KR20040042537A - Converter working method of phosphorous added low carbon steel using ladle slag - Google Patents

Converter working method of phosphorous added low carbon steel using ladle slag Download PDF

Info

Publication number
KR20040042537A
KR20040042537A KR1020020070848A KR20020070848A KR20040042537A KR 20040042537 A KR20040042537 A KR 20040042537A KR 1020020070848 A KR1020020070848 A KR 1020020070848A KR 20020070848 A KR20020070848 A KR 20020070848A KR 20040042537 A KR20040042537 A KR 20040042537A
Authority
KR
South Korea
Prior art keywords
slag
ladle slag
ladle
carbon steel
molten steel
Prior art date
Application number
KR1020020070848A
Other languages
Korean (ko)
Other versions
KR100885118B1 (en
Inventor
유연섭
유철종
김해원
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR20020070848A priority Critical patent/KR100885118B1/en
Publication of KR20040042537A publication Critical patent/KR20040042537A/en
Application granted granted Critical
Publication of KR100885118B1 publication Critical patent/KR100885118B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE: A converter operation method of phosphorus added low carbon steel using ladle slag is provided to recycle ladle slag and reduce manufacturing cost by injecting ladle slag instead of expensive ferro alloy of Fe-P and removing lower oxides in slag using slag deoxidizer, thereby reducing phosphorus in slag into molten steel. CONSTITUTION: In a converter operation of phosphorus added low carbon steel containing 0.03 to 0.05 wt.% of phosphorus, the converter operation method of phosphorus added low carbon steel using ladle slag is characterized in that P in molten steel is increased by injecting fluorite and large quantities of quicklime as a slag preparation agent into molten steel and injecting waste ladle slag and a small quantity of quicklime instead of Fe-P into molten steel in the tapping step, and injecting slag deoxidizer into molten steel after completion of tapping, thereby reducing P2O5 in slag, wherein the ladle slag contains 6 to 8 wt.% of P2O5, wherein the ladle slag comprises 0.5 to 1.5 wt.% of T.Fe, 40 to 45 wt.% of CaO, 8 to 12 wt.% of SiO2, 15 to 25 wt.% of Al2O3, 6 to 8 wt.% of MgO, 3 to 5 wt.% of MnO, 6 to 8 wt.% of P2O5 and other inevitable impurities, wherein the ladle slag is injected into molten steel after it is generated in the steelmaking process, air cooled in a slag yard and transferred to a converter hopper so that the ladle slag is stored in the converter hopper, and wherein the slag deoxidizer comprises 55 to 65 wt.% of CaCO3 and 35 to 45 wt.% of Al.

Description

래들슬래그를 이용한 인첨가저탄소강의 전로 조업방법{Converter working method of phosphorous added low carbon steel using ladle slag}Converter working method of phosphorous added low carbon steel using ladle slag}

본 발명은 인첨가저탄소강의 용강 조업방법에 관한 것으로서, 더욱 상세하게는 인첨가저탄소강의 출강작업중에 Fe-P와 같은 고가 합금철의 대용으로 래들슬래그를 투입하고, 출강완료후 슬래그탈산제를 이용하여 슬래그중의 저급산화물을 제거하여 슬래그중의 인을 용강중으로 환원시킴으로써, 래들슬래그를 재활용하고 원가절감을 꾀할 수 있는 래들슬래그를 이용한 인첨가저탄소강의 용강 조업방법에 관한 것이다.The present invention relates to a molten steel operation method of a low carbon steel, more specifically, during the tapping operation of the low carbon steel, the ladle slag is added in place of high-priced alloy iron such as Fe-P, and after the completion of the tapping, By removing the lower oxide in the slag to reduce the phosphorus in the slag to molten steel, the present invention relates to a molten steel operation method of the additive low carbon steel using a ladle slag that can recycle the ladle slag and reduce the cost.

일반적으로, 전로는 고철과 용선을 장입하고 상부 랜스를 통해 산소를 취입하여 용선중의 불순물을 태우거나 슬래그중에 존재하도록 하여 용강을 제조하는 공정이다.In general, a converter is a process of manufacturing molten steel by charging scrap iron and molten iron and blowing oxygen through an upper lance to burn impurities in molten iron or to exist in slag.

따라서, 전로 공정에서는 수백가지의 강종을 생산하게 되고, 그 중 수요가의 요구에 맞는 강을 제조하기 위해서는 여러가지 합금철 및 특수합금철을 투입하게 된다.Therefore, in the converter process, hundreds of steel grades are produced, and various alloy iron and special alloy iron are put in order to manufacture the steel that meets the demand of the demand.

특히, 인첨가저탄소강의 경우에는 도 1에 도시된 바와 같이, 취련이 개시된(S10) 후 생석회(CaO)와 형석(CaF2)을 평량하고(S12), 취련이 완료되면(S14) 출강을 개시하고(S16), 출강작업중에 합금철로 생석회, 형석 및 Fe-P를 투입한다(S18~S20). 그리고, 출강이 완료되면(S22) 후공정인 탈가스공정으로 래들을 이용하여 이송하게 된다(S24).In particular, in addition, if a low-carbon Steel is as shown in Figure 1, when blowing the basis weight of the disclosed (S10) after the calcium oxide (CaO) and calcium fluoride (CaF 2) and (S12), blowing is completed (S14) starts the tapping (S16), quicklime, fluorspar and Fe-P are added to the alloy steel during the tapping operation (S18 to S20). When the tapping is completed (S22), the ladle is transferred to the degassing process, which is a later step (S24).

이와 같은 공정에서 고가 특수합금철인 Fe-P가 투입되어 제조원가를 상승시키고 있는 실정이다.In such a process, Fe-P, an expensive special alloy iron, is injected to increase the manufacturing cost.

한편, 통상적으로 인첨가강 제조공정에서 래들슬래그를 조제하기 위해서 생석회와 형석 및 Fe-P가 투입되고, 용강중의 인과 슬래그중의 인이 일정하게 되려고 하는 분배비에 의하여 래들슬래그중에 P2O5의 량이 증가하게 된다. 특히, 중량%로 0.08~0.12의 인첨가강의 경우에는 P2O5가 6~8%까지 상승하게 된다.On the other hand, in order to prepare ladle slag in the process of manufacturing additive-added steel, quicklime, fluorspar, and Fe-P are added, and the distribution ratio of P 2 O 5 in the ladle slag is adjusted by the distribution ratio of phosphorus in molten steel and phosphorus in slag. The amount will increase. In particular, in the case of added steel of 0.08 to 0.12 by weight, P 2 O 5 is increased to 6 to 8%.

이와 같은 래들슬래그의 조성물은 후공정인 진공탈가스공정을 거친 후에는T.Fe:0.5~1.5%, CaO:40~45%, SiO2:8~12%, Al2O3:15~25%, MgO:6~8%, MnO:3~5%, P2O5:6~8%, 그리고 기타 불가피한 불순물의 조성을 가지게 된다.The composition of the ladle slag is after the vacuum degassing step T.Fe: 0.5 ~ 1.5%, CaO: 40 ~ 45%, SiO 2 : 8 ~ 12%, Al 2 O 3 : 15 ~ 25 %, MgO: 6-8%, MnO: 3-5%, P 2 O 5 : 6-8%, and other unavoidable impurities.

이렇게 만들어진 래들슬래그는 도 2에 도시된 플로우와 같이 주조완료후(S30), 슬래그포트에 배재되어(S32) 슬래그야드장으로 옮겨져 배재되고(S34), 물로 냉각된(S36) 후, 덤프를 이용하여 폐기물처리장으로 이송되어(S38) 제철폐기물로서 버려지게 된다(S40).The ladle slag thus made is cast as shown in FIG. 2 after completion of casting (S30), and is disposed in the slag port (S32), transferred to the slag yard, and is discharged (S34), and cooled with water (S36), and then using a dump. It is transferred to the waste treatment plant (S38) is to be discarded as steel waste (S40).

따라서, 래들슬래그에 포함되어 있는 고가의 인과 재활용이 가능한 CaO가 폐기되고 있는 실정이다.Therefore, the expensive phosphorus and the recyclable CaO contained in the ladle slag is discarded.

본 발명은 상기와 같은 제반 사항을 감안하여 창안된 것으로서, 래들슬래그를 재활용하여 출강작업중에 생석회, 형석 및 Fe-P의 대용으로 투입하고, 출강완료후 슬래그탈산제를 이용하여 슬래그중의 저급산화물을 제거하면서 슬래그중의 인을 용강중으로 환원시킴으로써, 래들슬래그를 재활용하고 원가절감을 꾀할 수 있는 래들슬래그를 이용한 인첨가저탄소강의 용강 조업방법을 제공하는데 그 목적이 있다.The present invention was made in view of the above-mentioned matters, and recycled ladle slag to substitute for quicklime, fluorspar and Fe-P during the tapping operation, and after finishing the tapping, lower oxides in the slag were used by using the slag phthalate. It is an object of the present invention to provide a molten steel operation method of added low carbon steel using ladle slag that can recycle ladle slag and reduce cost by reducing phosphorus in slag into molten steel while removing the slag.

본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시에 의해 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 첨부된 특허청구범위에 나타낸 수단 및 조합에 의해 실현될 수 있다.Other objects and advantages of the invention will be described below and will be appreciated by the practice of the invention. Furthermore, the objects and advantages of the present invention can be realized by means and combinations indicated in the appended claims.

도 1은 종래의 인첨가저탄소강의 전로 조업공정에 대한 흐름도,1 is a flowchart of a converter operation process of a conventional low-carbon additive steel,

도 2는 종래의 래들슬래그의 처리에 대한 흐름도,2 is a flowchart for processing a conventional ladle slag;

도 3은 본 발명에 따른 래들슬래그를 이용한 인첨가저탄소강의 용강 조업방법을 보여주는 흐름도,3 is a flow chart showing a molten steel operation method of the added low carbon steel using a ladle slag according to the present invention,

도 4는 본 발명에 따라 슬래그탈산제 투입시의 반응을 설명하는 모식도,Figure 4 is a schematic diagram illustrating the reaction when the slag phthalate is added in accordance with the present invention,

도 5는 본 발명에 따라 폐기물인 래들슬래그를 투입하고 탈산제를 투입하였을 때의 T.Fe와 P의 관계를 나타내는 그래프이다.5 is a graph showing the relationship between T.Fe and P when a ladle slag as a waste and a deoxidizer are added according to the present invention.

상기와 같은 목적을 달성하기 위한 본 발명의 래들슬래그를 이용한 인첨가저탄소강의 용강 조업방법은, 중량%로 0.03~0.05% 인함량의 인첨가저탄소강에 대한 전로 조업에 있어서, 출강단계에서 슬래그조제제로 투입되는 형석과 다량의 생석회 및 Fe-P를 대신하여 폐기물인 래들슬래그와 소량의 생석회를 투입하고, 출강완료후에 슬래그탈산제를 투입하여 슬래그중의 P2O5를 환원시켜 용강중의 P를 상승시키는 것을 특징으로 한다.The molten steel operation method of the added low carbon steel using the ladle slag of the present invention for achieving the above object, in the converter operation for the added low carbon steel of 0.03 to 0.05% phosphorus content by weight, slag preparation in the tapping step Instead of zero fluorspar and a large amount of quicklime and Fe-P, waste ladle slag and a small amount of quicklime are added, and after completion of tapping, slag phthalate is added to reduce P 2 O 5 in slag to raise P in molten steel. It is characterized by.

바람직하게, 상기 래들슬래그는 중량%로, P2O5가 6~8% 범위의 것이며, 특히 T.Fe:0.5~1.5%, CaO:40~45%, SiO2:8~12%, Al2O3:15~25%, MgO:6~8%, MnO:3~5%, P2O5:6~8%, 그리고 기타 불가피한 불순물의 조성이다.Preferably, the ladle slag by weight, P 2 O 5 is in the range of 6-8%, in particular T.Fe: 0.5 ~ 1.5%, CaO: 40 ~ 45%, SiO 2 : 8-12%, Al 2 O 3 : 15-25%, MgO: 6-8%, MnO: 3-5%, P 2 O 5 : 6-8%, and other inevitable impurities.

그리고 바람직하게, 상기 래들슬래그는 제강공정에서 발생되어 슬래그야드장에서 공냉된 후, 전로지상호퍼에 수송, 저장된 후, 투입되게 된다.And, preferably, the ladle slag is generated in the steelmaking process, air-cooled in the slag yard, transported to the converter ground hopper, stored, and then introduced.

나아가 바람직하게, 상기 슬래그탈산제는 CaCO3:55~65%, Al:35~45%의 조성이다.Further preferably, the slagtal acid agent is a composition of CaCO 3 : 55-65%, Al: 35-45%.

이하, 첨부된 도면을 참조로 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명에 따른 래들슬래그를 이용한 인첨가저탄소강의 용강 조업방법을 보여주는 흐름도이다.Figure 3 is a flow chart showing a molten steel operation method of the added low carbon steel using a ladle slag according to the present invention.

이를 참조하면, T.Fe:0.5~1.5%, CaO:40~45%, SiO2:8~12%, Al2O3:15~25%, MgO:6~8%, MnO:3~5%, P2O5:6~8%, 그리고 기타 불가피한 불순물의 조성을 가지는 래들슬래그가 발생되면(S70), 슬래그야드장에서 공냉된(S72) 후, 전로노상호퍼로 수송되어 저장되게 된다(S74).Referring to this, T.Fe: 0.5 to 1.5%, CaO: 40 to 45%, SiO 2 : 8 to 12%, Al 2 O 3 : 15 to 25%, MgO: 6 to 8%, MnO: 3 to 5 When ladle slag having a composition of%, P 2 O 5 : 6 to 8%, and other unavoidable impurities is generated (S70), it is air-cooled in the slag yard (S72), and then transported and stored in the converter hopper (S74). ).

이와 같은 래들슬래그는 출강단계(S54~S60)에서 투입되게 되며(S58), 미탈산용강과 만나게 되면 슬래그 조성은 다음과 같이 변하게 되는데, 이것은 종점산소에 영향을 받는다.Such ladle slag is introduced in the tapping step (S54 ~ S60) (S58), when the slag composition is met with molten molten steel is changed as follows, which is affected by the end point oxygen.

즉, T.Fe:10~18%, CaO:40~45%, SiO2: 8~12%, Al2O3:5~8%, MgO:6~8%, MnO:0.5~1.5%, P2O5:6~8%, 그리고 기타 불가피한 분순물을 가진 슬래그가 된다.That is, T.Fe: 10-18%, CaO: 40-45%, SiO 2 : 8-12%, Al 2 O 3 : 5-8%, MgO: 6-8%, MnO: 0.5-1.5%, P 2 O 5 : 6-8%, and other unavoidable slag.

이 조성중 P2O5를 1~1.5%로 저감시키기 위해서는 조성중 FeO, MnO, P2O5와 같은 산화물을 저감시켜야 하는데, 이것은 다음과 같은 산화물 안정순위에 따라 산소와 반응하면서 일어나게 된다.In order to reduce P 2 O 5 in this composition to 1-1.5%, oxides such as FeO, MnO, and P 2 O 5 must be reduced in the composition, which occurs while reacting with oxygen according to the following oxide stability order.

산화물 안정순위 : CaO > Al2O3> SiO2> MnO > FeO > P2O5 Oxide stability ranking: CaO> Al 2 O 3 > SiO 2 >MnO>FeO> P 2 O 5

출강이 완료되고(S60), 슬래그탈산제 투입 단계(S62)에서 슬래그탈산제는 다음과 같은 반응을 하게 된다.The tapping is completed (S60), the slag phthalate in the slag oxidizer input step (S62) is subjected to the following reaction.

CaCO3= CaO + CO2 CaCO 3 = CaO + CO 2

이와 같이 반응하여 슬래그의 계면적을 넓히면서 도 4에 나타낸 바와 같이 산화물 불안정순위에 따라 다음과 같이 반응하게 된다.In this way, as shown in Figure 4 while increasing the interfacial area of the slag is reacted as follows according to the oxide instability rank.

3FeO + 2Al = 3Fe + Al2O3 3FeO + 2Al = 3Fe + Al 2 O 3

3MnO + 2Al = 3Mn + Al2O3 3MnO + 2Al = 3Mn + Al 2 O 3

3P2O5+ 10Al = 6P + 5Al2O3 3P 2 O 5 + 10Al = 6P + 5Al 2 O 3

이와 같이 반응하면서 Al은 안정된 Al2O3를 만들게 되고, 산소와 분리된 Fe와 P가 다음과 같이 반응하면서 용강중으로 침강하게 된다.As described above, Al forms stable Al 2 O 3 , and Fe and P separated from oxygen react with each other and settle into molten steel as follows.

Fe + P = FePFe + P = FeP

전술한 반응식 1, 2, 3에 의하여 슬래그의 조성은 다음과 같이 변화하게 된다.According to the above-described reaction schemes 1, 2, 3, the composition of the slag is changed as follows.

즉, T.Fe:1~1.5%, CaO:40~45%, SiO2:6~8%, Al2O3:15~25%, MgO:6~8%, MnO:0.5~1.5%, P2O5:1~1.5%, 그리고 기타 불가피한 불순물로 조성된 슬래그로 변하게 된다.That is, T.Fe: 1 to 1.5%, CaO: 40 to 45%, SiO 2 : 6 to 8%, Al 2 O 3 : 15 to 25%, MgO: 6 to 8%, MnO: 0.5 to 1.5%, P 2 O 5 : 1 to 1.5%, and other unavoidable impurities.

이와 같은 슬래그조성의 변화에 의하여 슬래그중의 인(P)이 용강중으로 침강되면서 용강중의 인이 상승하게 되는데, 이는 다음 수학식에 의한다.As a result of the change in the slag composition, the phosphorus (P) in the slag is settled in the molten steel and the phosphorus in the molten steel rises, which is obtained by the following equation.

인 상승량 = P2O5중 P함량 × {출강중 투입된 래들슬래그중 P2O5함량 ― 탈산후 래들슬래그중 P2O5함량} × 래들슬래그량 ÷ 용강량An increase amount of P = P 2 O 5 content of the ladle slag {× injected tapping of P 2 O 5 content-de San ladle P 2 O 5 content in the slag ladle slag amount ÷} × amount of the molten steel

상기 계산식에 의하면 래들슬래그 1,000㎏당 0.009%의 인이 상승하게 된다.According to the above formula, phosphorus of 0.009% per 1,000 kg of ladle slag is increased.

이하, 본 발명의 실시예를 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail.

<실시예><Example>

전로에서의 출강량은 275TON으로 한다.The exit from the converter shall be 275 tons.

다음 표 1에 중량%로 0.03~0.05%의 인첨가저탄소강의 조성을 나타낸다.Table 1 shows the composition of the added low carbon steel of 0.03 to 0.05% by weight.

CC MnMn SiSi PP SS AlAl 0.002~0.0050.002 ~ 0.005 0.65~0.750.65-0.75 0.2이하0.2 or less 0.03~0.050.03-0.05 0.015이하0.015 or less 0.02~0.060.02-0.06

다음 표 2에 전로 정련이 완료된 후의 용강 조성을 나타낸다.Table 2 shows the molten steel composition after the converter refining is completed.

CC MnMn PP SS 0.2~0.60.2-0.6 0.07~0.120.07-0.12 0.015~0.220.015 ~ 0.22 0.007~0.0150.007 ~ 0.015

이와 같은 전로 종점조성은 종점산소에 따라 달라지게 된다.Such converter endpoint composition will depend on the endpoint oxygen.

다음 표 3은 참고로 종래에 있어서 합금철 투입량을 나타낸 것이다.Table 3 shows the input amount of ferroalloy in the prior art for reference.

합금철 투입량(㎏)Ferroalloy Input (㎏) CaOCaO CaF2 CaF 2 Fe-PFe-P 1,0001,000 150150 250250

여기서, Fe-P중의 P함량은 0.22~0.27%이고, 실수율은 85%이다.Here, P content in Fe-P is 0.22 to 0.27%, and a real rate is 85%.

다음으로, 표 4에 본 발명에 따라 투입되는 생석회와 래들슬래그의 양을 나타낸다.Next, Table 4 shows the amounts of quicklime and ladle slag added according to the present invention.

CaOCaO 래들슬래그Ladle slag 200㎏200 kg 2,000㎏2,000 kg

본 발명에서 생석회(CaO)를 200㎏정도 투입하는 이유는 래들슬래그중의 CaO량이 40~45%로 부족하기 때문이며, 형석(CaF2)을 투입하지 않는 이유는 래들슬래그중의 Al이 15~25%로 슬래그의 융점을 떨어뜨려 그 투입이 필요하지 않기 때문이다.In the present invention, the reason for adding about 200 kg of quicklime (CaO) is that the amount of CaO in the ladle slag is 40 to 45%, and the reason for not adding the fluorite (CaF 2 ) is 15 to 25 Al in the ladle slag. This is because the melting point of slag is dropped to%, so that the input is not necessary.

다음 표 5는 종점산소에 따라 투입되는 슬래그 탈산제량을 나타낸 것이다.Table 5 shows the amount of slag deoxidizer injected according to the end point oxygen.

종점산소(PPM)End point oxygen (PPM) 탄산제 투입량(㎏)Carbonate input amount (㎏) 600 미만Less than 600 650650 600~700600-700 750750 700~800700-800 850850 800~900800-900 950950 900~1,000900-1,000 1,0501,050 1,000 초과More than 1,000 1,2001,200

이와 같이 탈산제량을 투입하는 이유는 다음과 같다.The reason for adding the amount of deoxidizer is as follows.

슬래그중의 P2O5를 1~1.5%로 탈산시 저급산화물인 FeO, MnO가 같이 탈산되기 때문에 다음과 같은 계산에 의해서 탈산제를 규제한 것이다.Since the phosphorus deoxidized during the low-grade oxide in slag P 2 O 5 to 1 ~ 1.5% FeO, MnO deoxygenation as would the regulation of a deoxidizer by the following calculation.

1. T.Fe중의 산소량 계산1.Calculation of oxygen in T.Fe

1-1) FeO중 산소함유량은 O/FeO = 16/72 = 22%1-1) Oxygen content in FeO is O / FeO = 16/72 = 22%

1-2) 슬래그중 T.Fe량(T.Fe중 FeO의 함량이 90% 이상)1-2) T.Fe content in slag (FeO content in T.Fe is over 90%)

1-3) FeO중 산소함유량 × 슬래그중 T.Fe량 = T.Fe중의 산소1-3) Oxygen content in FeO × T.Fe content in slag = Oxygen in T.Fe

2. MnO중의 산소량 계산2. Calculation of oxygen in MnO

2-1) MnO중 산소함유량은 O/MnO = 16/71 = 22.5%2-1) Oxygen content in MnO is O / MnO = 16/71 = 22.5%

2-2) 슬래그중 MnO량2-2) MnO content in slag

2-3) MnO중 산소함유량 × 슬래그중 MnO량 = MnO중의 산소2-3) Oxygen content in MnO × MnO content in slag = Oxygen in MnO

3. P2O5중의 산소량 계산3.Calculation of oxygen in P 2 O 5

3-1) P2O5중 산소함유량은 5O/P2O5= 56.3%3-1) the oxygen content of the P 2 O 5 is 5O / P 2 O 5 = 56.3 %

3-2) 슬래그중 P2O53-2) P 2 O 5 content of slag

3-3) P2O5중 산소함유량 × 슬래그중 P2O5량 = P2O5중 산소3-3) Oxygen content in P 2 O 5 × P 2 O 5 content in slag = Oxygen in P 2 O 5

이와 같이 계산되는데, 이때 출강중 투입되는 래들슬래그중의 MnO와 P2O5량은 거의 고정되어 있고 종점산소의 변화에 따라 T.Fe가 변화하게 되어 상기와 같이 슬래그 탈산제량을 한정하였다.The amount of MnO and P 2 O 5 in the ladle slag added during tapping is almost fixed, and T. Fe is changed according to the change of the end point oxygen, thus limiting the amount of slag deoxidizer as described above.

다음 표 6은 종래에 있어서 Fe-P를 투입하였을 경우 용강중 인량에 대해서 나타낸 것이다.Table 6 shows the amount of phosphorus in molten steel when Fe-P is added in the prior art.

구분division 종점 P량(%)End point P amount (%) Fe-P 투입량(㎏)Fe-P input amount (㎏) 출강후 P량(%)P amount after leaving (%) 종래예 1Conventional Example 1 0.0180.018 250250 0.0370.037 종래예 2Conventional Example 2 0.0150.015 250250 0.0340.034 종래예 3Conventional Example 3 0.0220.022 250250 0.0410.041 종래예 4Conventional Example 4 0.0210.021 250250 0.0400.040 종래예 5Conventional Example 5 0.0190.019 250250 0.0380.038 종래예 6Conventional Example 6 0.0190.019 250250 0.0380.038 종래예 7Conventional Example 7 0.0170.017 250250 0.0360.036 종래예 8Conventional Example 8 0.0190.019 250250 0.0380.038 종래예 9Conventional Example 9 0.0180.018 250250 0.0370.037 종래예 10Conventional Example 10 0.0220.022 250250 0.0410.041

다음 표 7은 본 발명에 따라 출강중에 래들슬래그를 투입하고, 출강후 탈산제(CaCO3:55~65%, Al:35~45%)를 투입하였을 경우에 대하여 용강중 인량에 대해서 나타낸 것이다.Table 7 shows the ladle slag during tapping in accordance with the present invention, and the amount of molten steel in the molten steel when the deoxidizer (CaCO 3 : 55-65%, Al: 35-45%) was added after tapping.

구분division 종점산소(PPM)End point oxygen (PPM) 종점 P량(%)End point P amount (%) 탈산제투입량(㎏)Deoxidant input amount (㎏) 탈산후P량(%)P amount after deoxidation (%) P2O5량(%)P 2 O 5 (%) 실시예 1Example 1 545545 0.0200.020 650650 0.0380.038 1.21.2 실시예 2Example 2 496496 0.0200.020 600600 0.0370.037 1.51.5 실시예 3Example 3 563563 0.0180.018 650650 0.0350.035 1.41.4 실시예 4Example 4 652652 0.0180.018 750750 0.0360.036 1.01.0 실시예 5Example 5 482482 0.0220.022 600600 0.0390.039 1.21.2 실시예 6Example 6 752752 0.0190.019 850850 0.0330.033 1.81.8 실시예 7Example 7 812812 0.0160.016 950950 0.0330.033 1.21.2 실시예 8Example 8 655655 0.0170.017 750750 0.0340.034 1.31.3 실시예 9Example 9 623623 0.0180.018 750750 0.0350.035 1.11.1 실시예 10Example 10 612612 0.0190.019 750750 0.0370.037 1.01.0 실시예 11Example 11 645645 0.0210.021 750750 0.0390.039 1.01.0 실시예 12Example 12 789789 0.0180.018 900900 0.0360.036 1.21.2 실시예 13Example 13 912912 0.0150.015 1,0501,050 0.0320.032 1.41.4 실시예 14Example 14 812812 0.0150.015 950950 0.0320.032 1.51.5 실시예 15Example 15 562562 0.0200.020 600600 0.0380.038 1.31.3 실시예 16Example 16 542542 0.0200.020 600600 0.0370.037 1.21.2 실시예 17Example 17 635635 0.0190.019 750750 0.0370.037 1.21.2 실시예 18Example 18 702702 0.0170.017 750750 0.0350.035 1.21.2 실시예 19Example 19 502502 0.0180.018 650650 0.0360.036 1.11.1 실시예 20Example 20 489489 0.0220.022 600600 0.0400.040 0.80.8

상기 표 6의 종래예와 비교하여 표 7의 실시예에서 볼 수 있듯이 폐기물인 래들슬래그를 투입하고, 탈산제를 투입하였을 때 도 5에 도시한 바와 같이 종래의 Fe-P를 투입한 효과를 얻을 수 있었다.Compared with the conventional example of Table 6, when the ladle slag as waste and the deoxidizer are added as shown in the examples of Table 7, the effect of adding the conventional Fe-P can be obtained as shown in FIG. there was.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해, 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As mentioned above, although this invention was demonstrated by the limited embodiment and drawing, this invention is not limited by this, The person of ordinary skill in the art to which this invention belongs, Of course, various modifications and variations are possible within the scope of the claims to be described below.

본 발명에 따르면, 제강공정에서 발생하는 래들슬래그를 이용하여 인첨가저탄소강을 제조함으로써, 폐기물인 래들슬래그를 재활용하고, 슬래그조제를 위해서 투입되는 생석회 및 형석을 절감하고, 또한 용강중 인을 상승시키기 위해서 투입되는 고가의 Fe-P를 절감하며, 폐기물을 활용한 작업이 적용되어 환경친화적인 제강조업기업의 개발에 이바지하는 등의 효과를 얻을 수 있다.According to the present invention, by manufacturing the low-added low carbon steel using the ladle slag generated in the steelmaking process, to recycle the ladle slag as waste, to reduce the quicklime and fluorspar injected for slag preparation, and to raise the phosphorus in the molten steel In order to reduce the expensive Fe-P input for the purpose, it is possible to achieve the effect of contributing to the development of environment-friendly steelmaking industry by applying the work using waste.

Claims (5)

중량%로 0.03~0.05% 인함량의 인첨가저탄소강에 대한 전로 조업에 있어서,In converter operation for the added low carbon steel having a phosphorus content of 0.03 to 0.05% by weight, 출강단계에서 슬래그조제제로 투입되는 형석과 다량의 생석회 및 Fe-P를 대신하여 폐기물인 래들슬래그와 소량의 생석회를 투입하고, 출강완료후에 슬래그탈산제를 투입하여 슬래그중의 P2O5를 환원시켜 용강중의 P를 상승시키는 것을 특징으로 하는 래들슬래그를 이용한 인첨가저탄소강의 전로 조업방법.Instead of fluorspar, a large amount of quicklime, and Fe-P, which are used as slag preparations in the tapping step, waste ladle slag and a small amount of quicklime are added.After finishing the tapping, slag phthalate is added to reduce the P 2 O 5 in the slag. A converter operation method of an added low carbon steel using a ladle slag characterized by raising P in molten steel. 제 1항에 있어서,The method of claim 1, 상기 래들슬래그는 중량%로, P2O5가 6~8% 범위의 것인 것을 특징으로 하는 래들슬래그를 이용한 인첨가저탄소강의 전로 조업방법.Wherein the ladle slag by weight, P 2 O 5 is a converter operation method of the low-carbon steel added by using a ladle slag, characterized in that in the range of 6-8%. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 래들슬래그는 T.Fe:0.5~1.5%, CaO:40~45%, SiO2:8~12%, Al2O3:15~25%, MgO:6~8%, MnO:3~5%, P2O5:6~8%, 그리고 기타 불가피한 불순물의 조성인 것을 특징으로 하는 래들슬래그를 이용한 인첨가저탄소강의 전로 조업방법.The ladle slag is T.Fe: 0.5 to 1.5%, CaO: 40 to 45%, SiO 2 : 8 to 12%, Al 2 O 3 : 15 to 25%, MgO: 6 to 8%, MnO: 3 to 5 %, P 2 O 5 : 6 to 8%, and the method of operating a converter of a low-carbon steel added by using a ladle slag, characterized in that the composition of other unavoidable impurities. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 래들슬래그는 제강공정에서 발생되어 슬래그야드장에서 공냉된 후, 전로지상호퍼에 수송, 저장된 후, 투입되게 되는 것을 특징으로 하는 래들슬래그를 이용한 인첨가저탄소강의 전로 조업방법.The ladle slag is generated in the steelmaking process is air-cooled in the slag yard, transported and stored in the converter ground hopper, the converter operation method of the added low carbon steel using a ladle slag characterized in that the input. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 슬래그탈산제는 CaCO3:55~65%, Al:35~45%의 조성인 것을 특징으로 하는 래들슬래그를 이용한 인첨가저탄소강의 전로 조업방법.The slag phthalic acid is CaCO 3 : 55 ~ 65%, Al: 35 ~ 45% composition, characterized in that the composition of the converter operation of the low-carbon steel added with a ladle slag.
KR20020070848A 2002-11-14 2002-11-14 Converter working method of phosphorous added low carbon steel using ladle slag KR100885118B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20020070848A KR100885118B1 (en) 2002-11-14 2002-11-14 Converter working method of phosphorous added low carbon steel using ladle slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20020070848A KR100885118B1 (en) 2002-11-14 2002-11-14 Converter working method of phosphorous added low carbon steel using ladle slag

Publications (2)

Publication Number Publication Date
KR20040042537A true KR20040042537A (en) 2004-05-20
KR100885118B1 KR100885118B1 (en) 2009-02-20

Family

ID=37339311

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20020070848A KR100885118B1 (en) 2002-11-14 2002-11-14 Converter working method of phosphorous added low carbon steel using ladle slag

Country Status (1)

Country Link
KR (1) KR100885118B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412570B1 (en) * 2012-07-31 2014-06-26 현대제철 주식회사 Refining method of high strength steel
CN109929965A (en) * 2019-03-25 2019-06-25 西安建筑科技大学 A method of the dusting and reuse of control steelmaking refining slag
CN115820972A (en) * 2022-11-22 2023-03-21 山东钢铁股份有限公司 Method for reducing blowing loss of scrap steel in converter steelmaking process
CN116174456A (en) * 2023-03-13 2023-05-30 新源县渣宝环保技术有限公司 Method for cooperatively treating fly ash in Yili region by utilizing Yili converter slag

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101344903B1 (en) 2012-03-30 2013-12-26 현대제철 주식회사 Method for controlling composition of ladle slag
CN104726643B (en) * 2015-03-23 2020-12-18 北京璞域环保科技有限公司 Process for applying calcium carbonate carbon spheres to LF (ladle furnace) steelmaking
CN105755200B (en) * 2016-03-09 2018-09-18 首钢京唐钢铁联合有限责任公司 Ladle top slag method for remanufacturing
CN106947844A (en) * 2017-05-03 2017-07-14 攀钢集团西昌钢钒有限公司 A kind of Slag modification method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259115A (en) * 1988-04-08 1989-10-16 Kawasaki Steel Corp Converter blowing method in which pretreated molten iron refining slag is reused
JPH08104911A (en) * 1994-10-03 1996-04-23 Nippon Steel Corp Method for melting phosphorus-containing steel
KR970011845B1 (en) * 1995-07-21 1997-07-18 대우전자 주식회사 Structure for assembling the power brush cover on a vacuum cleaner
KR100431859B1 (en) * 2000-10-23 2004-05-20 주식회사 포스코 A method for manufacturing high phosphorous steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412570B1 (en) * 2012-07-31 2014-06-26 현대제철 주식회사 Refining method of high strength steel
CN109929965A (en) * 2019-03-25 2019-06-25 西安建筑科技大学 A method of the dusting and reuse of control steelmaking refining slag
CN115820972A (en) * 2022-11-22 2023-03-21 山东钢铁股份有限公司 Method for reducing blowing loss of scrap steel in converter steelmaking process
CN116174456A (en) * 2023-03-13 2023-05-30 新源县渣宝环保技术有限公司 Method for cooperatively treating fly ash in Yili region by utilizing Yili converter slag
CN116174456B (en) * 2023-03-13 2023-11-24 新源县渣宝环保技术有限公司 Method for cooperatively treating fly ash in Yili region by utilizing Yili converter slag

Also Published As

Publication number Publication date
KR100885118B1 (en) 2009-02-20

Similar Documents

Publication Publication Date Title
KR100885118B1 (en) Converter working method of phosphorous added low carbon steel using ladle slag
KR101252644B1 (en) Flux and Method for refining molten steel by Converter
CA1079072A (en) Arc steelmaking
JP2000160233A (en) Method for desulfurize-refining stainless steel
JP2958848B2 (en) Hot metal dephosphorization method
KR100825554B1 (en) A Method for Refining Hot Metal in a Converter with High Efficiency of Dephosphurization
JPS6358203B2 (en)
JPH10102119A (en) Production of sulfur free-cutting steel resulfurized carbon steel
JPH10140227A (en) Production of high alloy steel by joining two molten steels
JPH10237526A (en) Dephosphorization of hot metal
JP4461495B2 (en) Dephosphorization method of hot metal
JP3486889B2 (en) Steelmaking method using two or more converters
JP3580096B2 (en) Melting method of low Mn steel
JP3924059B2 (en) Steelmaking method using multiple converters
US5028388A (en) Method for producing chromium containing molten iron with low sulphur concentration
US20110167960A1 (en) Flux for refining steel of low nitrogen, low oxygen and low sulfur
JPH07179920A (en) Production of molten steel
CN115652184B (en) Method for smelting ultra-pure ferrite stainless steel by using slag melting agent in AOD converter
KR970004987B1 (en) Slag making material
KR100406411B1 (en) Method of deoxidize molten steel for hard steel wire rods at steel tapping
US4065297A (en) Process for dephosphorizing molten pig iron
KR950013281B1 (en) Deposphorization of ingot steel
JP3297997B2 (en) Hot metal removal method
SU1035079A1 (en) Manganese slag
KR20020051961A (en) A method for refining high phosphurous steel in converter

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130215

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140213

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150210

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160204

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170214

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180214

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee