KR20030023908A - A Method for Refining Hot Metal in a Converter with High Efficiency of Dephosphurization - Google Patents

A Method for Refining Hot Metal in a Converter with High Efficiency of Dephosphurization Download PDF

Info

Publication number
KR20030023908A
KR20030023908A KR1020010056646A KR20010056646A KR20030023908A KR 20030023908 A KR20030023908 A KR 20030023908A KR 1020010056646 A KR1020010056646 A KR 1020010056646A KR 20010056646 A KR20010056646 A KR 20010056646A KR 20030023908 A KR20030023908 A KR 20030023908A
Authority
KR
South Korea
Prior art keywords
slag
converter
weight
refining
low
Prior art date
Application number
KR1020010056646A
Other languages
Korean (ko)
Other versions
KR100825554B1 (en
Inventor
오동훈
김재민
성송근
박태윤
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR20010056646A priority Critical patent/KR100825554B1/en
Publication of KR20030023908A publication Critical patent/KR20030023908A/en
Application granted granted Critical
Publication of KR100825554B1 publication Critical patent/KR100825554B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE: A method for refining hot metal in converter with high dephosphorization efficiency is provided, which is characterized in that low basicity slag generated in refinement of tire cord steel is used as a supplementary raw material to remove phosphorus in hot metal, thereby reducing the amount of expensive supplementary raw materials such as fluorite and quicklime. CONSTITUTION: The method is characterized in that a low basicity slag comprising CaO 45.3 to 55.0 wt.%, SiO2 44.9 to 50.4 wt.%, Fe 0.7 to 1.5 wt.%, MgO 5.0 to 7.0 wt.%, MnO 1.0 to 1.5 wt.%, Al2O3 0.6 to 1.1 wt.%, P2O5 0.02 to 0.04 wt.%, S 0.01 to 0.02 wt.%, TiO2 0.02 wt.% or less is poured into converter in an amount of 3 to 5 kg per total charged iron (hot metal+scrap) during converter blowing; and the low basicity slag is again poured into converter in an amount of 3 to 5 kg per total charged iron (hot metal+scrap) at a point of time when the converter blowing operation is progressed by 65 to 75 %.

Description

탈린 효율이 우수한 전로 정련방법{A Method for Refining Hot Metal in a Converter with High Efficiency of Dephosphurization}A method for refining hot metal in a converter with high efficiency of dephosphurization

본 발명은 저린강의 전로정련방법에 관한 것으로, 보다 상세하게는 슬래그의 재화율을 촉진하면서 인의 제거를 위한 부원료로서 부산물인 저염기도의 슬래그를 이용함으로서 인을 효과적으로 제거하고 부원료의 사용량을 절감하는 전로정련방법에 관한 것이다.The present invention relates to a method for refining a converter of a low-lining steel, and more particularly, by using slag of a low-basicity by-product as a by-product as a by-product as a secondary material for the removal of phosphorus while promoting the slag regeneration rate, a converter that effectively reduces phosphorus and reduces the amount of auxiliary material used. It relates to a refining method.

일반적으로 제강공정은 용선예비처리→전로정련→2차정련→연속주조공정으로 구성된다. 이러한 일련의 제강공정중에서 전로정련은, 주원료인 용선(Hot metal)과 고철(scrap)을 전로에 장입하고 송산하여 용철을 취련하는 것으로, 송산과 동시에 부원료인 생석회, 경소돌로마이트(CaO·MgO), 소결광, 형석 등을 투입하여 용선중의 불순원소인 탄소, 규소, 망간, 인, 유황, 티타늄 등을 산화정련에 의해 제거하는 일련의 작업을 통칭한다. 용철의 취련중에는 반응식 1과 같은 탈탄작업이 주 반응이 된다.Generally, the steelmaking process consists of charter preliminary treatment → converter refining → secondary refining → continuous casting process. In this series of steelmaking processes, converter refining is made by charging hot iron and scrap as raw materials into the converter and casting the molten iron.Simultaneous raw lime, calcined dolomite (CaO, MgO), Sintered ore, fluorspar, etc. are added to collectively perform a series of operations to remove impurities such as carbon, silicon, manganese, phosphorus, sulfur, titanium, etc. from molten iron by oxidative refining. During the melting of molten iron, the decarburization operation as in Scheme 1 is the main reaction.

[C] + 1/2O2= CO(g)[C] + 1 / 2O 2 = CO (g)

[C] + O2= CO2(g)[C] + O 2 = CO 2 (g)

이러한 탈탄반응에 의하여 진행되는 탄소의 제거속도 즉, 탈탄속도에 따라 전로정련조업은 취련초기, 중기, 말기로 구분될 수 있다. 구체적으로 취련초기에는 용철중 [Si]가 산화제거되면서 취련이 진행되며 탈탄반응도 동시에 진행된다. 취련중기에는 탈탄이 가장 활발하게 일어나는 시기로서, 용철중 [Si]가 완전히 제거되어 랜스를 통해 취입되는 산소가 거의 전부 용철중의 탄소와 반응하여 CO가스를 생성하게 되는데, 이때 탈탄속도와 비례하여 반응식 2와 같은 탈질반응이 진행된다.According to the removal rate of carbon proceeded by the decarburization reaction, that is, the converter refining operation may be divided into the initial stage, the middle stage, and the last stage. Specifically, in the early stage of blowing, the blowing proceeds as [Si] in the molten iron is oxidized and removed, and the decarburization reaction proceeds simultaneously. In the middle of blowing, decarburization occurs most actively. [Si] is completely removed from molten iron, and almost all of the oxygen blown through the lance reacts with carbon in the molten iron to generate CO gas. The denitrification reaction as in Scheme 2 proceeds.

[N] = 1/2N2 [N] = 1 / 2N 2

용선중 규소는 전로 취련시 산소와의 반응이 가장 먼저 일어나는 원소로 알려져 있으며, 규소와 산소의 산화반응이 취련중 용철의 승온에 필요한 열원으로서 중요한 역할을 한다. 용철중 규소가 산소와 반응하여 생성되는 산화물(SiO2)은 제강온도에서 불안정하기 때문에 슬래그중 염기성 산화물로 결합시켜 안정한 복합산화물의 형태를 만들어 줄 필요가 있다. 염기성 산화물로는 생석회가 대표적으로 취련중 생성되는 SiO2와 결합하여 (2CaO)(SiO2)(Di-calcium-silicate)의 형태로 존재하며, 이때 생성과정에 대한 기본 산화반응식은 다음과 같다.Silicon in molten iron is known to be the first element that reacts with oxygen when the converter is blown, and the oxidation reaction of silicon and oxygen plays an important role as a heat source necessary to raise the temperature of molten iron during the blow. Oxide produced by the reaction of silicon in the molten iron with oxygen (SiO 2 ) is unstable at the steelmaking temperature, it is necessary to combine the basic oxide in the slag to form a stable complex oxide form. As a basic oxide, quicklime is typically present in the form of (2CaO) (SiO2) (Di-calcium-silicate) by combining with SiO 2 generated during blowing, and the basic oxidation equation for the production process is as follows.

[Si] + O2= (SiO2)[Si] + O 2 = (SiO 2 )

한편, 전로정련조업에서의 탈인반응은 투입된 생석회의 취련중 재화에 의해 탄소가 저하되기 전에 탈인이 진행되는 소위 우선 탈인이 일어나는 것이 특징이다. 일반적으로 슬래그와 용철간 대표적인 탈인 평형반응식은 다음과 같다.On the other hand, the dephosphorization reaction in the converter refining industry is characterized in that the so-called preferential dephosphorization occurs in which dephosphorization proceeds before carbon is lowered by the goods during the injection of quicklime. In general, the representative dephosphorization equilibrium reaction between slag and molten iron is as follows.

2[P] + 5[O] + 4CaO = 4CaO,(P2O5)2 [P] + 5 [O] + 4CaO = 4CaO, (P 2 O 5 )

상기 반응식 4에서 알 수 있듯이, 탈인에 필요한 조건은 슬래그 염기도가 높고 산소의 포텐셜이 높일수록 유리하며, 저온일수록 좋다. 제거된 인은 재화(슬래그화)되면서 슬래그층에 존재시키는 것이 전로취련작업의 방법이다.As can be seen in Scheme 4, the conditions required for dephosphorization are advantageous as the slag basicity is higher and the potential of oxygen is higher, and the lower the temperature is, the better. The removed phosphorus is present in the slag layer as it is slag and is a method of converter work.

탈린반응을 효과적으로 유도하여 저린강을 제조하는 종래기술로는 대한민국 공개특허공보 2000-42501호가 있다. 이 기술은 전회조업의 슬래그를 15-40% 남긴 전로에 전장입량에 대하여 0.8~2.0중량%의 경소백운석을 투입한 후 노를 경동시켜 슬래그를 노벽에 코팅하고 이어서 노체보호용 생석회를 1.5~2중량%를 투입한 다음 고철을 장입하고 이후 용선을 장입한 다음 송산에 의해 노내 용선을 취련개시와 동시에 전장입량에 대하여 0.5~1.5중량%의 생석회와 0.3~1.5중량%의 소결광을 일괄투입하고, 전체 취련시간 30~70%에는 전장입량에 대하여 생석회, 경소백운석, 소결광중에서 선택된 1종이상을 각각 0.1~0.3중량% 일괄투입함으로써 고탄소 영역에서 화학적으로 불안정한 인화합물을 슬래그에 안정하게 유지시켜 0.2중량%이하의 인과 황을 함유하는 용강제조를 위한 정련방법이다. 이 기술은 저린강을 제조하기 위하여 생석회 등의 부원료를 투입하는 것으로, 부산물을 이용하고 있지는 않다.Korean Patent Laid-Open Publication No. 2000-42501 is a conventional technique for effectively inducing the Tallinn reaction to manufacture low-lining steel. In this technology, 0.8 ~ 2.0% by weight of light dolomite is added to the converter leaving 15-40% of the slag of the previous operation, and the furnace is tilted to coat the slag on the furnace wall, followed by 1.5 ~ 2 weight of lime for protection of the furnace body. After adding%, load the scrap metal, and then the molten iron, and then the molten iron in the furnace is commenced by Songsan. At the same time, 0.5-1.5% by weight of quicklime and 0.3-1.5% by weight of sintered ore are added. At 30 ~ 70% of the blowing time, 0.1 ~ 0.3% by weight of one or more selected from quicklime, light small dolomite, and sintered ore was added to the total charge, and the chemically labile phosphorus compound in the high carbon region was stably maintained in the slag, 0.2 wt.%. Refining method for the production of molten steel containing less than% phosphorus and sulfur. In this technology, by-products such as quicklime are added to produce low-lining steel, and they do not use by-products.

본 발명은 부산물인 저염기도 슬래그를 전로에 투입하여 부원료의 투입량을 감소시키고 종점에서의 인과 황의 함량을 동등 또는 그 이하의 수준으로 용이하게 제어하여 저린강을 안정적으로 제조하기 위한 전로정련방법을 제공하는데 그 목적이 있다.The present invention provides a converter refining method for stably manufacturing low-lining steel by reducing the input amount of by-products by inputting slag as a byproduct into the converter, and easily controlling the content of phosphorus and sulfur at the end point to the same or lower level. Its purpose is to.

도 1은 취련시간에 따른 염기도의 변화를 나타내는 그래프1 is a graph showing the change in basicity according to the blowing time

상기 목적을 달성하기 위한 본 발명의 전로조업방법은, 전로취련 진행 5~15% 시점에서 CaO: 45.3~55.0중량%, SiO2: 44.9~50.4중량%를 함유하는 저염기도 래들슬래그를 전체 장입 용강 톤당 3~ 5Kg의 범위에서 투입하고, 다시 취련 진행 65~ 75% 시점에서 상기 저염기도 슬래그를 전체 장입 용강 톤당 3~ 5Kg의 범위에서 투입하는 것을 포함하여 구성된다.In the converter operation method of the present invention for achieving the above object, the low-basic degree ladle slag containing CaO: 45.3-55.0% by weight, SiO 2 : 44.9-50.4% by weight at the time of 5-15% conversion of the converter molten steel Including 3 to 5kg per ton, and at the 65-75% time point of the progress of the charging, the low base also comprises slag in the range of 3 to 5kg per ton of charged molten steel.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 저린강을 제조하기 위한 연구과정에서 슬래그의 재화율을 높일 수 있도록 염기도를 낮추고 인제어에 유리한 작용을 하는 CaO의 투입량을 높이면 저린강의 제조에 유리하다는 결론에 이르렀다. 그 방안을 찾던중에 타이어코드(tire cord)용 용강을 정련할 때 부산물로 발생되는 저염기도 슬래그에 주목하게 되었다. 이 저염기도 슬래그는 CaO: 45.3~55.0중량%, SiO2: 44.9~50.4중량%를 함유하는 것으로, 염기도가 낮을뿐더러 CaO의 함량도 상당히 높다. 아래 표 1에는 저염기도 슬래그와 다른 슬래그들의 성분을 표시하였다.The present inventors have concluded that lowering the basicity and increasing the amount of CaO, which has a beneficial effect on phosphorus control, in order to increase the slag recyclability in the research process for manufacturing low-lining steel, is advantageous for the production of low-lining steel. While searching for the solution, the low base material generated as a by-product when refining molten steel for tire cords was noticed. This low base slag contains 45.3-55.0 wt% of CaO and 44.9-50.4 wt% of SiO 2 , which is low in basicity and fairly high in CaO. Table 1 below shows the components of the low base slag and other slags.

슬래그 성분Slag composition 전로슬래그(중량%)Converter slag (% by weight) 일반래들 슬래그(중량%)General Ladle Slag (wt%) 저염기도 슬래그(중량%)Low Base Slag (% by weight) FeFe 12.5~27.012.5-27.0 0.1~4.00.1-4.0 0.7~1.50.7-1.5 CaOCaO 34.5~41.234.5 ~ 41.2 25.0~45.925.0-45.9 45.3~55.045.3-55.0 SiO2 SiO 2 11.5~15.511.5-15.5 24.9~42.424.9-42.4 44.9~50.444.9-50.4 MgOMgO 7.0~11.57.0-11.5 8.0~12.08.0-12.0 5.0~7.05.0 ~ 7.0 MnOMnO 3.8~4.23.8 ~ 4.2 1.0~1.51.0-1.5 1.0~1.51.0-1.5 Al2O3 Al 2 O 3 2.0~3.02.0 ~ 3.0 2.6~4.12.6 ~ 4.1 0.6~1.10.6 to 1.1 P2O5 P 2 O 5 1.8~2.21.8 ~ 2.2 1.5~3.01.5 ~ 3.0 0.02~0.040.02-0.04 SS 0.3~0.50.3 ~ 0.5 0.02~0.050.02-0.05 0.01~0.020.01 ~ 0.02 TiO2 TiO 2 0.07~0.190.07-0.19 0.07~0.120.07-0.12 0.02이하0.02 or less 구성Configuration 전로취련슬래그Converter Slag 전로슬래그+합금철 산화물전로슬래그+합금철산화물+생석회Converter Slag + Alloy Oxide Converter Slag + Alloy Iron Oxide + Quicklime A플럭스+생석회A flux + quicklime

표 1에서 알 수 있듯이, 저염기도 슬래그는 전로정련 슬래그 대비 슬래그의 재화성을 좌우하는 SiO2함유량이 높아 염기도가 낮고 또한 인제어시 필요한 CaO가 다량 함유되어 있다. 또한, 용강에 유해원소인 인(여기서는 산화물의 형태인 P2O5)과 황의 함량이 낮다. 표 1의 타이어코드용 용강을 정련할 때 부산물로 발생하는 저염기도 슬래그는 타이어코드용 용강을 전로정련후 출강하고 생성된 슬래그를 전량배재(skimming)를 실시한 후에 새로이 투입되는 생석회와 표 2의 A-플럭스에의해 조성되는 것이다.As can be seen from Table 1, low-basicity slag has a high basic content of SiO 2, which determines slag recyclability compared to converter refining slag, and has a low basicity and a large amount of CaO necessary for phosphorus control. In addition, the contents of phosphorus (here, oxide form P 2 O 5 ) and sulfur, which are harmful elements in molten steel, are low. Low-basicity slag generated as a by-product when refining the molten steel for tire cords in Table 1 is made by tapping the molten steel for tire cords after refining the converter and after newly exhausting the slag. It is created by flux.

투입량(kg)Input (kg) A-Flux의 성분표(중량%)A-Flux ingredient list (% by weight) 생석회quicklime 4kg/t-s4kg / t-s CaOCaO SiO2 SiO 2 Al2O3 Al 2 O 3 A-플럭스A-flux 7kg/t-s7kg / t-s ≥44≥44 53~5553-55 3%<3% <

본 발명에서는 상기한 타이어코드용 용강을 정련할 때 부산물로 발생되는 저염기도 슬래그(CaO: 45.3~55.0중량%, SiO2: 44.9~50.4중량%를)를 전로정련과정에서 투입하여 슬래그의 재화를 촉진화여 저린강을 제조하는데, 특징이 있다. 따라서, 본 발명에서는 고로로부터 생산되어 전로에 출강되는 용선이면 어느 것이나 무방하게 적용될 수 있으며, 일례로 중량%로, [C]:4.0~4.6%, [Si]:0.2~0.5%, [P]:0.7~1.0%, 질소농도:50~70ppm을 포함한 용선을 예로 들 수 있다.In the present invention, the low base degree slag (CaO: 45.3-55.0 wt%, SiO 2 : 44.9-50.4 wt%) generated as a by-product when refining the molten steel for tire cords is introduced into the converter refining process. It is characterized by the fact that it is promoted to produce low-lining steel. Therefore, in the present invention, any molten iron produced from the blast furnace can be applied to any converter, for example, by weight%, [C]: 4.0 to 4.6%, [Si]: 0.2 to 0.5%, [P] For example, molten iron including 0.7 to 1.0% and nitrogen concentration of 50 to 70 ppm.

본 발명에서는 저염기도 슬래그를 전로정련조업에 투입하는데, 이때 전로취련패턴이나 다른 부원료의 투입은 통상의 방법대로 행한다. 즉, 주원료인 용선과 고철을 전로에 장입하여 송산과 동시에 부원료를 투입하여 전로정련을 하면서, 취련초기와 중기에 저염기도의 래들슬래그를 투입한다. 이 과정에서 취련중기이후에 슬래그의 재화율이나 인의 함량을 고려하여 중기이후에 투입되는 부원료의 투입량을 조절한다.In the present invention, the low-basicity slag is introduced into the converter refining operation. At this time, the conversion of the converter blow pattern and other auxiliary materials is performed according to a conventional method. In other words, the main raw materials are molten iron and scrap metal into the converter, and at the same time, the subsidiary materials are added to the Songsan and refining the converter. In this process, the input amount of the subsidiary materials input after the middle stage is adjusted in consideration of the slag content and the phosphorus content after the middle stage of the blow.

먼저, 전로 취련 진행 초기에 저염기도의 래들 슬래그를 투입한다. 취련초기에는 미리 투입된 고융점의 생석회나 경소백운석이 다량 투입되어 있기 때문에 슬래그의 재화가 어려워 효과적인 탈린반응은 곤란하다. 따라서, 본 발명의 저염기도 슬래그를 투입하면 슬래그 속으로 균일하고 용이하게 분산되어 반응식 8과 같이 재화된 CaO,(P2O5)의 확보가 용이하여 슬래그 재화를 촉진시켜 용철중의 인이 효과적으로 슬래그층으로 쉽게 이동되어 탈린반응에 매우 유리하다. 취련초기 시점에 저염기도 슬래그의 투입은 취련진행 5~15%시점이 바람직한데, 이는 효과적인 탈린거동의 유도에 가장 바람직한 시점이기 때문이다.First, ladle slag of low base air is injected at the beginning of the converter blow process. In the early stage of blowing, high slag of quick-melting lime or light dolomite is added, so slag is difficult to produce, which makes it difficult to effectively remove tallin. Therefore, when the slag of the present invention is added to the slag, it is easily and uniformly dispersed into the slag, so as to secure CaO, (P 2 O 5 ), which is refined as in Scheme 8, to promote the slag goods, thereby effectively phosphorus in molten iron. It is easily transferred to the slag layer, which is very advantageous for the Tallinn reaction. Introducing low-basic slag at the initial stage of blowing is preferably 5-15% at the time of blowing, since it is the most desirable time to induce effective Tallinn behavior.

2[P] + 5[O]+ 4[CaO] = 4CaO,(P2O5)2 [P] + 5 [O] + 4 [CaO] = 4CaO, (P 2 O 5 )

취련진행 5~15%시점에 투입하는 래들슬래그의 투입량은 전체 장입 용강 톤당 3~ 5Kg의 범위가 바람직하다. 취련초기 저염기도 슬래그의 투입량이 3kg/t-s미만의 경우에는 슬래그의 저온화가 미흡하고 사전에 투입된 부원료의 재화를 촉진시키는 것이 불충분하여 용철중의 인을 효과적으로 제거하기 곤란하다. 반대로 용강톤당 5kg/t-s을 초과하면 저염기도 상태에서 슬래그 재화가 빨리 일어나 취련 초기 슬로핑을 발생할 우려가 있다.The amount of ladle slag injected at 5 to 15% of the blowing rate is preferably in the range of 3 to 5 kg per tonne of charged molten steel. In case of low slag loading at the initial stage of slag less than 3kg / t-s, it is difficult to lower the slag low temperature and promote the goods of pre-injected subsidiary materials, so it is difficult to remove phosphorus in molten iron effectively. On the contrary, if it exceeds 5kg / t-s per ton, slag goods may be generated quickly in low base condition, which may cause initial sloughing.

다음으로 취련 진행 65~75% 시점에서 저염기도의 래들 슬래그를 투입한다. 이는 취련시간 15~80%시점에 분할 투입되는 생석회 및 경소백운석의 재화를 촉진시켜 효율적인 탈린반응을 유도하기 위해서이다. 즉, 취련 60~70% 시점에 전로내의 산화반응은 탈탄반응이 막바지에 이르게 되고, 이에 따라 취련초기에 산화된 망간이 다시 환원하는 망간융기현상이 생겨 복린이 되는 시점이기 때문에 슬래그 조성이 매우 중요한 시점이므로, 이때 저염기도 슬래그를 재차 투입하여 미재화된 생석회의 재화를 촉진시키므로 슬래그중의 (P2O5)의 환원을 방지하기 위해서이다.Next, ladle slag with low baseline is injected at 65 ~ 75% of the drilling progress. This is to induce efficient delineation reaction by promoting the quicklime of quicklime and light dolomite, which are divided into 15 ~ 80% of the time of blowing. In other words, the slag composition is very important because the oxidation reaction in the converter at the 60-70% of the blows leads to the decarburization reaction, and thus the manganese ridge phenomenon occurs in which the oxidized manganese is reduced in the early stage of the blow. At this time, the low base is also to prevent the reduction of (P 2 O 5 ) in the slag since the slag is re-injected to promote the re-ization of unreacted quicklime.

이때 투입되는 슬래그는 전체 장입량에 대하여 약 3내지 5kg의 범위에서 투입하는 것이 바람직하다. 취련중기에 슬래그를 용강톤당 3kg미만으로 투입하면 슬래그의 저윰점화는 물론 이로 인해 탈린뿐만 아니라 탈망간의 유도가 미흡하여 용철중의 탈린효과가 미흡하다. 또한, 슬래그를 용강톤당 5kg를 초과하여 투입하면 슬래그층의 저융점화로 탈린반응에는 유리한 노내 슬래그의 점도가 갑자가 떨어져 발생가스의 배출이 늦어져 슬로핑을 유발할 수가 있다.At this time, the added slag is preferably added in the range of about 3 to 5kg with respect to the total amount charged. If slag is put in less than 3kg per ton during the drilling, the slag will not be ignited, and as a result, the delinquency effect of molten iron is insufficient due to insufficient induction of de-manganese as well as Tallinn. In addition, when the slag is added in excess of 5kg per ton of molten steel, the viscosity of the slag in the furnace which is advantageous for the delineation reaction due to the low melting point of the slag layer drops suddenly, and the emission of the generated gas may be delayed, thereby causing the slope.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

표 1의 저염기도 슬래그를 전로에 표 3와 같이 투입하여 전로조업을 행하였다. 취련패턴과 부원료의 사용은 통상의 방법대로 하고 저염기도 슬래그를 추가로 투입하였다.The low base degree slag of Table 1 was put into a converter as Table 3, and converter operation was performed. The use of the blowing pattern and the subsidiary materials was carried out in the usual way, and the low base also added slag.

구분division 1차투입Primary input 2차투입2nd input 노내반응상태In-house reaction state 종점인함량(%)End point content (%) 투입시점Input time 투입량input 투입시점Input time 투입량input 비교예1Comparative Example 1 취련전Before blow 1010 없음none -- 취련10%시점 스로핑Blowing 10% point of time 1818 비교예2Comparative Example 2 취련전Before blow 1010 5050 1010 ×× 2020 비교예3Comparative Example 3 취련전Before blow 55 없음none -- 1818 비교예4Comparative Example 4 취련전Before blow 55 5050 55 1818 비교예5Comparative Example 5 1010 1010 7070 1010 ×× 1717 비교예6Comparative Example 6 1010 77 7070 77 1919 비교예7Comparative Example 7 2020 1010 8080 1010 ×× 2020 비교예8Comparative Example 8 2020 55 8080 55 1717 비교예9Comparative Example 9 3030 1010 7070 1010 ×× 1616 비교예10Comparative Example 10 3030 55 7070 55 1616 발명예1Inventive Example 1 55 55 6565 55 1313 발명예2Inventive Example 2 55 33 6565 33 1414 발명예3Inventive Example 3 1010 55 7070 55 1212 발명예4Inventive Example 4 1010 33 7070 33 1212 발명예5Inventive Example 5 1515 55 7575 55 1313 발명예6Inventive Example 6 1515 33 7575 33 1515 발명예7Inventive Example 7 55 55 7575 33 1414 발명예8Inventive Example 8 55 55 7575 33 1313 발명예9Inventive Example 9 1010 33 6565 55 1414 발명예10Inventive Example 10 1010 55 6565 33 1414 ◎:양호 ○: 슬로핑 少 발생 △: 슬로핑 中발생 ×: 슬로핑 大 발생(Double-circle): Good ○: Slope sludge generate | occurence (triangle | delta): Slope generate | occur | produced x: Slope sludge large occurrence

표 3에서 나타난 바와 같이, 본 발명의 투입시점과 투입량을 만족하는 경우에는 노내반응상태도 양호하고 종점인함량도 낮출 수 있음을 알 수 있다.As shown in Table 3, it can be seen that when the input time and the input amount of the present invention are satisfied, the internal reaction state is also good and the end point content can be lowered.

[실시예 2]Example 2

100톤급 전로에서 전회조업한 총슬래그 8~12톤을 남기고 노벽 보호를 위하여 경소백운석 1.5톤을 넣고, 노체를 1~3회 경동시켜 노벽에 슬래그를 코팅한 다음, 장입측 노벽의 충격을 보호하기 위하여 생석회를 1.5톤 투입하고 전체 장입량의 10중량%의 고철과 표 4와 같은 성분을 갖는 용선 90중량%이상을 전로에 장입하였다.Leave 8-12 tons of total slag lastly operated in a 100-ton converter, add 1.5 tons of light dolomite to protect the walls, and apply slag to the furnace walls 1 to 3 times to protect the impact of the charging side walls. In order to charge 1.5 tons of quicklime, 10 wt% of the total amount of scrap iron and more than 90 wt% of molten iron having the components shown in Table 4 was charged to the converter.

화학조성(중량%)Chemical composition (% by weight) CC SiSi MnMn PP SS TiTi FeFe 4.4~4.6%4.4-4.6% 0.2~0.5%0.2-0.5% 0.2~0.5%0.2-0.5% 0.07~0.11%0.07-0.11% 0.003~0.023%0.003-0.023% 0.035~0.070%0.035-0.070% 나머지Remainder

노체를 2회 경동한 후 통상의로 취련패턴과 부원료를 투입하여 정련을 행하였다.이때, 정련조업에 사용된 각종 부원료 및 냉각재의 화학성분 조성을 정리하면 표 5와 같다.After stirring the furnace body twice, refining was carried out by adding a blowing pattern and a subsidiary material in a normal manner. Table 5 shows the chemical compositions of various subsidiary materials and cooling materials used in the refining operation.

구분division 화학조성(중량%)Chemical composition (% by weight) CaOCaO MgOMgO T.FeT.Fe MnOMnO SiO2 SiO 2 Al2O3 Al 2 O 3 TiO2 TiO 2 CaF2 CaF 2 CC 생석회quicklime 92.592.5 2.202.20 0.390.39 -- 0.920.92 0.300.30 -- -- -- 경소백운석Dolomite 56.1656.16 38.8038.80 0.600.60 -- 1.401.40 0.510.51 -- -- -- 형석fluorite -- -- -- -- 13.5413.54 -- -- 83.8683.86 -- 소결광Sintered ore 8.428.42 1.241.24 48.2948.29 0.420.42 4.544.54 1.561.56 0.170.17 -- 2.602.60

취련패턴과 부원료의 투입은 기존 투입량과 같이 취련이 개시되면 용선중 규소함량에 따라 생석회 500~1000kg 및 소결광 300~1000kg을 투입하고(열배합 계산에 의거 열원이 확보될 시), 취련시간 5~80%시점에서 표 1의 저염기도 슬래그 및 경소백운석을 각각 200~250kg씩 2~4회 분할 투입하였고, 소결광은 열원이 허용되는 범위 내에서 연동 투입하였다. 또, 취련시간 80~85% 시점에서 소결광을 300~800kg 정도 투입하였다.In case of blowing pattern and subsidiary materials, as in the case of injecting raw materials, 500 ~ 1000kg of quicklime and 300 ~ 1000kg of sintered ore are added according to the silicon content in molten iron (when the heat source is secured according to the heat blending calculation), and the blowing time is 5 ~ At 80%, the low-basicity slag and light dolomite of Table 1 were divided into 200 to 250 kg two to four times each. In addition, about 80-85% of the blowing time, about 300-800 kg of sintered ore was introduced.

탈규소, 탈인 용선등 용선중 규소농도가 0.25%이하인 용선의 전로정련시 종래에는 슬래그중 SiO2가 지나치게 낮아 취련중 슬래그의 유동성이 저하되어 철립이 비산되어 스프리팅(splitting) 현상이 심해 고가의 합금철인 Fe-Si(페로실리콘)을 노내에 0.1~0.3kg(중량%) 투입하여 슬래그 유동성을 확보, 생석회가 용이하게 재화되도록 하는 추가적인 원가상승의 부담이 발생되었다.In the converter refining of molten iron with a silicon concentration of 0.25% or less in molten iron, such as de-silicon and dephosphorized molten iron, SiO 2 is too low in slag, and the slag fluidity is lowered during the drilling. Fe-Si (ferrosilicon) of Fe-Si (ferrous silicon) in the furnace by adding 0.1 ~ 0.3kg (wt%) to secure the slag fluidity, the burden of additional cost to make the quicklime is easily generated.

그러나, 본 발명에서는 취련중 투입되는 슬래그중 SiO2가 34.9~42.4(중량%)로 높아용선중 함량이 0.25%이하의 저규소 영역 용선의 전로정련시에도 페로실리콘 투입없이 슬래그의 재화성이 확보되었다. 다만 저염기도 슬래그의 다량 투입시 슬래그의 재화성이 지나치게 높아져 슬로핑을 유발할 수 있으므로 용선중 규소함량이 0.5%이상에서는 투입하지 않음을 원칙으로 하였고, 당일의 노내반응 등을 판단하여 300~500kg을 취련시간 5~15%, 5~75% 사이에 300~500kg씩 2회 분활하여 투입하였다.However, in the present invention, SiO 2 is 34.9 to 42.4 (wt%) of slag injected during the blowing process to ensure the ashability of slag without introducing ferrosilicon even when remelting molten iron in the molten metal of 0.25% or less. It became. However, low-basicity does not add more than 0.5% of the silicon content in the molten iron in the slag because the slag's recyclability may be too high when the slag is injected in a large amount of slag. The feeding time was divided into 5 ~ 15%, 5 ~ 75% divided into 300 ~ 500kg twice.

취련중 전장입량 기준 저염기도 슬래그를 3.0~5.0kg/t-s분활해 투입한 것을 제외하고는 종래의 전로정련방법과 동일하게 정련을 행하였고, 종점에서의 용강성분을 채취하여 분석하였으며, 다음과 같은 조성을 보였다.Except that slag was divided into 3.0 ~ 5.0kg / ts of slag based on the total loading amount during the drilling, the refining was performed in the same way as the conventional converter refining method, and the molten steel component was collected and analyzed as follows. The composition was shown.

종점에서의 용강성분 및 조성(중량%)Molten steel component and composition (% by weight) at the end point 종래방법Conventional method 본 발명The present invention [C][C] [P][P] [S][S] [C][C] [P][P] [S][S] 0.040.04 0.0140.014 0.0150.015 0.040.04 0.0130.013 0.0140.014 0.050.05 0.0150.015 0.0120.012 0.050.05 0.0120.012 0.0120.012 0.060.06 0.0180.018 0.0150.015 0.060.06 0.0150.015 0.0130.013 0.070.07 0.0160.016 0.0140.014 0.070.07 0.0170.017 0.0140.014 0.080.08 0.0170.017 0.0130.013 0.080.08 0.0160.016 0.0120.012 0.090.09 0.0190.019 0.0140.014 0.090.09 0.0170.017 0.0130.013 1.01.0 0.0180.018 0.0130.013 1.01.0 0.0170.017 0.0130.013

슬래그 성분Slag composition 종래방법Conventional method 본 발명The present invention FeFe 12.5~27.012.5-27.0 12.0~25.012.0 ~ 25.0 CaOCaO 36.5~42.236.5 ~ 42.2 39.2~45.239.2-45.2 SiO2SiO2 11.5~15.511.5-15.5 11.8~16.511.8-16.5 MgOMgO 7.0~15.57.0-15.5 7.0~11.37.0-11.3 MnOMnO 3.8~4.23.8 ~ 4.2 3.8~4.23.8 ~ 4.2 Al2O3Al2O3 2.0~3.02.0 ~ 3.0 2.0~3.02.0 ~ 3.0 P2O5P2O5 1.8~2.21.8 ~ 2.2 1.6~2.01.6-2.0 SS 0.3~0.50.3 ~ 0.5 0.2~0.40.2-0.4 TiO2TiO2 0.07~0.190.07-0.19 0.07~0.180.07-0.18

슬래그 및 용강의 성분이 종래의 전로정련방법 대비 우수하며, 취련시간별로 생석회의 재화율도 우수하여 양호한 염기도를 나타내었다. 본 발명에 의하면 탄소농도와 무관하게 약 0.02중량%이하의 인과 황의 함량을 갖는 강을 안정적으로 정련할 수 있음을 나타내고 있다.The components of slag and molten steel are superior to the conventional converter refining method, and the recyclability rate of quicklime is also excellent according to the blowing time, showing good basicity. According to the present invention, it is possible to stably refine a steel having a phosphorus and sulfur content of about 0.02% by weight or less, regardless of carbon concentration.

상술한 바와 같이, 본 발명에 의하면 타이어코드용 강의 정련공정에서 발생하는 저염기도 슬래그를 재활용함으로써 전로정련 작업시 종점에서 인과 황의 함량을 0.02중량%이하, 탄소를 0.04~0.10중량%로 종래 보다 안정적으로 제어할 수 있고, 슬래그중 유용한 SiO2기여에 의해 0.25중량%이하인 용선의 초기슬래그 재화에도 우수하며, 초기 재화성 향상으로 매용제인 형석사용량을 50~100kg을 절감하여 원가 및 페기물관리 측면에서 매우 유용한 효과가 있음을 알 수 있다.As described above, according to the present invention, by recycling the slag of low-basicity generated in the refining process of the steel for tire cords, the content of phosphorus and sulfur is less than 0.02% by weight and 0.04 to 0.10% by weight of carbon at the end of the converter refining operation. Can be controlled, and excellent in initial slag goods of molten iron which is 0.25 wt% or less by the contribution of useful SiO 2 among slag, and it is very effective in cost and waste management by reducing 50 ~ 100kg of fluorspar use, which is a solvent It can be seen that there is a useful effect.

Claims (2)

전로조업방법에 있어서,In the converter operation method, 전로취련 진행 5~15% 시점에서 CaO: 45.3~55.0중량%, SiO2: 44.9~50.4중량%를 함유하는 저염기도 슬래그를 전체 장입용강 톤당 3~ 5Kg의 범위에서 투입하고, 다시 취련 진행 65~ 75% 시점에서 상기 저염기도 슬래그를 전체 장입용강 톤당 3~ 5Kg의 범위에서 투입하는 것을 포함하여 이루어짐을 특징으로 하는 탈린효율이 우수한 전로 정련방법.At the time of 5-15% of conversion, low-basicity slag containing CaO: 45.3-55.0% by weight and SiO 2 : 44.9-50.4% by weight is added in the range of 3-5Kg per ton of steel for charging, and again 65 ~ The method for refining converter with excellent delineation efficiency, characterized in that the low-basicity slag at a 75% time point is included in the range of 3 ~ 5Kg per ton of steel for full charge. 제 1항에 있어서, 상기 저염기도 슬래그는 타이어코드용 강재의 정련과정에서 발생하는 부산물로서, CaO: 45.3~55.0중량%, SiO2: 44.9~50.4중량%, Fe:0.7~1.5중량%, MgO:5.0~7.0중량%, MnO:1.0~1.5중량%, Al2O3:0.6~1.1중량%, P2O5:0.02~0.04중량%, S:0.01~0.02중량%, TiO2:0.02중량%이하로 조성되는 것을 특징으로 하는 탈린효율이 우수한 전로정련방법.The method of claim 1, wherein the low-basicity slag is a by-product generated during the refining process of the tire cord steel, CaO: 45.3 ~ 55.0 wt%, SiO 2 : 44.9 ~ 50.4 wt%, Fe: 0.7 ~ 1.5 wt%, MgO : 5.0 to 7.0% by weight, MnO: 1.0 to 1.5% by weight, Al 2 O 3 : 0.6 to 1.1% by weight, P 2 O 5 : 0.02 to 0.04% by weight, S: 0.01 to 0.02% by weight, TiO 2 : 0.02% by weight The converter refining method having excellent delineation efficiency, characterized in that the composition is less than%.
KR20010056646A 2001-09-14 2001-09-14 A Method for Refining Hot Metal in a Converter with High Efficiency of Dephosphurization KR100825554B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20010056646A KR100825554B1 (en) 2001-09-14 2001-09-14 A Method for Refining Hot Metal in a Converter with High Efficiency of Dephosphurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20010056646A KR100825554B1 (en) 2001-09-14 2001-09-14 A Method for Refining Hot Metal in a Converter with High Efficiency of Dephosphurization

Publications (2)

Publication Number Publication Date
KR20030023908A true KR20030023908A (en) 2003-03-26
KR100825554B1 KR100825554B1 (en) 2008-04-25

Family

ID=27723964

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20010056646A KR100825554B1 (en) 2001-09-14 2001-09-14 A Method for Refining Hot Metal in a Converter with High Efficiency of Dephosphurization

Country Status (1)

Country Link
KR (1) KR100825554B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705585B1 (en) * 2006-01-09 2007-04-09 삼성전자주식회사 Power saving apparatus and method in mobile access point
CN100350060C (en) * 2006-03-08 2007-11-21 许震 High-efficient metallurgical refiner and preparation thereof
KR101237487B1 (en) * 2010-10-07 2013-02-26 (주)유진에코씨엘 Method for dephosphorsing during pre-treating pig iron using waste materials of steel making process
CN103060513A (en) * 2011-10-24 2013-04-24 攀钢集团攀枝花钢铁研究院有限公司 Method for smelting tire cord steel and method for continuously casting tire cord steel
WO2016018050A1 (en) * 2014-07-29 2016-02-04 현대제철 주식회사 Slag ball, and molten iron dephosphorizing method and converter blow-refining method using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102851433B (en) * 2012-08-29 2014-06-25 攀钢集团攀枝花钢铁研究院有限公司 Method for controlling content of nitrogen in semi-steel smelted tire cord steel or hard wire steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841516A (en) * 1994-08-02 1996-02-13 Kobe Steel Ltd Pre-refining method
JP3531467B2 (en) * 1997-06-06 2004-05-31 Jfeスチール株式会社 Dephosphorization refining method of hot metal in converter
KR100402012B1 (en) * 1999-10-13 2003-10-17 주식회사 포스코 Method of refining molten steel to cast small section billet for hard steel wir rods
KR100584726B1 (en) * 1999-12-21 2006-05-30 주식회사 포스코 Method for manufacturing tundish flux for silicon killed steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705585B1 (en) * 2006-01-09 2007-04-09 삼성전자주식회사 Power saving apparatus and method in mobile access point
CN100350060C (en) * 2006-03-08 2007-11-21 许震 High-efficient metallurgical refiner and preparation thereof
KR101237487B1 (en) * 2010-10-07 2013-02-26 (주)유진에코씨엘 Method for dephosphorsing during pre-treating pig iron using waste materials of steel making process
CN103060513A (en) * 2011-10-24 2013-04-24 攀钢集团攀枝花钢铁研究院有限公司 Method for smelting tire cord steel and method for continuously casting tire cord steel
WO2016018050A1 (en) * 2014-07-29 2016-02-04 현대제철 주식회사 Slag ball, and molten iron dephosphorizing method and converter blow-refining method using same

Also Published As

Publication number Publication date
KR100825554B1 (en) 2008-04-25

Similar Documents

Publication Publication Date Title
GB2045281A (en) Multi stage conversion of crude iron to steel with minimised slag production
KR100825554B1 (en) A Method for Refining Hot Metal in a Converter with High Efficiency of Dephosphurization
KR20000042510A (en) Method for refining electric furnace
KR100398397B1 (en) A Method For Refining Using High Si Contained Hot Metal
JP2958848B2 (en) Hot metal dephosphorization method
KR20040042537A (en) Converter working method of phosphorous added low carbon steel using ladle slag
KR100423449B1 (en) A method for refining low nitrogen and low phosphurous molten steel in converter
JPH10237526A (en) Dephosphorization of hot metal
EP1457574A1 (en) Method for pretreatment of molten iron and method for refining
JP3486889B2 (en) Steelmaking method using two or more converters
KR100423452B1 (en) A method for desulfurizing hot metal in converter
KR100349160B1 (en) Converter refining method for manufacturing low carbon steel
JP3486886B2 (en) Steelmaking method using two or more converters
JP2001131625A (en) Dephosphorizing method of molten iron using converter
JP3776778B2 (en) Method of removing vanadium from molten iron
KR100423447B1 (en) A method for manufacturing steel using returned molten steel
KR101091954B1 (en) Method of manufacturing converter molten steel using dephosphorized molten metal
JP3297997B2 (en) Hot metal removal method
JPH1161221A (en) Method for melting low manganese steel
KR100406412B1 (en) Method for refining Molten steel after changing tap hole
JP2000212623A (en) Dephosphorization of molten iron low in lime
JPH10245616A (en) Method for extending service life of furnace body of converter
JPH116006A (en) Sub raw material charging method into converter
KR20020051961A (en) A method for refining high phosphurous steel in converter
KR20040013225A (en) Method for Refining Molten Steel Using Converter

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130404

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140421

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150421

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160421

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee