아의 투자율이 떨어지게 되는데, 이때, 직류를 중첩시키지 않은 상태의 투자율 대 직류중첩시의 투자율로 나타낸 비로써 직류중첩특성을 평가하며, 높은 값이 우수한 특성을 나타낸다.The DC superposition characteristic is a characteristic of magnetic core for the lameness in which DC is superimposed on the weak AC generated in the process of converting AC input into DC in the power supply device. The magnetic permeability is lowered. At this time, the DC superposition characteristic is evaluated as a ratio expressed by the magnetic permeability without overlapping DC to the magnetic permeability at the time of DC overlap, and the high value shows the excellent characteristic.

그러나, 상기한 규소강판으로 제조된 코아는 상대적으로 코아손실이 매우 커서 작동시 과열되고, 고주파수에서 투자율이 크게 떨어지는 단점이 있다. 한편, 비정질코아는 금속분말 연자성 코아에 비해 에어 갭이 존재하므로 누설자속이 크고, 에어 갭의 길이에 따라 인덕턴스의 편차가 크고, 온도 안정성이 좋지 않으며, 상대적으로 소음이 큰 단점으로 나타난다. 또한, 높은 직류전류가 중첩되면 투자율이 크게 떨어지는 문제점이 있다.However, the core made of the silicon steel sheet has a disadvantage that the core loss is relatively large and thus overheats during operation, and the permeability is greatly decreased at high frequencies. On the other hand, amorphous cores have a larger air gap compared to metal powder soft magnetic cores, resulting in a large leakage flux, a large variation in inductance depending on the length of the air gap, poor temperature stability, and relatively high noise. In addition, when the high DC current overlaps, there is a problem that the permeability is greatly reduced.

상기와 같은 문제점을 해결하기 위하여, 본 발명은 종래의 역률개선용 인덕터로 사용하던 코아 소재를 직류중첩특성이 우수한 합금을 분말로 제조하여 사용함으로써 직류중첩특성이 우수하고 총 저항이 낮으며, 종래 비정질 코아에 비해 온도 안정성이 우수하고, 소음이 적은 퍼멀로이 합금분말로 제조되는 역률개선 인덕터용 연자성 코아를 제공하는데 그 목적이 있다.In order to solve the above problems, the present invention by using the core material used as a conventional power factor improving inductor made of powder of an alloy having excellent DC overlapping characteristics, excellent DC overlapping characteristics and low total resistance, It is an object of the present invention to provide a soft magnetic core for a power factor improving inductor made of a permalloy alloy powder having better temperature stability and less noise than an amorphous core.

도 1은 본 발명에 따른 퍼멀로이 합금분말로 제조되는 역률개선 인덕터용 연자성 코아의 제조공정을 나타내는 공정흐름도;1 is a process flow diagram illustrating a process for manufacturing a soft magnetic core for a power factor improving inductor made of a permalloy alloy powder according to the present invention;

도 2는 본 발명에 따른 퍼멀로이 합금분말로 제조되는 역률개선 인덕터용 연자성 코아와 종래의 비정질 코아의 직류전류에 따른 인덕턴스 변화를 보여주는 그래프도이다.Figure 2 is a graph showing the change in inductance according to the DC current of the soft magnetic core for power factor improving inductor and conventional amorphous core made of permalloy alloy powder according to the present invention.

상기와 같은 목적을 달성하기 위하여, 본 발명은 중량%로서, 몰리브덴(Mo) 2∼4%, 니켈(Ni) 38∼48% 및 잔여량이 철(Fe)로 이루어지는 것을 특징으로 하는 퍼멀로이 합금분말로 제조되는 역률개선 인덕터용 연자성 코아를 제공하게 된다.In order to achieve the above object, the present invention is a permalloy alloy powder, characterized in that as a weight%, molybdenum (Mo) 2-4%, nickel (Ni) 38-48% and the residual amount is made of iron (Fe) To provide a soft magnetic core for the power factor improving inductor manufactured.

이하, 본 발명에 대하여 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

도 1은 본 발명에 따른 퍼멀로이 합금분말로 제조되는 역률개선 인덕터용 연자성 코아의 제조공정을 나타내는 공정흐름도이다.1 is a process flow diagram showing a manufacturing process of a soft magnetic core for a power factor improving inductor made of a permalloy alloy powder according to the present invention.

도 1에 도시된 바와 같이, 본 발명에 있어 합금 용융물은 Ni를 먼저 용해한 후 Fe-Mo합금을 첨가하여 용해 한 다음, Fe를 첨가하여 용해시켜 최종 분말합금 조성을 갖도록 한 후 합금화시켜 제조하는 것이 바람직하다.As shown in Figure 1, in the present invention, the alloy melt is preferably prepared by dissolving Ni first, followed by dissolution by adding Fe-Mo alloy, and then dissolution by adding Fe to have a final powder alloy composition. Do.

이 때, 상기한 Ni, Fe-Mo 합금 및 Fe 첨가량은 최종 분말합금 조성이 중량%로서 Mo: 2∼4%, Ni: 38∼48%, 및 나머지는 불가피한 불순물과 Fe로 조성되는 합금으로 이루어지도록 제어한다.At this time, the addition amount of Ni, Fe-Mo alloy and Fe is composed of an alloy composed of Fe: 2 to 4%, Ni: 38 to 48%, and the remainder with inevitable impurities and Fe as the final powder alloy composition by weight. Control to lose.

이 때 Ni를 용해할 경우, 용해온도는 1650∼1700℃로 선정하는 것이 바람직한데, 그 이유는 용해온도가 1650℃ 이하인 경우에는 Ni의 융해가 충분히 이루어지지 않고, 1700℃이상인 경우에는 용탕이 산화될 우려가 있기 때문이다.At this time, in the case of dissolving Ni, it is preferable to select a melting temperature of 1650 to 1700 ° C. The reason for this is that when the melting temperature is 1650 ° C or less, the melting of Ni is not sufficiently performed, and when the melting temperature is 1700 ° C or more, the molten metal is oxidized Because there is a fear.

또한, 용해시간은 충분한 용해를 위하여 1시간 이상으로 선정하는 것이 바람직하며, 상기와 같이 융해된 Ni 용탕에 Fe-Mo합금을 첨가하여 용해할 경우 용해온도는 1700∼1800℃로 선정하는 것이 바람직한데, 그 이유는 Ni 융해에서와 같이 1700℃이하에서는 충분한 용해가 이루어지지 않으며, 1800℃이상의 경우에는 용탕이 산화될 우려가 있고, 또한 비경제적이기 때문이다. 이 때, 용해시간은 충분한 용해를 위하여 1시간 이상으로 선정하는 것이 바람직하다.In addition, it is preferable to select a dissolution time of at least 1 hour for sufficient dissolution. The dissolution temperature is preferably set at 1700-1800 ° C. when Fe-Mo alloy is added to and dissolved in the molten Ni molten metal. The reason is that, as in the melting of Ni, sufficient dissolution is not performed below 1700 ° C., when the melting temperature is higher than 1800 ° C., the molten metal is oxidized and it is uneconomical. At this time, the dissolution time is preferably selected to 1 hour or more for sufficient dissolution.

상기 Fe-Mo합금으로는 통상의 Fe-Mo합금이면 어느 것이나 사용 가능하지만, 바람직하게는 40%Fe-60%Mo인 합금을 사용하는 것이다. 또한, Ni 용탕에 Fe를 첨가하여 용해시키는 경우 그 온도는 Fe-Mo합금의 용해 온도와 동일하게 선정하는 것이 바람직하다.As the Fe-Mo alloy, any conventional Fe-Mo alloy can be used, but an alloy of 40% Fe-60% Mo is preferably used. In addition, when Fe is added and dissolved in Ni molten metal, the temperature is preferably selected to be the same as the melting temperature of the Fe-Mo alloy.

또한, Ni용탕에 Fe-Mo합금 및 Fe를 첨가하여 용해한 다음, 행하는 합금화 처리는 Ni, Fe-Mo합금 및 Fe가 용해된 용탕을 1750∼1800℃로 승온시키고 이 온도에서 1시간 이상 유지하여 실시하는 것이 바람직한데, 그 이유는 합금화 온도가 1750℃ 이하인 경우에는 원자들의 확산속도가 느려 합금화 시간이 길어질 뿐만 아니라 유동도가 떨어져 용융물의 분말화가 곤란하고, 1800℃이상인 경우에는 용융물의 증발이 일어나고 또한 용탕의 산화가 우려되기 때문이다.The Fe-Mo alloy and Fe were added to and dissolved in the Ni molten metal, followed by an alloying treatment performed by heating the molten Ni, Fe-Mo alloy and Fe dissolved at 1750 to 1800 ° C. and maintaining at this temperature for at least 1 hour. The reason is that when the alloying temperature is 1750 ° C. or less, the diffusion rate of atoms is low, so that the alloying time is long and the fluidity is difficult to powder, and when the temperature is 1800 ° C. or higher, the melt is evaporated. This is because oxidation of the molten metal is concerned.

상기한 합금화 처리시간은 충분한 합금화를 이루기 위하여 1시간 이상으로 선정하는 것이 바람직하며, 또한 상기한 Ni 및 Fe-Mo합금으로는 순도가 높은 것일수록 좋으며, 바람직하게는 99.9%이상의 순도를 갖는 합금을 이용한다.The alloying treatment time is preferably selected to at least 1 hour in order to achieve sufficient alloying, and the higher the purity of the Ni and Fe-Mo alloys, the better, and preferably an alloy having a purity of 99.9% or more. I use it.

상기와 같이 합금화 처리된 용융물에 유체를 분사함으로써 분말을 제조한다. 즉, 용융물 흐름에 유체를 분사시켜 급냉함으로써 용융물은 분말화된다. 이 때 공급되는 유체로는 아르곤(Ar) 가스 또는 질소(N2) 가스와 같은 불활성가스와 물(Water)을 사용할 수 있다. 상기한 유체의 분사조건은 목적하는 분말의 입도, 분말의 형태 및 분말의 원자 배열 등을 고려하여 선정되는 것으로서, 유체의 종류에 따라 변화될 수 있다.Powder is prepared by injecting a fluid into the alloyed melt as described above. That is, the melt is powdered by quenching by injecting a fluid into the melt stream. In this case, an inert gas such as argon (Ar) gas or nitrogen (N 2) gas and water may be used as the fluid to be supplied. The spraying conditions of the fluid are selected in consideration of the particle size of the powder, the form of the powder and the atomic arrangement of the powder, and may be changed according to the type of the fluid.

분사되는 유체로서 Ar 가스 또는 N2 가스와 같은 불활성가스를 사용하는 경우에는 분말형태가 구형을 갖고, 분사되는 유체로서 물을 사용하는 경우에는 규칙적인 다각형 형태를 갖게 된다. 유체 분사시 유체가 Ar 가스 또는 N2 가스와 같은 불활성가스인 경우에는 분사압력은 50∼1200psi로, 유량은 1∼14m3/min으로 선정하는 것이 바람직하고, 유체가 물인 경우에는 분사압력은 800∼3000psi로, 유량은 110∼380L/min으로 선정하는 것이 바람직하다.In case of using an inert gas such as Ar gas or N2 gas as the fluid to be injected, the powder has a spherical shape, and when water is used as the fluid to be injected, it has a regular polygonal shape. In the case of fluid injection, when the fluid is an inert gas such as Ar gas or N2 gas, the injection pressure is preferably 50 to 1200 psi and the flow rate is 1 to 14 m 3 / min, and when the fluid is water, the injection pressure is 800 to The flow rate is preferably selected to be 110 to 380 L / min at 3000 psi.

상기한 분사압력보다 적은 경우에는 분말입경이 커지게 되고, 입자의 형태가 불규칙하게 되며, 상기한 분사압력보다 큰 경우에는 모두 구형을 갖지만 분말입경이 너무 작게 되므로 유체 분사시 분사압력은 상기한 범위로 선정하는 것이 바람직하다.When the injection pressure is less than the above, the particle size of the powder becomes large, the shape of the particles becomes irregular, and when the particle size is larger than the above injection pressure, all have a spherical shape, but the powder particle size is too small. It is preferable to select.

반면 유체의 분사유량이 너무 적은 경우에는 용융물을 충분히 급냉시킬수 없어 불규칙한 원자배열상태(Disorder State)를 충분히 얻기 어렵고, 너무 큰 경우에는 용융물의 균일한 분말화가 이루어지지 않으므로, 유체분사시 유체의 유량은 상기한 범위로 선정하는 것이 바람직하다.On the other hand, if the injection flow rate of the fluid is too small, it is difficult to quench the melt sufficiently to obtain an irregular Disorder State, and if it is too large, uniform powdering of the melt is not achieved. It is preferable to select in the above range.

용융물의 분말화에 사용되는 N2 가스는 액화가스를 기화시켜 사용하는 것이바람직하며, 물의 경우에는 25℃의 물을 사용하여도 무방하다. 이와 같이, 유체의 분사시 유체의 분사조건 즉, 분사압력 및 분사유량을 적절히 선정함으로써 입도범위, 구형 또는 규칙적인 다각형 형태 및 불규칙한 원자배열상태를 갖는 분말을 제조할 수 있게 된다.N2 gas used for powdering the melt is preferably used by vaporizing a liquefied gas, and water may be used at 25 ° C. In this way, by appropriately selecting the fluid injection conditions, that is, the injection pressure and the injection flow rate during the injection of the fluid it is possible to produce a powder having a particle size range, spherical or regular polygonal shape and irregular atomic arrangement state.

본 발명에서 사용되는 바람직한 분말 입도분포는 -100∼+230mesh(60∼149㎛) 통과분이 5∼25중량%, -230∼+325mesh(45∼60㎛) 통과분이 25∼45중량% 및 -325mesh(45㎛ 이하) 통과분이 45∼65중량%를 갖는 것이다.Preferred powder particle size distributions used in the present invention are 5 to 25% by weight of -100 to +230 mesh (60 to 149 μm), 25 to 45% by weight of -230 to +325 mesh (45 to 60 μm) and -325 mesh (45 micrometers or less) The passing content has 45 to 65 weight%.

상기와 같이 제조된 분말을 역률개선 인덕터용 합금분말 연자성 코아용으로 사용하기 위해서는 분말중의 탄소(C)의 함량은 100ppm 이하로, 산소(O)함량은 200ppm 이하로 제한하는 것이 바람직하다.In order to use the powder prepared as described above for the alloy powder soft magnetic core for the power factor improving inductor, the content of carbon (C) in the powder is preferably limited to 100 ppm or less, and oxygen (O) content to 200 ppm or less.

따라서, 분말중의 탄소 및 산소의 함량이 상기한 범위를 초과하는 경우에는 함수소 분위기(Hydrogen Atmosphere)와 같은 환원성 분위기 하에서 분말을 환원처리해야 하는데, 환원처리는 700∼800℃의 온도구간에서 1시간 이상 행하는 것이 바람직하다.Therefore, when the content of carbon and oxygen in the powder exceeds the above range, the powder should be reduced in a reducing atmosphere such as a hydrogen atmosphere (Hydrogen Atmosphere), and the reduction treatment is performed at a temperature range of 700 to 800 ° C. It is preferable to carry out for more than time.

상기와 같이 제조된 합금분말에 0.5∼3.0중량%의 혼합 세라믹을 가하여 절연코팅을 실시하는데, 혼합 세라믹은 활석(Talc)과 고령토(Kaolin)를 기본으로 하여 물유리(Sodium Silicate)와 수용액 중에서 혼합한 혼합물이다.Insulation coating is performed by adding 0.5 to 3.0% by weight of a mixed ceramic to the alloy powder prepared as described above. The mixed ceramic is mixed in water glass (Sodium Silicate) and an aqueous solution based on talc and kaolin. Mixture.

상기와 같이 코팅된 분말을 목적하는 코아형태로 성형하게 되는데, 보다 바람직하게는 분말을 코아금형 내에서 프레스(Press)를 이용하여 약 240,000psi의 성형압으로 성형하는 것이다. 이 때, 분말과 분말사이 또는 성형체와 금형 간의 마찰력을 감소시키기 위하여 성형 전에 상기 분말에 아연 스테아린산(Zn-Stearate)을 1% 이하 혼합시키는 것이 바람직하다.The powder coated as described above is molded into a desired core shape, and more preferably, the powder is molded at a molding pressure of about 240,000 psi using a press in a core mold. At this time, in order to reduce the friction between the powder and the powder or between the molded body and the mold, it is preferable to mix zinc stearic acid (Zn-Stearate) with the powder 1% or less before molding.

다음에, 상기와 같이 성형한 코아를 소둔처리한 후, 자기특성을 체크한 다음, 습기 및 대기로부터의 코아 특성보호를 위하여 코아 표면에 폴리에스테르 또는 에폭시 수지 등을 코팅함으로써 역률개선 인덕터용 합금분말 연자성 코아가 제조된다. 이 때, 상기한 에폭시 수지코팅층의 두께는 50∼200㎛ 정도가 바람직하다.Next, after annealing the core shaped as described above, the magnetic properties are checked, and then an alloy powder for power factor improvement inductor is coated by coating polyester or epoxy resin on the core surface to protect core properties from moisture and air. Soft magnetic cores are prepared. At this time, the thickness of the epoxy resin coating layer is preferably about 50 ~ 200㎛.

또한, 상기한 소둔처리시는 성형체에 잔류하는 응력 및 변형을 제거하기 위하여 행하게 되는 것으로써, 소둔조건은 이러한 관점에서 제어되며, 보다 바람직하게는 수소 분위기와 같은 환원성 분위기 하에서 530∼740℃의 온도로 30∼90분 정도 행하는 것이 바람직하다.In addition, the annealing treatment is performed to remove stresses and deformations remaining in the molded body, and the annealing conditions are controlled in this respect, and more preferably, a temperature of 530 to 740 ° C. under a reducing atmosphere such as a hydrogen atmosphere. It is preferable to perform about 30 to 90 minutes.

이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

순도 99.9%인 Ni를 고주파유도로에 장입하여 1650℃까지 가열하여 용해한 다음, 1700℃까지 승온시켜 Fe(40%)-Mo(60%)합금을 첨가하고, 1시간 10분 동안 유지하여 상기 합금을 용해시킨 다음, 순도 99.9%인 Fe를 첨가하여 용해시킨 후, 1800℃까지 승온시켜 1시간동안 유지하여 하기 표 1과 같은 조성을 갖도록 용융물을 제조하였다.Ni, which has a purity of 99.9%, was charged into a high frequency induction furnace, heated to 1650 ° C, dissolved, and then heated to 1700 ° C to add Fe (40%)-Mo (60%) alloy, and maintained for 1 hour and 10 minutes. After dissolving, after dissolving by adding Fe having a purity of 99.9%, the temperature was raised to 1800 ° C. and maintained for 1 hour to prepare a melt to have a composition as shown in Table 1 below.

그 다음, 제조된 용융물을 하부로 자유 낙하 시키면서 용융물의 스트립에 -183℃인 N2 가스를 90psi의 분사압력 및 9m3/min의 유량으로 분사시켜 분말을 제조하고, 제조된 분말을 세라믹 코팅한 다음, 아연 스테아린산을 0.5중량% 첨가하여 혼합하여 외경 24.3㎜, 내경 13.8㎜, 높이 9.7㎜의 환형 코아를 성형하였다.Then, while freely dropping the melt to the lower portion of the strip of the melt N2 gas at -183 ℃ to the injection pressure of 90psi and a flow rate of 9m 3 / min to prepare a powder, and the powder is ceramic coated And 0.5% by weight of zinc stearic acid were added and mixed to form a cyclic core having an outer diameter of 24.3 mm, an inner diameter of 13.8 mm, and a height of 9.7 mm.

이 후, 상기 코아 성형체를 질소 분위기 하에서 670℃의 온도로 1시간동안 유지하는 소둔처리를 실시한 다음, 코아표면에 에폭시수지를 100㎛ 두께로 코팅하였다.Thereafter, the core molded body was subjected to annealing for 1 hour at a temperature of 670 ° C. under a nitrogen atmosphere, and then coated on the surface of the core with an epoxy resin having a thickness of 100 μm.

상기 제조된 연자성 코아의 인덕턴스, 직류중첩특성, 총저항 및 자심손실을 측정하여 그 결과를 표 1에 나타내었다.Inductance, DC overlap characteristics, total resistance and magnetic core loss of the prepared soft magnetic cores were measured, and the results are shown in Table 1.

자성특성의 평가는 에폭시 수지로 코팅된 코아에 직경 0.25㎜의 에나멜 동선으로 두 겹으로 50회(비정질 코아의 경우 48회) 권선한 다음 정밀 LCR 미터를 사용하여 인덕턴스(L:μH)를 측정 후, 아래 수학식 1로 나타낸 환형 코아(Toroidal Core)의 관계식에 의하여 투자율(μ)을 구하고 Q값(품질계수: Quality Factor)을 측정한다. 측정조건은 주파수 100㎑, 교류전압 1V, 직류를 중첩시키지 않은 상태(IDC=0A)이다.To evaluate the magnetic properties, winding 50 times (48 times in the case of amorphous core) in two layers with an enamelled copper wire of 0.25 mm diameter on the core coated with epoxy resin and measuring the inductance (L: μH) using a precision LCR meter. , Permeability (μ) is obtained by the relational formula of the toroidal core represented by Equation 1 below, and the Q value (Quality Factor) is measured. The measurement conditions were 100 Hz, AC voltage 1 V, and DC not superimposed (I DC = 0 A).

여기에서 L은 인덕턴스(μH), μ는 코아의 투자율, N은 권선회수, A는 코아의 종단면적(㎠),l은 평균자로의 길이(㎝)이다.Where L is the inductance (μH), μ is the permeability of the core, N is the number of turns, A is the longitudinal area of the core (cm 2), and l is the length of the average path (cm).

또한, 직류전류를 변화시키며 투자율의 변화를 측정하여 직류중첩특성을 검사하는데, 이 때 측정조건은 주파수 1㎑, 교류전압 1V, 측정자화강도(HDC)는 190 Oe(직류전류 I=40A)이다.In addition, DC superimposition characteristics are examined by measuring the change of permeability by changing DC current, in which the measurement conditions are frequency 1㎑, AC voltage 1V, and measurement magnetization strength (H DC ) is 190 Oe (DC current I = 40A). to be.

상기와 같이 제조된 코아의 총저항은 다음의 수학식 2에 의해 계산된다.The total resistance of the core prepared as described above is calculated by the following equation (2).

여기에서, RT는 총저항(Ω), RDC는 직류저항, RAC는 교류저항, f는 측정주파수, L은 인덕턴스(μH)이다 . 이때, 측정조건은 주파수 50kHz, 교류전압 1V, 직류를 중첩시키지 않은 상태(IDC=0A)이다.Where RT is the total resistance (Ω), RDC is the DC resistance, RAC is the AC resistance, f is the measurement frequency, and L is the inductance (μH). At this time, the measurement condition is a state of not overlapping the frequency 50kHz, AC voltage 1V, DC (I DC = 0A).

도 2는 본 발명에 따른 퍼멀로이 합금분말로 제조되는 역률개선 인덕터용 연자성 코아와 종래의 비정질 코아의 직류전류에 따른 인덕턴스 변화를 보여주는 그래프도이다.Figure 2 is a graph showing the change in inductance according to the DC current of the soft magnetic core for power factor improving inductor and conventional amorphous core made of permalloy alloy powder according to the present invention.

도 2에 도시된 바와 같이, 종래재에 비해 본 발명재의 직류중첩특성 값이 현저하게 크고, 총저항은 아주 낮은 것을 볼 수 있다.As shown in FIG. 2, it can be seen that the DC overlapping characteristic value of the present invention material is significantly larger than the conventional material, and the total resistance is very low.

또한, 종래재는 높은 전류에서 인덕턴스가 크게 변화하므로 사용에 불안정한 점이 있다. 따라서, 종래재에 비해 본 발명재의 직류중첩특성 및 총 저항값이 우수하다고 할 수 있다.In addition, the conventional material is unstable in use because the inductance changes significantly at high current. Therefore, it can be said that the DC overlapping characteristics and the total resistance of the present invention are superior to those of the prior art.

상술한 바와 같이, 본 발명에 따른 퍼멀로이 합금분말로 제조되는 역률개선 인덕터용 연자성 코아는 종래의 연자성 코아보다 우수한 직류중첩특성을 나타내고, 총저항이 낮으며, 종래의 비정질 코아에 비해 자심손실이 적은 효과가 있다.As described above, the soft magnetic core for the power factor improving inductor manufactured by the permalloy alloy powder according to the present invention exhibits superior DC overlapping characteristics than the conventional soft magnetic core, has a lower total resistance, and has a lower magnetic core loss than the conventional amorphous core. This is less effective.

Claims (1)

중량%로서, 몰리브덴(Mo) 2∼4%, 니켈(Ni) 38∼48% 및 잔여량이 철(Fe)로 이루어지는 것을 특징으로 하는 퍼멀로이 합금분말로 제조되는 역률개선 인덕터용 연자성 코아.A soft magnetic core for a power factor improving inductor made from a permalloy alloy powder, wherein the mol% of molybdenum (Mo), 4% to 38% to 48% of nickel (Ni) and the remaining amount of iron (Fe) are used as weight%.
KR1020010061456A 2001-10-05 2001-10-05 Soft magnetic core for power factor correction inductors manufactured with permalloy alloy powder KR20030028990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010061456A KR20030028990A (en) 2001-10-05 2001-10-05 Soft magnetic core for power factor correction inductors manufactured with permalloy alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010061456A KR20030028990A (en) 2001-10-05 2001-10-05 Soft magnetic core for power factor correction inductors manufactured with permalloy alloy powder

Publications (1)

Publication Number Publication Date
KR20030028990A true KR20030028990A (en) 2003-04-11

Family

ID=29563397

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010061456A KR20030028990A (en) 2001-10-05 2001-10-05 Soft magnetic core for power factor correction inductors manufactured with permalloy alloy powder

Country Status (1)

Country Link
KR (1) KR20030028990A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040056536A (en) * 2002-12-24 2004-07-01 재단법인 포항산업과학연구원 METHOD OF PREPARING Fe-Ni POWDER COMPACTING CORE FOR HIGH FREQUNCY
KR100593676B1 (en) * 2004-10-09 2006-06-30 재단법인 포항산업과학연구원 Inductor core using ultra fine wire and manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040056536A (en) * 2002-12-24 2004-07-01 재단법인 포항산업과학연구원 METHOD OF PREPARING Fe-Ni POWDER COMPACTING CORE FOR HIGH FREQUNCY
KR100593676B1 (en) * 2004-10-09 2006-06-30 재단법인 포항산업과학연구원 Inductor core using ultra fine wire and manufacturing method

Similar Documents

Publication Publication Date Title
KR101932422B1 (en) Manufacturing method of soft magnetic powder, compacted core, magnetic component and compacted core
CA3051184C (en) Soft magnetic powder, fe-based nanocrystalline alloy powder, magnetic component and dust core
EP1925686B1 (en) Nanocrystalline magnetic alloy, method for producing same, alloy thin band, and magnetic component
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP5445890B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
EP2261385A1 (en) Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core
JP5429613B2 (en) Nanocrystalline soft magnetic alloys and magnetic cores
JPWO2016204008A1 (en) Magnetic powder and manufacturing method thereof, magnetic core and manufacturing method thereof, and coil component
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JP2012012699A (en) ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND METHOD FOR PRODUCING THE Fe-BASED NANOCRYSTALLINE ALLOY, AND MAGNETIC COMPONENT
JP2013055182A (en) Soft magnetic alloy powder, nanocrystal soft magnetic alloy powder, production method therefor, and powder magnetic core
JP2009174034A (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
JP5327765B2 (en) Powder core
JP5916983B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JPH02290002A (en) Fe-si based alloy dust core and its manufacture
KR20030028990A (en) Soft magnetic core for power factor correction inductors manufactured with permalloy alloy powder
KR20030013156A (en) Port core made from Fe-Si soft mannetic powder, method of producing thereof and reactor comprising the same
JP2000119825A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
EP3928892A1 (en) Powder magnetic core and method for producing same
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JPH1180908A (en) Magnetic alloy excellent in surface property and magnetic core using it
KR970003124B1 (en) Process for manufacturing mpp core forming powder and process for manufacturing mpp core using the powder
JPH0468382B2 (en)
JP6080115B2 (en) Manufacturing method of dust core
JP2004002949A (en) Soft magnetic alloy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application