JP2006153437A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2006153437A
JP2006153437A JP2005317942A JP2005317942A JP2006153437A JP 2006153437 A JP2006153437 A JP 2006153437A JP 2005317942 A JP2005317942 A JP 2005317942A JP 2005317942 A JP2005317942 A JP 2005317942A JP 2006153437 A JP2006153437 A JP 2006153437A
Authority
JP
Japan
Prior art keywords
heat exchanger
fluid passage
inner tube
heat
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005317942A
Other languages
Japanese (ja)
Inventor
Shigeji Ichiyanagi
茂治 一柳
Koichiro Take
幸一郎 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005317942A priority Critical patent/JP2006153437A/en
Publication of JP2006153437A publication Critical patent/JP2006153437A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger whose heat exchanging performance is prevented from deteriorating while requiring a relatively smaller installation space. <P>SOLUTION: The heat exchanger 1 comprises a plurality of heat exchanging parts 2 arranged in parallel, and a pair of connectors 3 which are spaced from each other and to which all heat exchanging parts 2 are connected at both ends. Each heat exchanging part 2 has a first fluid passage 6 and a second fluid passage 7 formed around the first fluid passage 6. Each connector 3 has a first flow path 13 for communicating the first fluid passage 6 of the heat exchanging part 2 with the outside and a second flow path 16 independent from the first flow path 13 for communicating the second fluid passage 7 of the heat exchanging part 2 with the outside. The heat exchanging part 2 consists of an outer tube 4 and an inner tube 5 arranged in the outer tube 4 at a space. The first fluid passage 6 exists in the inner tube 4, and the second fluid passage 7 exists in a gap between the outer tube 4 and the inner tube 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は熱交換器に関し、さらに詳しくは、たとえばコンプレッサ、ガスクーラ、エバポレータ、気液分離器およびガスクーラから出てきた冷媒とエバポレータから出て気液分離器を通過してきた冷媒とを熱交換させる中間熱交換器とを備えており、かつCOのような超臨界冷媒を用いる超臨界冷凍サイクルにおいて、中間熱交換器として好適に用いられる熱交換器に関する。 The present invention relates to a heat exchanger, and more specifically, for example, an intermediate for exchanging heat between a refrigerant coming out of a compressor, a gas cooler, an evaporator, a gas-liquid separator and a gas cooler and a refrigerant coming out of the evaporator and passed through the gas-liquid separator. The present invention relates to a heat exchanger that is suitably used as an intermediate heat exchanger in a supercritical refrigeration cycle that includes a heat exchanger and uses a supercritical refrigerant such as CO 2 .

この明細書および特許請求の範囲において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。また、この明細書および特許請求の範囲において、「超臨界冷凍サイクル」とは、高圧側において、冷媒が臨界圧力を超えた超臨界状態となる冷凍サイクルを意味するものとし、「超臨界冷媒」とは、超臨界冷凍サイクルに用いられる冷媒を意味するものとする。   In this specification and claims, the term “aluminum” includes aluminum alloys in addition to pure aluminum. Further, in this specification and claims, the “supercritical refrigeration cycle” means a refrigeration cycle in which the refrigerant is in a supercritical state exceeding the critical pressure on the high-pressure side. The term “refrigerant” means a refrigerant used in a supercritical refrigeration cycle.

従来、自動車に搭載されるカーエアコンとして、コンプレッサ、コンデンサ、エバポレータ、気液分離器および減圧器からなり、かつフロン系冷媒を使用する冷凍サイクルからなるものが広く使用されている。   2. Description of the Related Art Conventionally, car air conditioners mounted on automobiles are widely used that are composed of a compressor, a condenser, an evaporator, a gas-liquid separator, and a decompressor, and a refrigeration cycle that uses a chlorofluorocarbon refrigerant.

ところで、近年においては、COのような超臨界冷媒を用いる超臨界冷凍サイクルをカーエアコンとして自動車に搭載することが考えられている。 By the way, in recent years, it has been considered to mount a supercritical refrigeration cycle using a supercritical refrigerant such as CO 2 in a car as a car air conditioner.

超臨界冷凍サイクルは、コンプレッサ、ガスクーラ、エバポレータ、気液分離器としてのアキュムレータ、減圧器としての膨張弁、およびガスクーラから出てきた高温高圧の冷媒とエバポレータから出てアキュムレータを通過してきた低温低圧の冷媒とを熱交換させる中間熱交換器とを備えたものである。   The supercritical refrigeration cycle consists of a compressor, a gas cooler, an evaporator, an accumulator as a gas-liquid separator, an expansion valve as a decompressor, and a low-temperature and low-pressure An intermediate heat exchanger that exchanges heat with the refrigerant is provided.

ところで、超臨界冷凍サイクルにおける中間熱交換器は、従来のフロン系冷媒を使用した冷凍サイクルにはなかった熱交換器であり、自動車のエンジンルーム内に中間熱交換器を効率良く収納することが課題となっており、現在のところエンジンルーム内のガスクーラとエバポレータとの間の部分に配置することが考えられている。   By the way, the intermediate heat exchanger in the supercritical refrigeration cycle is a heat exchanger that was not found in the conventional refrigeration cycle using the chlorofluorocarbon refrigerant, and can efficiently store the intermediate heat exchanger in the engine room of the automobile. At present, it is considered to be disposed in a portion between the gas cooler and the evaporator in the engine room.

上述した超臨界冷凍サイクルの中間熱交換器に用いられる熱交換器として、1つの内側流体穴およびこれの周囲に間隔をおいて形成された複数の外側流体穴を有する1つの熱交換管と、熱交換管の両端部に固定され、かつ内側流体穴に通じる流路を有する2つの内側流体穴用コネクタと、内側流体穴用コネクタよりも熱交換管の長さ方向内側に固定され、かつ外側流体穴に通じる流路を有する2つの外側流体穴用コネクタとよりなるものが知られている(特許文献1参照)。   As a heat exchanger used for the intermediate heat exchanger of the supercritical refrigeration cycle described above, one heat exchange tube having one inner fluid hole and a plurality of outer fluid holes formed at intervals around the inner fluid hole, Two inner fluid hole connectors fixed to both ends of the heat exchange pipe and having a flow path leading to the inner fluid hole, and fixed to the inner side in the length direction of the heat exchange pipe than the inner fluid hole connector and outside 2. Description of the Related Art There are known two outer fluid hole connectors having flow paths that communicate with fluid holes (see Patent Document 1).

ところで、特許文献1記載の中間熱交換器において、内側流体穴内を流れる冷媒と外側流体通過穴内を流れる冷媒との間の熱交換性能を所望のものとするには、両流体穴内を流れる流体間の伝熱面積を大きくする必要がある。しかしながら、この場合、熱交換管の長さを長くする必要があり、中間熱交換器における熱交換管の長さ方向の設置スペースが比較的大きくなるという問題がある。   By the way, in the intermediate heat exchanger described in Patent Document 1, in order to obtain a desired heat exchange performance between the refrigerant flowing in the inner fluid hole and the refrigerant flowing in the outer fluid passage hole, the fluid flowing in both fluid holes It is necessary to increase the heat transfer area. However, in this case, it is necessary to increase the length of the heat exchange pipe, and there is a problem that the installation space in the length direction of the heat exchange pipe in the intermediate heat exchanger becomes relatively large.

そこで、このような問題を解決した中間熱交換器として、互いに間隔をおいて配置された1対のヘッダタンクと、両ヘッダタンク間に並列状に配置されかつ両端部がヘッダタンクに接続された複数の偏平状熱交換管とよりなり、各ヘッダタンクが、第1ヘッダパイプおよび第1ヘッダパイプ内に配置された第2ヘッダパイプからなる2重管構造であり、熱交換管に複数の第1流体通路および第2流体通路が形成され、熱交換管の両端部が、第1流体通路が第1ヘッダパイプ内に連通するとともに第2流体通路が第2ヘッダパイプ内に連通するように、両ヘッダタンクに接続されているものも知られている(特許文献2参照)。特許文献2記載の中間熱交換器においては、両流体通路内を流れる流体間の伝熱面積を大きくすることが可能となり、偏平状熱交換管の長さを特許文献1記載の中間熱交換器に比較して短くすることができる。しかしながら、特許文献2記載の中間熱交換器においては、偏平状熱交換管に複数の第1流体通路および第2流体通路が形成されているので、両流体通路の流路断面積が小さくなり、圧力損失が大きくなって熱交換性能が低下するおそれがある。
特開2000−2492号公報 特開2003−121086
Therefore, as an intermediate heat exchanger that solves such a problem, a pair of header tanks arranged at a distance from each other, a parallel arrangement between both header tanks, and both ends connected to the header tank A plurality of flat heat exchange pipes, and each header tank is a double pipe structure comprising a first header pipe and a second header pipe disposed in the first header pipe. The first fluid passage and the second fluid passage are formed, and both ends of the heat exchange pipe are connected so that the first fluid passage communicates with the first header pipe and the second fluid passage communicates with the second header pipe. The thing connected to both header tanks is also known (refer patent document 2). In the intermediate heat exchanger described in Patent Document 2, it is possible to increase the heat transfer area between the fluids flowing in both fluid passages, and the length of the flat heat exchange pipe is set to the intermediate heat exchanger described in Patent Document 1. Can be shortened compared to However, in the intermediate heat exchanger described in Patent Document 2, since the plurality of first fluid passages and second fluid passages are formed in the flat heat exchange pipe, the cross-sectional area of both fluid passages is reduced, There is a possibility that the pressure loss increases and the heat exchange performance decreases.
JP 2000-2492 A JP2003-121086

この発明の目的は、上記問題を解決し、設置スペースを比較的小さくすることができるとともに、熱交換性能の低下を防止しうる熱交換器を提供することにある。   An object of the present invention is to provide a heat exchanger that can solve the above-described problems, can reduce the installation space, and can prevent deterioration in heat exchange performance.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)並列状に配置された複数の熱交換部と、互いに間隔をおいて配置されかつすべての熱交換部の両端部が接続された1対のコネクタとを備えており、各熱交換部が、第1流体通路および第1流体通路の周囲に形成された第2流体通路を有し、各コネクタが、すべての熱交換部の第1流体通路を外部に通じさせる第1流路、および第1流路に対して独立しかつすべての熱交換部の第2流体通路を外部に通じさせる第2流路を有している熱交換器。   1) A plurality of heat exchanging portions arranged in parallel and a pair of connectors arranged at intervals and connected to both ends of all the heat exchanging portions. A first fluid passage and a second fluid passage formed around the first fluid passage, and each connector communicates the first fluid passages of all the heat exchanging parts to the outside, and The heat exchanger which has the 2nd flow path which makes the 2nd fluid channel | path of all the heat exchange parts independent outside with respect to 1 flow path outside.

2)熱交換部の第2流体通路内に、伝熱フィンが設けられている上記1)記載の熱交換器。   2) The heat exchanger according to 1) above, wherein heat transfer fins are provided in the second fluid passage of the heat exchange section.

3)熱交換部が、外管と、外管内に間隔をおいて配置された内管とにより形成され、内管内が第1流体通路となっているとともに、外管と内管との間の間隙が第2流体通路となっている上記1)または2)記載の熱交換器。   3) The heat exchange part is formed by an outer tube and an inner tube arranged in the outer tube at an interval. The inner tube serves as a first fluid passage, and between the outer tube and the inner tube. The heat exchanger according to 1) or 2) above, wherein the gap serves as the second fluid passage.

4)内管の外周面に、周方向に間隔をおきかつ内管の長さ方向に伸びるように伝熱フィンが一体に形成されている上記3)記載の熱交換器。   4) The heat exchanger according to 3) above, wherein heat transfer fins are integrally formed on the outer peripheral surface of the inner pipe so as to be spaced apart in the circumferential direction and extend in the length direction of the inner pipe.

5)外管、内管およびコネクタがアルミニウム製である上記3)または4)記載の熱交換器。   5) The heat exchanger according to 3) or 4) above, wherein the outer tube, the inner tube and the connector are made of aluminum.

6)外管および内管がアルミニウム押出形材製である上記5)記載の熱交換器。   6) The heat exchanger according to 5) above, wherein the outer tube and the inner tube are made of extruded aluminum.

7)各コネクタが、第1流路を有する第1コネクタ部材と、第2流路を有する第2コネクタ部材とにより形成されている上記1)記載の熱交換器。   7) The heat exchanger according to 1) above, wherein each connector is formed by a first connector member having a first flow path and a second connector member having a second flow path.

8)熱交換部が、外管と、外管内に間隔をおいて配置された内管とにより形成され、内管内が第1流体通路となっているとともに、外管と内管との間の間隙が第2流体通路となっており、第1コネクタ部材が第2コネクタ部材よりも熱交換部の長さ方向外側に配置され、内管の両端部が外管の両端よりも外方に突出させられ、内管の外方突出部が第2コネクタ部材を貫通した状態で第1コネクタ部材に接続され、外管が第2コネクタ部材に接続されている上記7)記載の熱交換器。   8) The heat exchange part is formed by an outer tube and an inner tube arranged in the outer tube with a space therebetween, and the inner tube serves as a first fluid passage, and between the outer tube and the inner tube. The gap serves as a second fluid passage, the first connector member is disposed on the outer side in the length direction of the heat exchanging portion with respect to the second connector member, and both end portions of the inner tube protrude outward from both ends of the outer tube. The heat exchanger according to 7), wherein the outer projecting portion of the inner tube is connected to the first connector member in a state of passing through the second connector member, and the outer tube is connected to the second connector member.

9)第2流体通路内に伝熱フィンが設けられている上記8)記載の熱交換器。   9) The heat exchanger according to 8) above, wherein heat transfer fins are provided in the second fluid passage.

10)伝熱フィンが、内管外周面に、周方向に間隔をおきかつ内管の長さ方向に伸びるように一体に形成されている上記9)記載の熱交換器。   10) The heat exchanger according to 9) above, wherein the heat transfer fins are integrally formed on the outer peripheral surface of the inner tube so as to be spaced apart in the circumferential direction and extend in the length direction of the inner tube.

11)第1および第2コネクタ部材、外管ならびに内管がアルミニウム製である上記8)〜10)のうちのいずれかに記載の熱交換器。   11) The heat exchanger according to any one of 8) to 10) above, wherein the first and second connector members, the outer tube, and the inner tube are made of aluminum.

12)外管および内管がアルミニウム押出形材製である上記11)記載の熱交換器。   12) The heat exchanger according to 11) above, wherein the outer tube and the inner tube are made of extruded aluminum.

13)コンプレッサ、ガスクーラ、エバポレータ、気液分離器およびガスクーラから出てきた冷媒とエバポレータから出て気液分離器を通過してきた冷媒とを熱交換させる中間熱交換器とを備えており、かつ超臨界冷媒を用いる冷凍サイクルであって、中間熱交換器が上記1)〜12)のうちのいずれかに記載された熱交換器からなる超臨界冷凍サイクル。   13) The compressor, the gas cooler, the evaporator, the gas-liquid separator, and the intermediate heat exchanger that exchanges heat between the refrigerant coming out of the gas cooler and the refrigerant coming out of the evaporator and passing through the gas-liquid separator, and A supercritical refrigeration cycle using a critical refrigerant, wherein the intermediate heat exchanger is a heat exchanger described in any one of 1) to 12) above.

14)中間熱交換器の第1流体通路内をガスクーラから出てきた高圧の冷媒が流れ、同じく第2流体通路内をエバポレータから出て気液分離器を通過してきた低圧の冷媒が流れるようになっている上記13)記載の超臨界冷凍サイクル。   14) The high-pressure refrigerant coming out of the gas cooler flows in the first fluid passage of the intermediate heat exchanger, and the low-pressure refrigerant coming out of the evaporator and passes through the gas-liquid separator also flows in the second fluid passage. The supercritical refrigeration cycle as described in 13) above.

15)超臨界冷媒が二酸化炭素からなる上記13)または14)記載の超臨界冷凍サイクル。   15) The supercritical refrigeration cycle according to 13) or 14) above, wherein the supercritical refrigerant is carbon dioxide.

16)上記13)〜15)のうちのいずれかに記載の超臨界冷凍サイクルがカーエアコンとして搭載されている車両。   16) A vehicle on which the supercritical refrigeration cycle according to any one of the above 13) to 15) is mounted as a car air conditioner.

上記1)の熱交換器によれば、熱交換部の第1および第2流体通路内を流れる流体間の総伝熱面積を、所望の熱交換性能を得るために必要な大きさにしたとしても、熱交換部の長さ方向の寸法を、特許文献1記載の熱交換器に比較して短くすることができる。したがって、この熱交換器の熱交換部の長さ方向の設置スペースを特許文献1記載の熱交換器の場合に比べて小さくすることができる。また、第1および第2流体通路の流路断面積を、特許文献2記載の熱交換器の第1および第2流体通路の流路断面積よりも大きくすることができるので、圧力損失を低減することが可能になり、その結果熱交換性能の低下を防止することができる。   According to the heat exchanger of 1) above, it is assumed that the total heat transfer area between the fluids flowing in the first and second fluid passages of the heat exchange part is set to a size necessary for obtaining a desired heat exchange performance. However, the dimension in the length direction of the heat exchange part can be shortened compared to the heat exchanger described in Patent Document 1. Therefore, the installation space in the length direction of the heat exchanging portion of this heat exchanger can be reduced as compared with the case of the heat exchanger described in Patent Document 1. Moreover, since the cross-sectional area of the first and second fluid passages can be made larger than the cross-sectional area of the first and second fluid passages of the heat exchanger described in Patent Document 2, pressure loss is reduced. As a result, a decrease in heat exchange performance can be prevented.

上記2)の熱交換器によれば、伝熱フィンの働きにより各熱交換部の熱交管性能が向上するので、熱交換部の長さを短くするか、あるいは熱交換部の数を少なくすることが可能になり、その結果熱交換器の設置スペースを小さくすることができる。   According to the heat exchanger of 2) above, the heat exchanger tube performance of each heat exchange part is improved by the action of the heat transfer fins, so the length of the heat exchange part is shortened or the number of heat exchange parts is reduced. As a result, the installation space for the heat exchanger can be reduced.

上記3)の熱交換器によれば、熱交換部を比較的簡単に形成することができる。また、第1および第2流体通路の流路断面積を、特許文献2記載の熱交換器の第1および第2流体通路の流路断面積よりも簡単に大きくすることができるので、圧力損失を低減することが可能になり、その結果熱交換性能の低下を防止することができる。   According to the heat exchanger of 3) above, the heat exchange part can be formed relatively easily. In addition, since the cross-sectional area of the first and second fluid passages can be easily made larger than the cross-sectional area of the first and second fluid passages of the heat exchanger described in Patent Document 2, the pressure loss As a result, it is possible to prevent a decrease in heat exchange performance.

上記4)の熱交換器によれば、伝熱フィンが内管に一体に形成されているので、部品点数が少なくなるとともに、両流体通路内を流れる流体間の伝熱効率が向上する。   According to the heat exchanger of 4) above, the heat transfer fins are formed integrally with the inner tube, so the number of parts is reduced and the heat transfer efficiency between the fluids flowing in both fluid passages is improved.

上記5)の熱交換器によれば、両流体通路内を流れる流体間の伝熱効率が向上する。   According to the heat exchanger of 5) above, the heat transfer efficiency between the fluids flowing in both fluid passages is improved.

上記6)の熱交換器によれば、外管および内管を比較的簡単に製造することができる。特に、上記4)のように伝熱フィンが内管に一体に形成されている場合に、内管の製造が容易になる。   According to the heat exchanger of 6), the outer tube and the inner tube can be manufactured relatively easily. In particular, when the heat transfer fin is formed integrally with the inner pipe as in the above 4), the inner pipe can be easily manufactured.

上記8)の熱交換器によれば、熱交換部を比較的簡単に形成することができる。また、内管内の第1流体通路が第1コネクタ部材の第1流路に確実に通じるように内管と第1コネクタ部材とを接続することができるとともに、内外両管間の第2流体通路が第2コネクタ部材の第2流路に確実に通じるように外管と第2コネクタ部材とを接続することができる。また、第1および第2流体通路の流路断面積を、特許文献2記載の熱交換器の第1および第2流体通路の流路断面積よりも簡単に大きくすることができるので、圧力損失を低減することが可能になり、その結果熱交換性能の低下を防止することができる。   According to the heat exchanger of 8) above, the heat exchange part can be formed relatively easily. Further, the inner pipe and the first connector member can be connected so that the first fluid passage in the inner pipe communicates reliably with the first flow path of the first connector member, and the second fluid passage between the inner and outer pipes. It is possible to connect the outer tube and the second connector member so as to reliably communicate with the second flow path of the second connector member. In addition, since the cross-sectional area of the first and second fluid passages can be easily made larger than the cross-sectional area of the first and second fluid passages of the heat exchanger described in Patent Document 2, the pressure loss As a result, it is possible to prevent a decrease in heat exchange performance.

上記9)の熱交換器によれば、伝熱フィンの働きにより各熱交換部の熱交管性能が向上するので、熱交換部の長さを短くするか、あるいは熱交換部の数を少なくすることが可能になり、その結果熱交換器の設置スペースを小さくすることができる。   According to the heat exchanger of 9) above, the heat exchange tube performance of each heat exchange part is improved by the action of the heat transfer fins, so the length of the heat exchange part is shortened or the number of heat exchange parts is reduced. As a result, the installation space for the heat exchanger can be reduced.

上記10)の熱交換器によれば、伝熱フィンが内管に一体に形成されているので、部品点数が少なくなるとともに、両流体通路内を流れる流体間の伝熱効率が向上する。   According to the heat exchanger of 10) above, since the heat transfer fins are formed integrally with the inner tube, the number of parts is reduced and the heat transfer efficiency between the fluids flowing in both fluid passages is improved.

上記11)の熱交換器によれば、両流体通路内を流れる流体間の伝熱効率が向上する。   According to the heat exchanger of the above 11), the heat transfer efficiency between fluids flowing in both fluid passages is improved.

上記12)の熱交換器によれば、外管および内管を比較的簡単に製造することができる。特に、上記10)のように伝熱フィンが内管に一体に形成されている場合に、内管の製造が容易になる。   According to the heat exchanger of 12) above, the outer tube and the inner tube can be manufactured relatively easily. In particular, when the heat transfer fin is formed integrally with the inner pipe as in the above 10), the inner pipe can be easily manufactured.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

なお、以下の説明において、図1および図5の上下、左右をそれぞれ上下、左右というものとする。   In the following description, the upper and lower sides and the left and right sides in FIGS.

図1はこの発明による熱交換器の全体構成を示し、図2および図3はその要部の構成を示す。また、図4はこの発明による熱交換器を中間熱交換器として用いた超臨界冷凍サイクルを示す。   FIG. 1 shows the overall configuration of a heat exchanger according to the present invention, and FIGS. 2 and 3 show the configuration of the main part thereof. FIG. 4 shows a supercritical refrigeration cycle using the heat exchanger according to the present invention as an intermediate heat exchanger.

図1に示すように、熱交換器(1)は、上下方向に間隔をおいて並列状に配置された複数、ここでは2つの熱交換部(2)と、左右方向に間隔をおいて配置されかつすべての熱交換部(2)の両端部が接続された1対のコネクタ(3)とを備えている。   As shown in FIG. 1, the heat exchanger (1) is arranged in parallel with a plurality of, in this case, two heat exchanging units (2) arranged in parallel in the vertical direction. And a pair of connectors (3) to which both ends of all the heat exchanging parts (2) are connected.

各熱交換部(2)は、左右方向に伸びる外管(4)と、外管(4)内に間隔をおいて同心状に挿入された左右方向に伸びる内管(5)とにより形成されており、内管(5)内が第1流体通路(6)となっているとともに外管(4)と内管(5)との間の間隙が第2流体通路(7)となっている。   Each heat exchange section (2) is formed by an outer tube (4) extending in the left-right direction and an inner tube (5) extending in the left-right direction inserted concentrically in the outer tube (4). The inner pipe (5) is the first fluid passage (6) and the gap between the outer pipe (4) and the inner pipe (5) is the second fluid passage (7). .

図2および図3に示すように、外管(4)は、金属、ここではアルミニウム押出形材からなる。内管(5)は、金属、ここではアルミニウム押出形材からなり、その外周面に、複数の伝熱フィン(8)が、周方向に間隔をおき、かつ内管(5)の長さ方向に伸びるように一体に形成されている。伝熱フィン(8)の先端部と外管(4)内周面との間には若干の隙間が存在している。内管(5)の両端部は外管(4)よりも外方に突出しており、この所定長さの外方突出部(5a)の全体にわたって伝熱フィン(8)が切除されている。また、内管(5)の内周面には、全長にわたる複数のインナーフィン(9)が周方向に間隔をおいて一体に形成されている。   As shown in FIGS. 2 and 3, the outer tube (4) is made of a metal, here an aluminum extruded profile. The inner pipe (5) is made of a metal, here, an aluminum extruded shape, and on its outer peripheral surface, a plurality of heat transfer fins (8) are spaced in the circumferential direction, and the length direction of the inner pipe (5) It is integrally formed so that it may extend. There is a slight gap between the tip of the heat transfer fin (8) and the inner peripheral surface of the outer tube (4). Both end portions of the inner tube (5) protrude outward from the outer tube (4), and the heat transfer fin (8) is cut out over the entire outer protrusion (5a) having a predetermined length. A plurality of inner fins (9) extending over the entire length are integrally formed on the inner peripheral surface of the inner pipe (5) at intervals in the circumferential direction.

各コネクタ(3)は、金属、ここではアルミニウム製ブロックからなり、かつ左右方向、すなわち熱交換部(2)の長さ方向の外側に配置された第1コネクタ部材(11)と、金属、ここではアルミニウム製ブロックからなり、かつ左右方向内側に配置された第2コネクタ部材(12)とにより形成されている。左右のコネクタ(3)は左右対称であり、以下、左側のコネクタ(3)について詳細に説明する。   Each connector (3) is composed of a metal, here an aluminum block, and the first connector member (11) arranged in the left-right direction, that is, outside the length direction of the heat exchange part (2), the metal, Is formed of an aluminum block and the second connector member (12) disposed on the inner side in the left-right direction. The left and right connectors (3) are symmetrical, and the left connector (3) will be described in detail below.

第1コネクタ部材(11)には、上端面から下端近傍に至りかつ熱交換部(2)の第1流体通路(6)に通じる第1流路(13)が形成されている。また、第1コネクタ部材(11)には、一端がその右側面に開口するとともに他端が第1流路(13)内周面に開口した熱交換部(2)と同数の横向き貫通状連通穴(14)が、上下方向に間隔をおいて形成されている。各連通穴(14)の右端部には内管嵌入用大径部(15)が形成されている。   The first connector member (11) is formed with a first flow path (13) that extends from the upper end surface to the vicinity of the lower end and communicates with the first fluid passage (6) of the heat exchange section (2). Also, the first connector member (11) has the same number of laterally penetrating communication as the heat exchange section (2) having one end opened on the right side and the other end opened on the inner peripheral surface of the first flow path (13). Holes (14) are formed at intervals in the vertical direction. A large diameter portion (15) for fitting an inner pipe is formed at the right end portion of each communication hole (14).

第2コネクタ部材(12)には、上端面から下端近傍に至りかつ熱交換部(2)の第2流体通路(7)に通じる第2流路(16)が形成されている。また、第2コネクタ部材(12)には、一端がその右側面に開口するとともに他端が第2流路(16)よりも左側に至る熱交換部(2)と同数の横向き有底状連通穴(17)が、上下方向に間隔をおいて形成されている。各連通穴(17)の右端部には外管嵌入用大径部(18)が形成されている。なお、両コネクタ部材(11)(12)の連通穴(14)(17)の中心の高さ位置は同じである。さらに、第2コネクタ部材(12)には、一端が各連通穴(17)の底面に開口するとともに他端が左側面に開口した内管挿通用貫通穴(19)が形成されている。   The second connector member (12) is formed with a second flow path (16) that extends from the upper end surface to the vicinity of the lower end and communicates with the second fluid passage (7) of the heat exchange section (2). In addition, the second connector member (12) has a bottom-like communication in the lateral direction with the same number as the heat exchanging portion (2) whose one end is open on the right side and the other end is on the left side of the second flow path (16). Holes (17) are formed at intervals in the vertical direction. A large-diameter portion (18) for fitting an outer tube is formed at the right end of each communication hole (17). Note that the height positions of the centers of the communication holes (14) and (17) of both the connector members (11) and (12) are the same. Further, the second connector member (12) is formed with an inner tube insertion through hole (19) having one end opened on the bottom surface of each communication hole (17) and the other end opened on the left side surface.

熱交換部(2)の内管(5)の外方突出部(5a)は、第2コネクタ部材(12)の連通穴(17)および内管挿通用貫通穴(19)に貫通状に通され、その先端部が第1コネクタ部材(11)の内管嵌入用大径部(15)内に嵌め入れられた状態で、第1コネクタ部材(11)および第2コネクタ部材(12)に、たとえばろう付により接合されており、これにより熱交換部(2)の第1流体通路(6)が、連通穴(14)を介して第1流路(13)に通じさせられている。また、熱交換部(2)の外管(4)は、第2コネクタ部材(12)の外管嵌入用大径部(18)内に嵌め入れられた状態で、第2コネクタ部材(12)に、たとえばろう付により接合されており、これにより熱交換部(2)の第2流体通路(7)が、連通穴(17)を介して第2流路(16)に通じさせられている。このようにして、熱交換部(2)の両端部が両コネクタ(3)に接続されている。   The outward protrusion (5a) of the inner pipe (5) of the heat exchange part (2) passes through the communication hole (17) and the inner pipe insertion through hole (19) of the second connector member (12). In the state where the tip portion is fitted into the large diameter portion (15) for fitting the inner tube of the first connector member (11), the first connector member (11) and the second connector member (12) For example, it joins by brazing, and the 1st fluid channel | path (6) of a heat exchange part (2) is connected to the 1st flow path (13) via the communicating hole (14) by this. Further, the outer tube (4) of the heat exchange part (2) is fitted into the outer tube fitting large-diameter part (18) of the second connector member (12), and the second connector member (12). For example, the second fluid passage (7) of the heat exchange section (2) is connected to the second flow path (16) through the communication hole (17). . In this way, both end portions of the heat exchange section (2) are connected to both connectors (3).

熱交換器(1)は、図4に示すように、コンプレッサ(21)、ガスクーラ(22)、エバポレータ(23)、気液分離器としてのアキュムレータ(24)、および減圧器としての膨張弁(25)とともにCOからなる超臨界冷媒を使用する超臨界冷凍サイクルを構成し、ガスクーラ(22)から出てきた高温高圧の冷媒とエバポレータ(23)から出るとともにアキュムレータ(24)を通過してきた低温低圧の冷媒とを熱交換させる中間熱交換器として好適に用いられる。超臨界冷凍サイクルは、カーエアコンとして車両、たとえば自動車に搭載される。 As shown in FIG. 4, the heat exchanger (1) includes a compressor (21), a gas cooler (22), an evaporator (23), an accumulator (24) as a gas-liquid separator, and an expansion valve (25 ) And a supercritical refrigeration cycle using a supercritical refrigerant composed of CO 2, a high-temperature and high-pressure refrigerant coming out of the gas cooler (22) and a low-temperature and low-pressure coming out of the evaporator (23) and passing through the accumulator (24) It is suitably used as an intermediate heat exchanger for exchanging heat with other refrigerants. The supercritical refrigeration cycle is mounted on a vehicle such as an automobile as a car air conditioner.

上述した超臨界冷凍サイクルにおいて、熱交換器(1)の一方、ここでは左側のコネクタ(3)の第1コネクタ部材(11)に、ガスクーラ(22)から延びる配管用パイプ(26)が第1流路(13)に通じるように接続され、同じく他方、ここでは右側のコネクタ(3)の第1コネクタ部材(11)に、膨張弁(25)へ延びる配管用パイプ(27)が第1流路(13)に通じるように接続される。また、熱交換器(1)の一方、ここでは右側のコネクタ(3)の第2コネクタ部材(12)に、アキュムレータ(24)から延びる配管用パイプ(28)が第2流路(16)に通じるように接続され、同じく他方、ここでは左側のコネクタ(3)の第2コネクタ部材(12)に、コンプレッサ(21)へ延びる配管用パイプ(29)が第2流路(16)に通じるように接続されている。   In the supercritical refrigeration cycle described above, a pipe pipe (26) extending from the gas cooler (22) is connected to the first connector member (11) of one of the heat exchangers (1), here the left connector (3). A pipe pipe (27) extending to the expansion valve (25) is connected to the first connector member (11) of the right connector (3), and connected to the flow path (13). Connected to lead to the road (13). Also, one of the heat exchangers (1), here, the second connector member (12) of the right connector (3), and a pipe (28) extending from the accumulator (24) are connected to the second flow path (16). On the other hand, a pipe (29) for piping extending to the compressor (21) is connected to the second flow path (16) to the second connector member (12) of the left connector (3). It is connected to the.

この超臨界冷凍サイクルにおいて、コンプレッサ(21)により圧縮された高温高圧の冷媒は、ガスクーラ(22)を通過し、配管用パイプ(26)を通って左側コネクタ(3)の第1コネクタ部材(11)の第1流路(13)内に流入し、連通穴(14)を通って熱交換部(2)の第1流体通路(6)内に入り、第1流体通路(6)内を右方に流れ、連通穴(14)を通って右側コネクタ(3)の第1コネクタ部材(11)の第1流路(13)内に流入し、配管用パイプ(27)を通って膨張弁(25)に送られる。   In this supercritical refrigeration cycle, the high-temperature and high-pressure refrigerant compressed by the compressor (21) passes through the gas cooler (22), passes through the piping pipe (26), and the first connector member (11) of the left connector (3). ) Enters the first fluid passage (6) of the heat exchange section (2) through the communication hole (14) and passes through the first fluid passage (6) to the right. Flow into the first flow path (13) of the first connector member (11) of the right connector (3) through the communication hole (14), and through the pipe (27) for the expansion valve ( Sent to 25).

一方、配管用パイプ(28)を通ってアキュムレータ(24)から送られてきた低温低圧の冷媒は、右側コネクタ(3)の第2コネクタ部材(12)の第2流路(16)内に流入し、連通穴(17)を通って熱交換部(2)の第2流体通路(7)内に入り、第2流体通路(7)内を左方に流れ、連通穴(17)を通って左側コネクタ(3)の第2コネクタ部材(12)の第2流路(16)内に流入し、配管用パイプ(29)を通ってコンプレッサ(21)に送られる。   On the other hand, the low-temperature and low-pressure refrigerant sent from the accumulator (24) through the piping pipe (28) flows into the second flow path (16) of the second connector member (12) of the right connector (3). Through the communication hole (17) and into the second fluid passage (7) of the heat exchanging section (2), to the left in the second fluid passage (7), and through the communication hole (17). It flows into the second flow path (16) of the second connector member (12) of the left connector (3), and is sent to the compressor (21) through the piping pipe (29).

そして、熱交換器(1)の各熱交換部(2)の第1流体通路(6)内を流れるガスクーラ(22)から出てきた高温高圧の冷媒と、第2流体通路(7)内を流れるエバポレータ(23)から出るとともにアキュムレータ(24)を通過してきた低温低圧の冷媒とが熱交換をし、高温高圧の冷媒が冷却される。   The high-temperature and high-pressure refrigerant coming out of the gas cooler (22) flowing in the first fluid passage (6) of each heat exchange section (2) of the heat exchanger (1) and the second fluid passage (7) The low-temperature and low-pressure refrigerant that has left the flowing evaporator (23) and has passed through the accumulator (24) exchanges heat, and the high-temperature and high-pressure refrigerant is cooled.

図5はこの発明による熱交換器の他の実施形態を示す。   FIG. 5 shows another embodiment of the heat exchanger according to the present invention.

図5に示す熱交換器(30)の場合、熱交換部(2)の数が、図1に示す熱交換器(1)の場合よりも多く、ここでは3つとなっている。したがって、すべての熱交換部(2)の第1流体通路(6)内を流れる冷媒と、第2流体通路(7)内を流れる冷媒との間の総伝熱面積を、図1に示す熱交換器(1)と等しくした場合、左右方向の長さL1を図1の熱交換器(1)の左右方向の長さL2よりも短くすることが可能になる。その他の構成は図1に示す熱交換器(1)と同様であり、同一部分および同一物には同一符号を付して重複する説明を省略する。   In the case of the heat exchanger (30) shown in FIG. 5, the number of heat exchange parts (2) is larger than that in the case of the heat exchanger (1) shown in FIG. Therefore, the total heat transfer area between the refrigerant flowing in the first fluid passage (6) of all the heat exchange sections (2) and the refrigerant flowing in the second fluid passage (7) is shown in FIG. When equal to the exchanger (1), the length L1 in the left-right direction can be made shorter than the length L2 in the left-right direction of the heat exchanger (1) in FIG. Other configurations are the same as those of the heat exchanger (1) shown in FIG. 1, and the same parts and the same parts are denoted by the same reference numerals and redundant description is omitted.

この熱交換器(30)も、図1に示す熱交換器(1)と同様に、コンプレッサ(21)、ガスクーラ(22)、エバポレータ(23)、気液分離器としてのアキュムレータ(24)、および減圧器としての膨張弁(25)とともにCOからなる超臨界冷媒を使用する超臨界冷凍サイクルを構成し、ガスクーラ(22)から出てきた高温高圧の冷媒とエバポレータ(23)から出るとともにアキュムレータ(24)を通過してきた低温低圧の冷媒とを熱交換させる中間熱交換器として好適に用いられる。超臨界冷凍サイクルは、カーエアコンとして車両、たとえば自動車に搭載される超臨界冷凍サイクルを示す。 Similarly to the heat exchanger (1) shown in FIG. 1, the heat exchanger (30) is also composed of a compressor (21), a gas cooler (22), an evaporator (23), an accumulator (24) as a gas-liquid separator, and A supercritical refrigeration cycle that uses a supercritical refrigerant composed of CO 2 together with an expansion valve (25) as a pressure reducer is constructed, and an accumulator (23) exits from the high-temperature and high-pressure refrigerant and evaporator (23) that come out from the gas cooler (22). It is suitably used as an intermediate heat exchanger for exchanging heat with a low-temperature and low-pressure refrigerant that has passed through 24). The supercritical refrigeration cycle indicates a supercritical refrigeration cycle mounted on a vehicle such as an automobile as a car air conditioner.

上記2つの実施形態においては、超臨界冷凍サイクルの超臨界冷媒として、COが使用されているが、これに限定されるものではなく、エチレン、エタン、酸化窒素などが使用される。 In the above two embodiments, CO 2 is used as the supercritical refrigerant in the supercritical refrigeration cycle, but is not limited to this, and ethylene, ethane, nitric oxide and the like are used.

また、上記2つの実施形態においては、コネクタは2つのブロック状コネクタ部材により形成されているが、これに限定されるものではなく、1つのブロックに第1および第2流路を形成したコネクタを用いてもよい。   In the above two embodiments, the connector is formed by two block-shaped connector members. However, the present invention is not limited to this, and a connector in which the first and second flow paths are formed in one block. It may be used.

さらに、2つの実施形態において、熱交換器(1)(30)は超臨界冷凍サイクルの中間熱交換器として用いられているが、これに限定されるものではなく、その用途は適宜変更可能である。   Further, in the two embodiments, the heat exchangers (1) and (30) are used as intermediate heat exchangers in the supercritical refrigeration cycle, but the present invention is not limited to this, and the use thereof can be changed as appropriate. is there.

この発明による熱交換器の実施形態の全体構成を示す一部切り欠き正面図である。1 is a partially cutaway front view showing an overall configuration of an embodiment of a heat exchanger according to the present invention. 図1の部分拡大図である。It is the elements on larger scale of FIG. 図2のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 図1に示す熱交換器を中間熱交換器として用いた超臨界冷凍サイクルを示す概略図である。It is the schematic which shows the supercritical refrigerating cycle which used the heat exchanger shown in FIG. 1 as an intermediate heat exchanger. この発明による熱交換器の他の実施形態の全体構成を示す一部切り欠き正面図である。It is a partially notched front view which shows the whole structure of other embodiment of the heat exchanger by this invention.

符号の説明Explanation of symbols

(1)(30):熱交換器
(2):熱交換部
(3):コネクタ
(4):外管
(5):内管
(5a):外方突出部
(6):第1流体通路
(7):第2流体通路
(8):伝熱フィン
(11):第1コネクタ部材
(12):第2コネクタ部材
(13):第1流路
(16):第2流路
(21):コンプレッサ
(22):ガスクーラ
(23):エバポレータ
(24):アキュムレータ(気液分離器)
(1) (30): Heat exchanger
(2): Heat exchange section
(3): Connector
(4): Outer pipe
(5): Inner pipe
(5a): Outward protrusion
(6): First fluid passage
(7): Second fluid passage
(8): Heat transfer fin
(11): First connector member
(12): Second connector member
(13): First flow path
(16): Second flow path
(21): Compressor
(22): Gas cooler
(23): Evaporator
(24): Accumulator (gas-liquid separator)

Claims (16)

並列状に配置された複数の熱交換部と、互いに間隔をおいて配置されかつすべての熱交換部の両端部が接続された1対のコネクタとを備えており、各熱交換部が、第1流体通路および第1流体通路の周囲に形成された第2流体通路を有し、各コネクタが、すべての熱交換部の第1流体通路を外部に通じさせる第1流路、および第1流路に対して独立しかつすべての熱交換部の第2流体通路を外部に通じさせる第2流路を有している熱交換器。 A plurality of heat exchanging units arranged in parallel and a pair of connectors arranged at intervals and connected to both ends of all the heat exchanging units. A first fluid passage having a first fluid passage and a second fluid passage formed around the first fluid passage, wherein each connector communicates the first fluid passages of all the heat exchange sections to the outside; The heat exchanger which has the 2nd flow path which makes the 2nd fluid channel | path of all the heat exchange parts independent with respect to a path | route outside. 熱交換部の第2流体通路内に、伝熱フィンが設けられている請求項1記載の熱交換器。 The heat exchanger according to claim 1, wherein heat transfer fins are provided in the second fluid passage of the heat exchange unit. 熱交換部が、外管と、外管内に間隔をおいて配置された内管とにより形成され、内管内が第1流体通路となっているとともに、外管と内管との間の間隙が第2流体通路となっている請求項1または2記載の熱交換器。 The heat exchange part is formed by an outer tube and an inner tube arranged in the outer tube at an interval. The inner tube serves as a first fluid passage, and a gap between the outer tube and the inner tube is provided. The heat exchanger according to claim 1 or 2, wherein the heat exchanger is a second fluid passage. 内管の外周面に、周方向に間隔をおきかつ内管の長さ方向に伸びるように伝熱フィンが一体に形成されている請求項3記載の熱交換器。 The heat exchanger according to claim 3, wherein heat transfer fins are integrally formed on the outer peripheral surface of the inner tube so as to be spaced apart in the circumferential direction and extend in the length direction of the inner tube. 外管、内管およびコネクタがアルミニウム製である請求項3または4記載の熱交換器。 The heat exchanger according to claim 3 or 4, wherein the outer tube, the inner tube, and the connector are made of aluminum. 外管および内管がアルミニウム押出形材製である請求項5記載の熱交換器。 The heat exchanger according to claim 5, wherein the outer tube and the inner tube are made of an aluminum extruded shape. 各コネクタが、第1流路を有する第1コネクタ部材と、第2流路を有する第2コネクタ部材とにより形成されている請求項1記載の熱交換器。 The heat exchanger according to claim 1, wherein each connector is formed by a first connector member having a first flow path and a second connector member having a second flow path. 熱交換部が、外管と、外管内に間隔をおいて配置された内管とにより形成され、内管内が第1流体通路となっているとともに、外管と内管との間の間隙が第2流体通路となっており、第1コネクタ部材が第2コネクタ部材よりも熱交換部の長さ方向外側に配置され、内管の両端部が外管の両端よりも外方に突出させられ、内管の外方突出部が第2コネクタ部材を貫通した状態で第1コネクタ部材に接続され、外管が第2コネクタ部材に接続されている請求項7記載の熱交換器。 The heat exchange part is formed by an outer tube and an inner tube arranged in the outer tube at an interval. The inner tube serves as a first fluid passage, and a gap between the outer tube and the inner tube is provided. The second fluid passage is provided, the first connector member is disposed on the outer side in the length direction of the heat exchange part than the second connector member, and both end portions of the inner tube are protruded outward from both ends of the outer tube. The heat exchanger according to claim 7, wherein the outer projecting portion of the inner tube is connected to the first connector member in a state of passing through the second connector member, and the outer tube is connected to the second connector member. 第2流体通路内に伝熱フィンが設けられている請求項8記載の熱交換器。 The heat exchanger according to claim 8, wherein heat transfer fins are provided in the second fluid passage. 伝熱フィンが、内管外周面に、周方向に間隔をおきかつ内管の長さ方向に伸びるように一体に形成されている請求項9記載の熱交換器。 The heat exchanger according to claim 9, wherein the heat transfer fins are integrally formed on the outer peripheral surface of the inner tube so as to be spaced apart in the circumferential direction and extend in the length direction of the inner tube. 第1および第2コネクタ部材、外管ならびに内管がアルミニウム製である請求項8〜10のうちのいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 8 to 10, wherein the first and second connector members, the outer tube, and the inner tube are made of aluminum. 外管および内管がアルミニウム押出形材製である請求項11記載の熱交換器。 The heat exchanger according to claim 11, wherein the outer tube and the inner tube are made of extruded aluminum. コンプレッサ、ガスクーラ、エバポレータ、気液分離器およびガスクーラから出てきた冷媒とエバポレータから出て気液分離器を通過してきた冷媒とを熱交換させる中間熱交換器とを備えており、かつ超臨界冷媒を用いる冷凍サイクルであって、中間熱交換器が請求項1〜12のうちのいずれかに記載された熱交換器からなる超臨界冷凍サイクル。 A supercritical refrigerant comprising a compressor, a gas cooler, an evaporator, a gas-liquid separator, and an intermediate heat exchanger that exchanges heat between the refrigerant that has come out of the gas cooler and the refrigerant that has come out of the evaporator and has passed through the gas-liquid separator. A supercritical refrigeration cycle in which the intermediate heat exchanger is a heat exchanger according to any one of claims 1 to 12. 中間熱交換器の第1流体通路内をガスクーラから出てきた高圧の冷媒が流れ、同じく第2流体通路内をエバポレータから出て気液分離器を通過してきた低圧の冷媒が流れるようになっている請求項13記載の超臨界冷凍サイクル。 The high-pressure refrigerant that has come out of the gas cooler flows in the first fluid passage of the intermediate heat exchanger, and the low-pressure refrigerant that has also passed through the gas-liquid separator in the second fluid passage has passed through the second fluid passage. The supercritical refrigeration cycle according to claim 13. 超臨界冷媒が二酸化炭素からなる請求項13または14記載の超臨界冷凍サイクル。 The supercritical refrigeration cycle according to claim 13 or 14, wherein the supercritical refrigerant comprises carbon dioxide. 請求項13〜15のうちのいずれかに記載の超臨界冷凍サイクルがカーエアコンとして搭載されている車両。 A vehicle on which the supercritical refrigeration cycle according to any one of claims 13 to 15 is mounted as a car air conditioner.
JP2005317942A 2004-11-01 2005-11-01 Heat exchanger Abandoned JP2006153437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005317942A JP2006153437A (en) 2004-11-01 2005-11-01 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004317691 2004-11-01
JP2005317942A JP2006153437A (en) 2004-11-01 2005-11-01 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2006153437A true JP2006153437A (en) 2006-06-15

Family

ID=36631945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005317942A Abandoned JP2006153437A (en) 2004-11-01 2005-11-01 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2006153437A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096225A (en) * 2008-10-15 2010-04-30 Denso Corp Pipe joint, structure of jointing heat exchange tube to the pipe joint, and method of joining the heat exchange tube to the pipe joint
CN105981486A (en) * 2013-11-22 2016-09-28 液体冷却解决方案公司 Scalable liquid submersion cooling system
CN108488965A (en) * 2018-03-02 2018-09-04 河北陆特新能源科技有限公司 Air water ice three uses heat exchanger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096225A (en) * 2008-10-15 2010-04-30 Denso Corp Pipe joint, structure of jointing heat exchange tube to the pipe joint, and method of joining the heat exchange tube to the pipe joint
CN105981486A (en) * 2013-11-22 2016-09-28 液体冷却解决方案公司 Scalable liquid submersion cooling system
JP2016539503A (en) * 2013-11-22 2016-12-15 リキッドクール ソリューションズ, インク. Scalable liquid immersion cooling device
KR20170069956A (en) * 2013-11-22 2017-06-21 리퀴드쿨 솔루션즈, 인코포레이티드 Scalable liquid submersion cooling system
US9913402B2 (en) 2013-11-22 2018-03-06 Liquidcool Solutions, Inc. Scalable liquid submersion cooling system
CN105981486B (en) * 2013-11-22 2019-05-21 液体冷却解决方案公司 Scalable liquid-immersed cooling system
KR102288462B1 (en) * 2013-11-22 2021-08-09 리퀴드쿨 솔루션즈, 인코포레이티드 Scalable liquid submersion cooling system
CN108488965A (en) * 2018-03-02 2018-09-04 河北陆特新能源科技有限公司 Air water ice three uses heat exchanger

Similar Documents

Publication Publication Date Title
JP2007032949A (en) Heat exchanger
JP2006071270A (en) Heat exchanger, intermediate heat exchanger, and refrigeration cycle
JP2007163042A (en) Heat exchanger
JP2008503705A (en) Integrated heat exchanger for use in cooling systems
JP2006003071A (en) Heat exchanger
JP4179092B2 (en) Heat exchanger
JP2009041798A (en) Heat exchanger
JP2005037054A (en) Heat exchanger for refrigerant cycle device
JP2006153437A (en) Heat exchanger
TW200303973A (en) Heat exchanger with receiver tank, receiver tank connecting member, receiver tank mounting structure of heat exchanger and refrigeration system
JP2007078292A (en) Heat exchanger, and dual type heat exchanger
JP2006153436A (en) Heat exchanger
JP2005106329A (en) Subcool type condenser
JP5202291B2 (en) Air conditioner for vehicles
JP2007003183A (en) Heat exchanger
JP2008075896A (en) Heat exchanger
JP2010025460A (en) Joint for double-pipe heat exchanger
EP3881018A1 (en) Compact heat exchanger assembly for a refrigeration system
JP2008309443A (en) Heat transfer pipe connecting structure
JP2007315683A (en) Heat exchanger
KR100950395B1 (en) Heat-exchanger
JPH11230686A (en) Heat exchanger
JP2000220982A (en) Heat exchanger
KR20030027610A (en) Manufacturing method of tube for heat exchanger
JP4764738B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080806

Free format text: JAPANESE INTERMEDIATE CODE: A621

A762 Written abandonment of application

Effective date: 20100215

Free format text: JAPANESE INTERMEDIATE CODE: A762