KR20030027610A - Manufacturing method of tube for heat exchanger - Google Patents

Manufacturing method of tube for heat exchanger Download PDF

Info

Publication number
KR20030027610A
KR20030027610A KR1020010060974A KR20010060974A KR20030027610A KR 20030027610 A KR20030027610 A KR 20030027610A KR 1020010060974 A KR1020010060974 A KR 1020010060974A KR 20010060974 A KR20010060974 A KR 20010060974A KR 20030027610 A KR20030027610 A KR 20030027610A
Authority
KR
South Korea
Prior art keywords
tube
heat exchanger
bridge
manufacturing
refrigerant
Prior art date
Application number
KR1020010060974A
Other languages
Korean (ko)
Other versions
KR100790382B1 (en
Inventor
이준강
장길상
한인철
박창호
Original Assignee
한라공조주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한라공조주식회사 filed Critical 한라공조주식회사
Priority to KR1020010060974A priority Critical patent/KR100790382B1/en
Priority to US10/255,579 priority patent/US6745827B2/en
Priority to CN02143956.7A priority patent/CN1280603C/en
Priority to EP02256809A priority patent/EP1298401A3/en
Priority to JP2002285707A priority patent/JP2003121092A/en
Publication of KR20030027610A publication Critical patent/KR20030027610A/en
Application granted granted Critical
Publication of KR100790382B1 publication Critical patent/KR100790382B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/01Extruding metal; Impact extrusion starting from material of particular form or shape, e.g. mechanically pre-treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • B21D28/32Perforating, i.e. punching holes in other articles of special shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/28Associations of cutting devices therewith
    • B21D43/285Devices for handling elongated articles, e.g. bars, tubes or profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels

Abstract

PURPOSE: A manufacturing method of tube for heat exchanger is provided to improve productivity by assembling a plural tube rows in a single process in a heat exchanger for carbon dioxide and manufacturing the tube rows easily with an existing facility. CONSTITUTION: The manufacturing method of an integral tube(50) for heat exchanger comprises extrusion step of integrally forming at least two or more tube bodies(52,54) in which a refrigerant pipe is longitudinally formed as a continuous line and a bridge(56) for connecting the tube bodies; drilling step of forming penetration holes(58) on the bridge in a length direction of the bridge with spaced apart from each other in a certain distance; cutting step of cutting the integral tube(50) to a certain length from a part where the penetration holes are formed; and a post-processing step of processing both end parts of the cut integral tube, wherein both end parts of the tube bodies are processed in a shape corresponding to shape of tube holes of header pipes(10,20) for heat exchanger into which the tube bodies are inserted in the post-processing step, and wherein the bridge(56) is thinner than the tube bodies(52,54).

Description

열교환기용 튜브의 제조방법{Manufacturing method of tube for heat exchanger}Manufacturing method of tube for heat exchanger

본 발명은 열교환기의 튜브에 관한 것으로서, 더욱 상세하게는 이산화탄소와 같이 초임계압력의 냉동사이클을 갖는 유체를 냉매로 사용하는 열교환기의 튜브 및 이의 제조방법과 상기 튜브를 구비한 열교환기에 관한 것이다.The present invention relates to a tube of a heat exchanger, and more particularly, to a tube of a heat exchanger using a fluid having a supercritical pressure refrigeration cycle, such as carbon dioxide as a refrigerant, a method for manufacturing the same, and a heat exchanger having the tube. .

일반적으로 열교환기는 온도가 높은 유체와 온도가 낮은 유체가 열교환기 벽면을 통해 높은 온도에서 낮은 온도로 열을 전달함으로써 열교환을 행하는 장치이다. 이러한 열교환기를 구성요소로 하는 에어컨 시스템의 작동 매체로 지금까지는 주로 HFC 냉매가 사용되어 왔으나, 이러한 HFC 냉매는 지구 온난화의 주요 요인 중의 하나로 인식되어 그 사용에 대한 규제가 점차 확대되고 있다. 이러한 상황 하에서, HFC 냉매를 대체할 차세대 냉매로서 이산화탄소 냉매에 대한 연구가 활발히 진행되고 있다.In general, a heat exchanger is a device in which a high temperature fluid and a low temperature fluid transfer heat from a high temperature to a low temperature through a heat exchanger wall to perform heat exchange. Although HFC refrigerants have been mainly used as an operating medium of air conditioner systems having such heat exchangers, such HFC refrigerants are recognized as one of the main factors of global warming, and regulations on their use are gradually being expanded. Under these circumstances, research on carbon dioxide refrigerants as a next generation refrigerant to replace HFC refrigerants has been actively conducted.

이러한 차세대 냉매의 대표주자인 이산화탄소는 지구 온난화 지수(GWP)가 대표적인 HFC냉매인 R134a의 약 1300분의 1에 해당되며, 그 외에도 냉매로서 다음과 같은 장점을 가지고 있다. 곧, 작동 압축비가 낮아 압축 효율이 우수하다는 점과, 열전달 성능이 매우 우수하여 2차 유체인 공기의 입구 온도와 냉매의 출구 온도 사이의 온도 차이가 기존의 냉매에 비해 훨씬 작아질 수 있다는 것이다. 이러한 장점을 이용하여 겨울철 낮은 외기 온도에서도 열을 뽑아 쓸 수 있으므로 여름철에는 냉방, 겨울철에는 난방 역할을 수행하는 히트펌프에도 적용 가능하다.Carbon dioxide, the representative of such next-generation refrigerants, corresponds to about one-third of R134a, a global warming index (GWP), is a representative HFC refrigerant. In addition, it has the following advantages as a refrigerant. In other words, the compression ratio is excellent due to the low operating compression ratio, and the heat transfer performance is very good so that the temperature difference between the inlet temperature of the secondary fluid air and the outlet temperature of the refrigerant can be much smaller than that of the conventional refrigerant. This advantage can be used to extract heat at low outside temperatures in winter, so it can be applied to heat pumps that perform cooling in summer and heat in winter.

또한, 이산화탄소는 체적냉방능력(증발잠열×기체밀도)이 기존의 냉매인 R134a의 7 내지 8배에 달하기 때문에 압축기의 용량을 크게 줄일 수 있으며, 표면장력이 작아서 비등열전달이 우수하고, 정압비열이 크고 점도가 낮아 열전달 성능이 뛰어나므로 냉매로서 우수한 열역학적 특성을 갖고 있다. 또한, 냉동사이클의 측면에서 살펴보면 작동 압력이 기존에 비해 6 ~ 8 배(약 100 ~ 130 bar) 높아서, 열교환기 내부에서의 냉매의 압력 강하로 인한 손실이 기존 냉매에 비해 상대적으로 작게 되는 바, 압력강하는 크지만 열전달 성능이 우수한 것으로 알려진 미세관을 구비한 열교환기 튜브를 사용할 수 있다.In addition, since carbon dioxide has a volume cooling capacity (evaporative latent heat x gas density) of 7 to 8 times that of the conventional refrigerant R134a, the capacity of the compressor can be greatly reduced, and the surface tension is small, so the boiling heat transfer is excellent, and the static pressure specific heat This large and low viscosity has excellent heat transfer performance and therefore has excellent thermodynamic properties as a refrigerant. In addition, when looking at the side of the refrigeration cycle operating pressure is 6 ~ 8 times (about 100 ~ 130 bar) higher than the conventional, the loss due to the pressure drop of the refrigerant in the heat exchanger is relatively small compared to the conventional refrigerant bar, It is possible to use heat exchanger tubes with microtubes which are known to have great pressure drop but good heat transfer performance.

한편 이산화탄소를 냉매로 사용하는 열교환기는 크게 2가지 형태로 구분할 수 있는 데, 곧 멀티 패스(multi-pass)방식과 멀티 슬랩(multi-slab)방식이 그것이다.On the other hand, a heat exchanger using carbon dioxide as a refrigerant can be classified into two types, namely, a multi-pass method and a multi-slab method.

멀티 패스 방식은 헤더 탱크 내에 다수의 배플을 개재하여 튜브를 통해 유동되는 냉매의 패스 수를 증가시키는 것으로, 이는 열교환기 내에서의 냉매의 분포도는 좋으나 냉매가 쿨링될 때 냉매인 이산화탄소는 열교환기 내에서 응축과정이 없어 계속적으로 온도가 하강하게 되고, 이에 따라 열교환기 전체에서의 온도편차가 심해져 튜브와 핀을 통해 열교환기 표면을 따라 자체적으로 열흐름이 발생하는 문제가 생기게 된다. 이러한 열흐름은 냉매가 외부 유입공기와 열교환하는 것을 방해하게 되고 자연히 열교환 성능을 감소시키게 된다.The multi-pass method increases the number of passes of the refrigerant flowing through the tube through a plurality of baffles in the header tank. The distribution of the refrigerant in the heat exchanger is good, but carbon dioxide, a refrigerant when the refrigerant is cooled, is in the heat exchanger. There is no condensation at, which leads to a continuous drop in temperature, resulting in a severe temperature deviation across the heat exchanger, resulting in the heat flow itself along the surface of the heat exchanger through tubes and fins. This heat flow prevents the refrigerant from exchanging heat with the external inlet air and naturally reduces the heat exchange performance.

멀티 슬랩 방식은 튜브가 배열된 열을 복수개로 하여 냉매가 이 튜브 열을 지남에 따라 열교환을 행하도록 하는 것으로, 이는 상기 멀티 패스 방식과 같은 열흐름은 차단할 수 있어 이산화탄소를 냉매로 사용하는 열교환기에 보다 효과적이다.In the multi slab method, a plurality of rows of tubes are arranged so that the refrigerant exchanges heat as the tube passes through the heat of the tube, which can block heat flow as in the multi-pass method. More effective.

그런데, 이러한 멀티 슬랩 방식의 열교환기에 있어서, 열교환기 헤더 탱크의 독립된 냉매 통로는 각각 개별적으로 연통시켜야 하기 때문에 이를 별도의 튜브로 연결하였다.However, in such a multi-slap heat exchanger, since the independent refrigerant passages of the heat exchanger header tanks must be communicated with each other separately, they are connected to separate tubes.

따라서 별개의 튜브 열을 갖는 열교환기를 제작하기 위해서는 이를 조립하는 데 작업공수가 많이 소요되는 문제가 있었다.Therefore, in order to manufacture a heat exchanger having a separate tube row, there is a problem that a lot of work is required to assemble it.

따라서 이를 일체형으로 제조할 필요가 제기되었으며, 또한 기존 응축기 튜브의 제조 설비를 이용해 손쉽게 제조할 수 있는 방법이 고안될 필요가 있었다.Therefore, the necessity of manufacturing them in one piece has been raised, and a method that can be easily manufactured using the existing manufacturing equipment of the condenser tube needs to be devised.

본 발명은 상기한 문제점을 해결하기 위해 고안된 것으로, 이산화탄소와 같이 고압하에서 작동하며, 열전달 성능이 우수한 유체를 냉매로 사용하는 열교환기에서 이러한 냉매의 열적 특성을 살릴 수 있으면서, 동시에 기존 응축기의 제조 설비를 크게 변경하지 않고도 제조가 가능한 열교환기용 튜브의 제조방법을 제공하는 것을 목적으로 한다.The present invention is designed to solve the above problems, while operating under high pressure, such as carbon dioxide, heat transfer using a fluid having excellent heat transfer performance as a refrigerant while maintaining the thermal characteristics of the refrigerant, at the same time manufacturing equipment of the existing condenser It is an object of the present invention to provide a method for manufacturing a tube for a heat exchanger that can be manufactured without greatly changing the temperature.

도 1은 본 발명에 의해 제조된 튜브를 구비한 열교환기의 사시도.1 is a perspective view of a heat exchanger with a tube made according to the present invention.

도 2는 본 발명에 의해 제조된 열교환기용 튜브의 부분 사시도.2 is a partial perspective view of a tube for a heat exchanger produced by the present invention.

도 3은 본 발명에 의해 제조된 튜브를 구비한 열교환기의 단면도.3 is a cross-sectional view of a heat exchanger with a tube made according to the present invention.

도 4a 내지 4d는 본 발명의 일 실시예에 따른 열교환기용 튜브의 제조과정을 나타내는 도면.4a to 4d is a view showing the manufacturing process of the tube for the heat exchanger according to an embodiment of the present invention.

※도면의 주요 부분에 대한 부호의 설명※ Explanation of code for main part of drawing

10: 제 1헤더 파이프12,14: 제 1,2격실10: first header pipe 12, 14: first and second compartment

20: 제 2헤더 파이프22,24: 제 3,4격실20: second header pipe 22, 24: 3rd and 4th compartment

11,21: 캡30: 냉매 유입관11, 21: Cap 30: refrigerant inlet pipe

40: 냉매 유출관50: 방열 튜브40: refrigerant outlet tube 50: heat dissipation tube

52: 제 1튜브54: 제 2튜브52: first tube 54: second tube

56: 브릿지58: 관통공56: bridge 58: through hole

60: 방열핀60: heat sink fin

상기와 같은 목적을 달성하기 위하여, 본 발명은 연속라인으로 내부에 길이방향을 따라 냉매 흐름관이 형성된 적어도 둘 이상의 튜브 몸체와 상기 튜브 몸체들 사이를 연결하는 브릿지를 일체로 형성하는 압출 단계와, 상기 브릿지에 그 길이방향을 따라 일정간격으로 관통공을 형성하는 천공 단계와, 상기 일체형 튜브를 소정 길이로 절단하되, 상기 관통공이 형성된 부분에서 절단하는 절단 단계와, 상기 절단된 일체형 튜브의 양단부를 가공하는 후가공 단계를 포함하여 이루어진 것을 특징으로 하는 열교환기용 일체형 튜브의 제조방법을 제공한다.In order to achieve the above object, the present invention is an extrusion step of integrally forming at least two tube body and the bridge connecting the tube body formed with a refrigerant flow tube in the longitudinal direction therein in a continuous line; A perforating step of forming a through hole at a predetermined interval along the longitudinal direction of the bridge, a cutting step of cutting the integral tube to a predetermined length and cutting at a portion where the through hole is formed, and both ends of the cut integral tube It provides a method for producing an integrated tube for a heat exchanger, characterized in that it comprises a post-processing step of processing.

본 발명의 다른 특징에 의하면, 상기 후가공 단계는 상기 튜브 몸체의 양단부를 상기 튜브 몸체가 삽입되는 열교환기용 헤더 파이프의 튜브 홀 형상에 대응하는 형상으로 가공하는 것일 수 있으며, 이렇게 형성된 일체형 튜브에 있어 상기 브릿지는 상기 튜브 몸체보다 얇게 형성되도록 할 수 있다.According to another feature of the invention, the post-processing step may be to process both ends of the tube body in a shape corresponding to the shape of the tube hole of the heat exchanger header pipe is inserted into the tube body, in the integral tube formed as described above The bridge may be formed thinner than the tube body.

이하 첨부된 도면을 참고로 본 발명의 바람직한 실시예에 대하여 보다 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

먼저, 본 발명에 의해 제조된 열교환기용 튜브의 구조를 설명하면 다음과 같다.First, the structure of the heat exchanger tube manufactured by the present invention will be described.

도 1은 본 발명에 의해 제조된 일체형 튜브를 채용한 이산화탄소용 열교환기의 구조를 나타내는 사시도이고, 도 2는 본 발명에 의해 제조된 일체형 튜브를 나타내는 사시도이며, 도 3은 상기 도 1과 같이 본 발명에 의해 제조된 일체형 튜브가 상기 이산화탄소용 열교환기에 장착된 상태를 나타내는 도면이다.1 is a perspective view showing the structure of a heat exchanger for carbon dioxide employing an integral tube produced by the present invention, Figure 2 is a perspective view showing an integral tube manufactured by the present invention, Figure 3 is as shown in FIG. It is a figure which shows the state in which the integrated tube manufactured by this invention was mounted in the said heat exchanger for carbon dioxide.

도 2를 참고로 우선 본 발명에 의해 제조된 튜브의 구조를 살펴보면, 본 발명에 의해 제조된 열교환기용 튜브는 내부로 냉매가 흐를 수 있도록 미세관(51)을 각각 구비한 튜브(52)(54)가 브릿지(56)에 의해 연결되도록 한다. 각 튜브(52)(54)를 흐르는 냉매의 방향은 반대가 된다. 따라서, 각 튜브(52)(54)를 흐르는 냉매의 온도는 다를 수 있다.Referring to the structure of the tube manufactured by the present invention with reference to Figure 2, first, the tube for the heat exchanger manufactured by the present invention each of the tubes 52, 54 each having a micro-tube 51 so that the refrigerant flows therein ) Is connected by the bridge 56. The direction of the refrigerant flowing through each of the tubes 52 and 54 is reversed. Accordingly, the temperature of the refrigerant flowing through each of the tubes 52 and 54 may be different.

한편, 브릿지(56)에는 튜브(52)(54)의 길이방향을 따라 다수 개의 관통공(58)이 형성되는 데, 이 관통공(58)은 상기 튜브들(52)(54)간의 온도차로 말미암아 열교환이 일어나는 것을 방지하기 위한 것이다. 이러한 튜브의 단부는 열교환기의 헤더 파이프에 형성된 튜브홀에 삽입되는 바, 이 삽입되는 튜브의 양단부의 내측부(59)는 상기 헤더 파이프의 튜브홀의 형상에 대응되도록 형성되어 있다.On the other hand, the bridge 56 is formed with a plurality of through holes 58 along the longitudinal direction of the tube 52, 54, the through hole 58 is a temperature difference between the tubes 52, 54 This is to prevent heat exchange from occurring. The end of the tube is inserted into a tube hole formed in the header pipe of the heat exchanger, and the inner portions 59 of both ends of the tube to be inserted are formed to correspond to the shape of the tube hole of the header pipe.

이러한 구조의 튜브는 도 1과 같은 열교환기에 장착될 수 있다. 도 1에 도시한 열교환기는 서로 독립된 제1,2 격실(12)(14)을 갖는 제 1헤더 파이프(10)와, 이 제 1 헤더 파이프와 평행하게 배치되며, 서로 연통된 제3,4 격실(22)(24)을 갖는 제 2헤더 파이프(20)를 구비한다. 본 발명에 의해 제조된 튜브(50)는 이 헤더 파이프들(10)(20)의 격실들을 개별적으로 연통시켜 주는 것으로, 제 1헤더 파이프(10)의 제 1 격실(12)과 제 2헤더 파이프(20)의 제 3 격실(22)을 제 1튜브(52)로 이루어진 튜브열들이 서로 연통시키고, 제 1헤더 파이프(10)의 제 2 격실(14)과 제 2헤더 파이프(20)의 제 2 격실(24)을 제 2튜브(54)로 이루어진 튜브열들이 서로 연통시킨다. 각 헤더 파이프(10)(20)의 단부는 캡(11)(21)으로 밀봉되어 있다. 그리고, 제 1헤더 파이프(10)의 제 1격실(12)에는 냉매가 유입되는 냉매 유입관(30)이 설치되고, 제 2 격실(14)의 하단에는 열교환을 끝낸 냉매가 빠져나갈 수 있도록 냉매 유출관(40)이 설치된다. 각 튜브들 사이에는 방열 핀(60)이 설치되어 열교환 효율을 증진시킨다.The tube of this structure can be mounted to a heat exchanger as shown in FIG. The heat exchanger shown in FIG. 1 has a first header pipe 10 having first and second compartments 12 and 14 that are independent of each other, and third and fourth compartments arranged in parallel with and communicating with the first header pipe. A second header pipe 20 having (22) and (24) is provided. The tube 50 produced by the present invention communicates the compartments of the header pipes 10 and 20 individually, the first compartment 12 of the first header pipe 10 and the second header pipe. Tube rows consisting of the first tubes 52 communicate the third compartment 22 of the 20 with each other, and the second compartment 14 of the first header pipe 10 and the first of the second header pipe 20 The two compartments 24 communicate with each other through a series of tubes consisting of a second tube 54. The ends of each header pipe 10, 20 are sealed with caps 11, 21. In addition, a coolant inlet pipe 30 through which a coolant flows is installed in the first compartment 12 of the first header pipe 10, and a coolant after the heat exchange has exited from the lower end of the second compartment 14. Outflow pipe 40 is installed. A heat dissipation fin 60 is installed between each tube to improve heat exchange efficiency.

이러한 구조의 열교환기는 냉매 유입관(30)으로부터 유입된 냉매가 제 1격실(12)을 지나 제 1튜브(52)로 이루어진 튜브열들을 지나면서 1차로 열교환을 수행하게 된다. 그리고, 냉매는 제 2헤더 탱크(20)에서 도 3에서 볼 수 있는 바와 같이, 연통 홀(25)을 통해 제 4격실(24)로 흘러, 제 2튜브(54)로 이루어진 튜브열들을 지나면서 2차로 열교환을 수행하게 된다.The heat exchanger having such a structure performs heat exchange primarily through the refrigerant flowed from the refrigerant inlet pipe 30 through the tube rows formed by the first tube 52 through the first compartment 12. In addition, the refrigerant flows from the second header tank 20 to the fourth compartment 24 through the communication hole 25, passing through the tube rows formed of the second tube 54, as shown in FIG. 3. Second heat exchange will be performed.

이렇게 열교환기 내에서 각 튜브 열마다 별도의 열교환을 수행하기 때문에 각 튜브들을 각 헤더 파이프의 격실에 별도로 연결하나, 이는 조립 공정이 복잡해 지는 문제가 있게 된다. 따라서, 본 발명과 같이 브릿지(56)에 의해 연결된 튜브를 사용하면 작업공수를 줄일 수 있을 뿐 아니라, 조립 공정도 훨씬 간편해 지게 된다. 이때, 1차 열교환과 2차 열교환을 수행하는 냉매의 온도는 서로 다르게 되므로, 상기 브릿지(56)를 통해 열교환이 일어나는 것을 방지하기 위해, 이 브릿지(56)에 소정 간격으로 관통공(58)을 형성하는 것이다.Since separate heat exchange is performed for each tube row in the heat exchanger, each tube is separately connected to the compartment of each header pipe, but this causes a problem of complicated assembly process. Therefore, using the tube connected by the bridge 56 as in the present invention, not only can reduce the labor, but also makes the assembly process much simpler. At this time, since the temperatures of the refrigerant performing the first heat exchange and the second heat exchange are different from each other, in order to prevent heat exchange through the bridge 56, the through holes 58 are formed in the bridge 56 at predetermined intervals. To form.

다음으로 이러한 구성을 갖는 열교환기용 튜브를 제조하는 방법에 대해 설명한다.Next, a method of manufacturing a tube for a heat exchanger having such a configuration will be described.

먼저, 도 4a에서 볼 수 있는 바와 같이 내부로 냉매가 흐를 수 있도록 다수의 미세관(51)을 구비한 제 1튜브(52)와 제 2튜브(54) 및 이들을 연결하는 브릿지(56)를 연속라인으로 압출에 의해 일체로 형성한다. 이 때, 상기 브릿지(56)는 제 1,2튜브(52)(54)보다 얇게 형성하도록 하는 것이 바람직하다. 이는 상기 제 1,2튜브(52)(54)간의 열교환을 보다 줄이도록 하기 위한 것이다.First, as shown in FIG. 4A, a first tube 52 having a plurality of microtubes 51 and a second tube 54, and a bridge 56 connecting them are continuously connected to allow a refrigerant to flow therein. It is formed integrally by extrusion into a line. At this time, the bridge 56 is preferably formed to be thinner than the first and second tubes 52, 54. This is to reduce heat exchange between the first and second tubes 52 and 54.

이렇게 형성된 튜브의 브릿지(56)에, 도 4b에서 볼 수 있는 바와 소정 간격으로 관통공(58)을 천공하고, 이를 원하는 길이만큼 절단한다. 절단할 때에는 그 양 단부가 상기 관통공(58)에 위치하도록 해야 한다. 이는 튜브를 헤더 파이프에 삽입할 수 있도록 하기 위한 것이다.In the bridge 56 of the tube thus formed, the through holes 58 are drilled at predetermined intervals as shown in FIG. When cutting, both ends should be positioned in the through hole 58. This is to allow the tube to be inserted into the header pipe.

도 4c에는 절단된 튜브의 단부를 나타낸 것인데, 그림에서 볼 수 있듯이, 브릿지(56)에 형성된 관통공(58)의 양 측면은 제 1,2튜브(52)(54)의 측면과 정확히 일치하지 않게 된다. 이러한 상태로 헤더 파이프의 튜브 홀에 삽입하게 되면, 삽입시 찍힘이 발생하여 파이프에 흠이 생길 수 있고, 또 브레이징 실패를 야기하게 된다. 따라서, 튜브의 양 단부를 후가공에 의해 매끄럽게 해주는 공정이 필요하게 된다. 그림과 같이, 튜브 홀의 형상이 타원형일 경우에는 도 4c와 같이 라운딩기(70)(72)에 의해 단부를 라운딩 처리해 주어야 한다. 특히, 튜브의 내측면 단부(59)는 라운딩에 의해 도 4d와 같이 매끄럽게 해 주어야 한다.4c shows the end of the cut tube, as shown in the figure, both sides of the through hole 58 formed in the bridge 56 do not exactly coincide with the sides of the first and second tubes 52, 54. Will not. Insertion into the tube hole of the header pipe in such a state may cause a stamping at the insertion, which may cause a defect in the pipe and cause a brazing failure. Therefore, there is a need for a process for smoothing both ends of the tube by post processing. As shown in the figure, when the shape of the tube hole is elliptical, as shown in Figure 4c it should be rounded the end by the rounding machine 70, 72. In particular, the inner side end 59 of the tube should be smoothed as shown in FIG. 4D by rounding.

이상 설명한 튜브는 별도의 열교환을 수행하는 두 개의 튜브열을 구비한 열교환기에 대해 설명하였으나, 이외에 복수의 튜브열을 구비한 멀티 슬랩 방식의 열교환기에도 동일하게 적용할 수 있다.The tube described above has been described with a heat exchanger having two tube rows for performing a separate heat exchange, but can also be applied to a multi-slab type heat exchanger having a plurality of tube rows.

상기와 같은 본 발명에 따르면, 이산화탄소용 열교환기에 있어 복수의 튜브열을 단일의 공정으로 조립할 수 있으며, 이 튜브열을 기존의 설비를 가지고도 손쉽게 제조할 수 있어, 생산성을 향상시킬 수 있다.According to the present invention as described above, in the heat exchanger for carbon dioxide, a plurality of tube trains can be assembled in a single process, and the tube trains can be easily manufactured even with existing equipment, thereby improving productivity.

본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명한 것이나, 당해 기술 분야의 통상의 지식을 가진 자들에게는 다양한 변형 및 다른 실시예가 가능하다는 점이 이해될 것이다. 따라서 본원 발명의 보호범위는 첨부된 청구범위에 의해서 정해질 것이다.Although the present invention has been described with reference to one embodiment shown in the accompanying drawings, it will be understood that various modifications and other embodiments are possible to those skilled in the art. Therefore, the protection scope of the present invention will be defined by the appended claims.

Claims (3)

연속라인으로 내부에 길이방향을 따라 냉매 흐름관이 형성된 적어도 둘 이상의 튜브 몸체와 상기 튜브 몸체들 사이를 연결하는 브릿지를 일체로 형성하는 압출 단계;An extrusion step of integrally forming at least two tube bodies having a refrigerant flow tube formed therein in a continuous line and a bridge connecting the tube bodies; 상기 브릿지에 그 길이방향을 따라 일정간격으로 관통공을 형성하는 천공 단계;A perforation step of forming a through hole in the bridge at a predetermined interval along its longitudinal direction; 상기 일체형 튜브를 소정 길이로 절단하되, 상기 관통공이 형성된 부분에서 절단하는 절단 단계; 및A cutting step of cutting the unitary tube to a predetermined length and cutting at a portion where the through hole is formed; And 상기 절단된 일체형 튜브의 양단부를 가공하는 후가공 단계를 포함하여 이루어진 것을 특징으로 하는 열교환기용 일체형 튜브의 제조방법.And a post-processing step of processing both ends of the cut integral tube. 제 1항에 있어서,The method of claim 1, 상기 후가공 단계는 상기 튜브 몸체의 양단부를 상기 튜브 몸체가 삽입되는 열교환기용 헤더 파이프의 튜브 홀 형상에 대응하는 형상으로 가공하는 것을 특징으로 하는 열교환기용 일체형 튜브의 제조방법.In the post-processing step, the both ends of the tube body are processed into a shape corresponding to the shape of the tube hole of the heat exchanger header pipe into which the tube body is inserted. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 단계에서 상기 브릿지는 상기 튜브 몸체보다 얇게 형성되도록 하는 것을 특징으로 하는 열교환기용 튜브의 제조방법.The bridge is a method of manufacturing a tube for a heat exchanger, characterized in that to be formed thinner than the tube body in the step.
KR1020010060974A 2001-09-29 2001-09-29 Manufacturing method of tube for heat exchanger KR100790382B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020010060974A KR100790382B1 (en) 2001-09-29 2001-09-29 Manufacturing method of tube for heat exchanger
US10/255,579 US6745827B2 (en) 2001-09-29 2002-09-27 Heat exchanger
CN02143956.7A CN1280603C (en) 2001-09-29 2002-09-29 Heat exchanger
EP02256809A EP1298401A3 (en) 2001-09-29 2002-09-30 Heat exchanger
JP2002285707A JP2003121092A (en) 2001-09-29 2002-09-30 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010060974A KR100790382B1 (en) 2001-09-29 2001-09-29 Manufacturing method of tube for heat exchanger

Publications (2)

Publication Number Publication Date
KR20030027610A true KR20030027610A (en) 2003-04-07
KR100790382B1 KR100790382B1 (en) 2008-01-02

Family

ID=29563115

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010060974A KR100790382B1 (en) 2001-09-29 2001-09-29 Manufacturing method of tube for heat exchanger

Country Status (1)

Country Link
KR (1) KR100790382B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040033493A (en) * 2002-10-14 2004-04-28 현대모비스 주식회사 Assembling Method for an integrated heat exchanger of a radiator and a condenser
KR100585403B1 (en) * 2004-08-31 2006-05-30 주식회사 두원공조 heat exchanger of header type
US11604017B2 (en) 2015-04-15 2023-03-14 Hanon Systems Vehicle condenser
EP4317889A1 (en) * 2022-08-04 2024-02-07 Valeo Systemes Thermiques A tube bundle for aheat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3428562A1 (en) * 2017-07-14 2019-01-16 Nissens A/S Heat exchanger comprising fluid tubes having a first and a second inner wall

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980049541A (en) * 1996-12-19 1998-09-15 신영주 Tube manufacturing equipment for heat exchanger
KR19990057634A (en) * 1997-12-30 1999-07-15 신영주 Heat exchanger tube manufacturing method
JP4794262B2 (en) * 2005-09-30 2011-10-19 株式会社ジェイテクト Torque detection device and electric power steering device using the same
JP2007098004A (en) * 2005-10-07 2007-04-19 Yushin Techno:Kk Micromini oxygen-mask-cum-gas-mask instantaneously acting in emergency

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040033493A (en) * 2002-10-14 2004-04-28 현대모비스 주식회사 Assembling Method for an integrated heat exchanger of a radiator and a condenser
KR100585403B1 (en) * 2004-08-31 2006-05-30 주식회사 두원공조 heat exchanger of header type
US11604017B2 (en) 2015-04-15 2023-03-14 Hanon Systems Vehicle condenser
EP4317889A1 (en) * 2022-08-04 2024-02-07 Valeo Systemes Thermiques A tube bundle for aheat exchanger

Also Published As

Publication number Publication date
KR100790382B1 (en) 2008-01-02

Similar Documents

Publication Publication Date Title
KR100638490B1 (en) Heat exchanger
US6745827B2 (en) Heat exchanger
JP3945208B2 (en) Heat exchange tubes and heat exchangers
JP5787992B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
JP2010175241A (en) Heat exchanger for two fluids, in particular, storage evaporator for air conditioning device
JP2004125352A (en) Heat exchanger
KR100790382B1 (en) Manufacturing method of tube for heat exchanger
CN105737453A (en) Cooling device and application method thereof
KR100644134B1 (en) Condenser integrated with oil-cooler
KR100638488B1 (en) Heat exchanger for using CO2 as a refrigerant
JP2004125340A (en) Heat exchanger
KR101195840B1 (en) A heat exchanger
KR101149725B1 (en) A heat exchanger
KR100825709B1 (en) Heat exchanger
KR100201686B1 (en) Condenser of an air conditioner for use in an automobile
JP2006153437A (en) Heat exchanger
KR101422294B1 (en) Header pipe of heat exchanger and manufacturing method thereof
KR100825708B1 (en) Heat exchanger for CO2
KR20090120078A (en) Header of high pressure heat exchanger
KR20050089497A (en) Heat exchanger
KR100667702B1 (en) Header of heat exchanger using co2 refrigerant
WO2009013180A1 (en) Heat exchanger with mini- and/or micro-channels
KR20030092214A (en) Combination structure of heat exchanger for using CO2 as a refrigerant
KR100862809B1 (en) heat exchanger for high pressure condition
JP2000220982A (en) Heat exchanger

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121127

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131129

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141125

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151027

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161122

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171120

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181120

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191108

Year of fee payment: 13