KR20030016731A - Sintered flux for submerged arc welding - Google Patents

Sintered flux for submerged arc welding Download PDF

Info

Publication number
KR20030016731A
KR20030016731A KR1020010050435A KR20010050435A KR20030016731A KR 20030016731 A KR20030016731 A KR 20030016731A KR 1020010050435 A KR1020010050435 A KR 1020010050435A KR 20010050435 A KR20010050435 A KR 20010050435A KR 20030016731 A KR20030016731 A KR 20030016731A
Authority
KR
South Korea
Prior art keywords
flux
welding
less
weight
particles
Prior art date
Application number
KR1020010050435A
Other languages
Korean (ko)
Other versions
KR100427545B1 (en
Inventor
안연식
Original Assignee
고려용접봉 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려용접봉 주식회사 filed Critical 고려용접봉 주식회사
Priority to KR10-2001-0050435A priority Critical patent/KR100427545B1/en
Publication of KR20030016731A publication Critical patent/KR20030016731A/en
Application granted granted Critical
Publication of KR100427545B1 publication Critical patent/KR100427545B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3602Carbonates, basic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • B23K35/3605Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3607Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/361Alumina or aluminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE: A sintered flux for submerged arc welding is provided to secure superior welding workability as well as good toughness at low temperature in downward fillet welding, butt welding and multi-layer welding of heavy and thick plates. CONSTITUTION: The sintered flux for submerged arc welding comprises 3.0 to 11.5 wt.% of CaO, 18.5 to 37.0 wt.% of MgO, 15.5 to 25.5 wt.% of SiO2, 13.5 to 30.0 wt.% of Al2O3, 4.5 to 14.5 wt.% of CaF2, 3.0 to 12.5 wt.% of MnO0.5 to 2.5 wt.% of CO2 as a converted value in carbonate ore, 0.05 to 4.5 wt.% of the sum of one or more constituents selected from Na2O, K2O and Li2O and a balance of metal powder and alloy iron on the basis of the total weight of the flux, wherein basicity (B) of the flux represented as in the following expression 1 satisfies 0.95 to 2.10, and particle size distribution of the flux comprises 5 wt.% or less of particles having diameter of 1.7 mm or more, 15 to 30 wt.% of particles having diameter that is 1.00 mm or more and less than 1.7 mm, 65 to 85 wt.% of particles having diameter that is 0.30 mm or more and less than 1.00 mm, and 10 wt.% or less of particles having diameter less than 0.3 mm on the basis of the total weight of the flux.

Description

서브머지드 아크 용접용 소결형 플럭스{Sintered flux for submerged arc welding}Sintered flux for submerged arc welding

본 발명은 서브머지드 아크 용접용 소결형 플럭스에 관한 것으로서, 더욱 상세하게는 철골, 조선, 교량 등에 주로 사용되는 연강 및 50㎏f/㎟급 중·후판의 1전극 혹은 2전극 이상의 단층 및 다층용접에 범용적으로 사용할 수 있는 서브머지드 아크 용접용 소결형 플럭스에 관한 것이다.The present invention relates to a sintered flux for submerged arc welding, and more particularly, to a single layer and a multilayer of one electrode or two electrodes of mild steel and 50 kgf / mm 2 medium and thick plates mainly used in steel, shipbuilding, bridges, etc. The present invention relates to a sintered flux for submerged arc welding that can be used universally for welding.

일반적으로 서브머지드 아크 용접시 -60℃ 정도의 저온에서 용접부의 양호한 인성을 확보하기 위하여, 금속분말상 탈산제를 사용하여 용착금속내 가스성분(산소 등)을 제거하는 방법이나, 합금분말을 이용하여 용착금속 내의 합금성분을 조정함으로써 용접부의 금속조직을 미세화하는 방법 등이 사용되어 왔다.In general, in order to ensure good toughness of the welded part at a low temperature of about -60 ° C. during submerged arc welding, a method of removing gaseous components (oxygen, etc.) in the weld metal using a metal powder deoxidizer, or by using an alloy powder The method of refine | miniaturizing the metal structure of a weld part, etc. by adjusting the alloy component in a weld metal, etc. have been used.

그러나 각종구조물이 대형화되고 구조물의 소재로 연강 및 50㎏f/㎟급 고장력강(탄소강)의 중·후판이 많이 사용됨에 따라, 용접부에 대한 저온에서의 인성뿐만 아니라 용접작업성을 확보하는 것이 더욱 중요하게 되었다.However, as various structures are enlarged and heavy and heavy plates of mild steel and 50kgf / mm2 high tensile steel (carbon steel) are used as materials of the structure, it is more important to secure welding workability as well as toughness at low temperature for the welded part. Was done.

본 발명은 상기와 같은 필요성을 충족시키기 위한 것으로서, 저온에서 우수한 인성을 확보하고 용접작업성이 향상된 서브머지드 아크 용접용 소결형 플럭스를 제공함에 그 목적이 있다.The present invention is to meet the needs as described above, it is an object to provide a sintered flux for submerged arc welding to ensure excellent toughness at low temperatures and improved welding workability.

도 1은 하향 필렛 용접부의 개선형상을,1 is an improved shape of the downward fillet welds,

도 2는 맞대기 용접부의 개선형상을,2 is an improved shape of the butt welded portion,

도 3은 다층 용접부의 개선형상을 나타낸 단면도이다.3 is a cross-sectional view showing an improved shape of a multilayer welded part.

본 발명의 상기와 같은 목적은 서브머지드 아크 용접용 플럭스로서, 플럭스 전중량에 대하여, 3.0 ~ 11.5중량%의 CaO, 18.5 ~ 37.0중량%의 MgO, 15.5 ~ 25.5중량%의 SiO2, 13.5 ~ 30.0중량%의 Al2O3, 4.5 ~ 14.5중량%의 CaF2, 3.0 ~ 12.5중량%의 MnO, 탄산염광물에서의 환산치로 0.5 ~ 2.5중량%의 CO2, Na2O, K2O, Li2O중에서 선택된 1성분 또는 1성분 이상의 합이 0.05 ~ 4.5중량%이며 잔부로서의 금속분말 및 합금철로 이루어지고,The above object of the present invention is a flux for submerged arc welding, with respect to the total weight of the flux, 3.0 to 11.5% by weight of CaO, 18.5 to 37.0% by weight of MgO, 15.5 to 25.5% by weight of SiO 2 , 13.5 to 30.0 wt% Al 2 O 3 , 4.5-14.5 wt% CaF 2 , 3.0-12.5 wt% MnO, 0.5-2.5 wt% CO 2 , Na 2 O, K 2 O, Li in terms of carbonate mineral One component or the sum of one or more components selected from 2 O is 0.05 to 4.5% by weight, and consists of metal powder and ferroalloy as remainder,

하기의 식 1로 표시되는 플럭스의 염기도(B) 값이 0.95 ~ 2.10을 만족하며,The basicity (B) value of the flux represented by Equation 1 below satisfies 0.95 to 2.10,

.....식1 ..... Equation 1

플럭스의 입도분포로서 입경이 플럭스 전중량에 대하여, 1.70㎜이상인 입자가 5중량%이하, 1.70㎜미만 1.00㎜이상인 입자가 15 ~ 30중량%, 1.00㎜미만 0.30㎜이상인 입자가 65 ~85중량%, 0.3㎜미만인 입자가 10중량% 이하임을 특징으로하는 서브머지드 아크 용접용 플럭스에 의해 달성된다.As the particle size distribution of the flux, 5 to 30% by weight of particles having a particle size of 1.70 mm or more, 15 to 30% by weight of particles less than 1.70 mm and 1.00 mm or more, and 65 to 85% by weight of particles less than 1.00 mm and 0.30 mm or more , Submerged arc welding fluxes characterized by less than 10% by weight of particles less than 0.3 mm.

본 발명에서는 산소량 저감에 유용한 성분들을 플럭스 중에 다량 함유시켜 인성에 악영향을 미치는 산소 등의 가스 성분을 용융금속으로부터 용융슬래그로의 이동을 촉진시킴으로써, 저온에서의 인성을 향상시켰다. 또한 플럭스에 함유되는 금속분말상의 탈산제 및 합금제의 최적 함량 범위와 플럭스 입도 분포를 최적화함으로써, 양호한 인성과 함께 우수한 용접작업성을 확보하였다.In the present invention, by containing a large amount of components useful for reducing the amount of oxygen in the flux to promote the movement of gas components, such as oxygen, which adversely affects the toughness from the molten metal to the molten slag, toughness at low temperatures is improved. In addition, by optimizing the optimum content range and flux particle size distribution of the deoxidizer and alloying agent on the metal powder contained in the flux, good weldability and excellent welding workability were secured.

이하, 본 발명의 상기와 같은 구성에 관하여 설명하며, 특별한 언급이 없는 한 %는 서브머지드 아크 용접용 소결형 플럭스(이하,플럭스) 전체에 대한 중량%를 의미한다.Hereinafter, the configuration as described above of the present invention, and unless otherwise specified,% means the weight% of the total sintered flux (hereinafter, flux) for submerged arc welding.

CaO는 용융슬래그의 염기도, 점성 및 응고점을 결정하고, 용융금속 중의 산소를 저감시키는 기능을 하는 첨가제로서, 함량이 3.0 중량% 미만이면 그 효과를 기대할 수 없으며, 11.5 중량%를 초과하면, 용접작업성 및 비드외관이 악화되거나 포크마크(pock mark)가 발생하게 된다. 따라서 플럭스 중의 CaO 함량은 3.0 ~ 11.5 중량%로 하는 것이 바람직하다.CaO is an additive that determines the basicity, viscosity, and freezing point of molten slag and reduces oxygen in molten metal. When the content is less than 3.0 wt%, the effect cannot be expected. Sex and bead appearance may deteriorate or a fork mark may occur. Therefore, the CaO content in the flux is preferably set to 3.0 to 11.5% by weight.

MgO는 CaO와 같이 염기도를 높게 하여 용융금속 중의 산소 등과 같은 기체성분이 용융슬래그 내부로 이동하는 것을 촉진시켜주는 성분으로서, 용착금속의 가스성분함량을 낮게하는 작용과 함께 인성을 향상시키는 기능이 있다. 그러나 MgO의함량이 18.5 중량% 미만이면 그 효과가 미미하며, 37.0 중량%를 초과하면 슬래그 박리성이 매우 나빠지며 플럭스의 일부가 타서 소실되는 현상이 발생되거나 포크마크가 발생하게 된다. 그러므로 플럭스 중의 MgO 함량은 18.5 ~37.0 중량%로 하는 것이 바람직하다.MgO is a component that promotes the movement of gaseous components such as oxygen in molten metal to the inside of molten slag by increasing the basicity like CaO, and has the function of lowering the gas content of the deposited metal and improving toughness. . However, if the MgO content is less than 18.5% by weight, the effect is insignificant. If the content of MgO is more than 37.0% by weight, the slag peelability is very poor and a part of the flux is burnt out and a fork mark is generated. Therefore, the MgO content in the flux is preferably 18.5 to 37.0% by weight.

SiO2는 대표적인 산성성분으로서 염기도를 조절하는 역할을 하며, 슬래그 형성제로 작용하여 용접후 슬래그 박리성을 좋게 한다. SiO2가 15.5 중량% 미만이면 슬래그 박리성이 현저히 저하되며 비드 폭 및 좌우형상이 불균일해지는 문제점이 발생된다. 또한 SiO2의 함량이 25.5 중량%을 초과하면 용융슬래그의 점성이 높아져서 비드의 퍼짐성이 악화되는 문제점이 있게 된다. 따라서 플럭스 중의 SiO2함량은 15.5 ~ 25.5 중량%로 하는 것이 바람직하다.SiO 2 serves as a representative acidic component to control basicity, and acts as a slag forming agent to improve slag peelability after welding. If the SiO 2 is less than 15.5% by weight, slag peelability is remarkably lowered, resulting in a problem in that the bead width and the left and right shapes are uneven. In addition, when the content of SiO 2 exceeds 25.5% by weight, the viscosity of the molten slag is increased, there is a problem that the spreading of the beads deteriorate. Therefore, the SiO 2 content in the flux is preferably 15.5 to 25.5 wt%.

Al2O3는 염기도, 용융슬래그의 점성 및 융점을 조절하는 기능과 함께 고전류 용접시 아크 집중성 및 안정성을 향상시켜 용접작업성을 좋게 한다. 만일 Al2O3가 13.5 중량% 미만이면 점성 및 융점이 낮아지고 아크가 불안하여 용접비드의 폭과 결이 불균일하게 되며 언더컷이 발생된다. 또한 Al2O3가 30.0 중량%를 초과하면 점성이 지나치게 높아져서 볼록한 비드가 나타나게 될 뿐만 아니라 응고온도가 상승되어 사행비드가 발생된다. 따라서 플럭스 중에 함유되는 Al2O3의 함량은 13.5 ~ 30.0 중량%인 것이 바람직하다.Al 2 O 3 improves arc concentration and stability during high current welding along with the ability to adjust the viscosity and melting point of basicity and molten slag to improve welding workability. If Al 2 O 3 is less than 13.5% by weight, the viscosity and melting point will be low, the arc will be unstable and the width and grain of the weld bead will be uneven and undercut will occur. In addition, when Al 2 O 3 exceeds 30.0% by weight, the viscosity becomes too high and convex beads appear, as well as the solidification temperature is increased to generate meandering beads. Therefore, the content of Al 2 O 3 contained in the flux is preferably 13.5 to 30.0% by weight.

CaF2는 매우 강한 염기성 성분으로서 아크 안정성을 향상시켜 고전류용접시 비드를 평활하게하는 기능이 있으며, 또한 용접시 불소가스를 발생시켜 수증기 분압을 감소시켜 용착금속내의 저수소화 효과가 있다. 만일 CaF2가 4.5 중량% 미만이면 이러한 효과가 현저히 감소하게 될 뿐만 아니라 포크마크가 발생되고 슬래그박리성이 나빠진다. 한편 CaF2의 함량이 14.5 중량%를 초과하면 아크가 불안하여 자주 끊어지는 현상이 나타나 작업성을 해치게 되며 유동성이 증가하여 사행비드 또는 언더컷 등의 결함이 나타나게 된다. 따라서 플럭스 중의 CaF2함량은 4.5 ~ 14.5 중량%로 한다.CaF 2 is a very strong basic component that improves arc stability and smoothes beads during high current welding. Also, CaF 2 generates fluorine gas during welding to reduce the partial pressure of water vapor, thereby reducing the hydrogenation in the deposited metal. If CaF 2 is less than 4.5% by weight, this effect is not only significantly reduced, but also a fork mark is generated and the slag peeling is poor. On the other hand, when the content of CaF 2 exceeds 14.5% by weight, the arc is unstable and frequently breaks up, which impairs workability and increases fluidity, resulting in defects such as meandering beads or undercuts. Therefore, the CaF 2 content in the flux is 4.5 to 14.5% by weight.

MnO는 용접 중 비드 외관을 양호하게 하며, 용착금속으로 Mn합금원소로 고용되어 강도 및 인성을 향상시키는 역할을 한다. 이러한 MnO가 3.0 중량% 미만이면 이러한 효과가 거의 나타나지 않으며, 12.5 중량%를 초과하면 용융슬래그의 유동성이 지나치게 높아져 비드외관을 해치게 된다. 그러므로 플럭스 중의 MnO 함량은 3.0 ~ 12.5 중량%로 하는 것이 바람직하다.MnO improves the appearance of beads during welding, and is used as a deposited metal as an Mn alloy element to improve strength and toughness. If the MnO is less than 3.0% by weight, such an effect is hardly exhibited. If the MnO is more than 12.5% by weight, the flowability of the molten slag is too high to damage the bead appearance. Therefore, the MnO content in the flux is preferably set to 3.0 to 12.5% by weight.

알칼리금속의 산화물 즉, Na2O, K2O, Li2O는 용접중 아크 안정성을 높여 용접작업성을 향상시키며, 아크 집중성을 확보하여 용입깊이가 향상되는 효과가 있다. 이러한 Na2O, K2O, Li2O 중에서 선택된 1성분 또는 1 이상 성분의 합이 0.05 중량% 미만이면 그 효과가 적고, 4.5 중량%를 초과하면 내흡습성이 악화되어 용접시 피트, 포크마크의 결함을 발생시킨다. 따라서 플럭스 중의 Na2O, K2O, Li2O 중에서 선택된 1성분 또는 1 이상 성분의 합은 0.05 ~ 4.5 중량%로 하는 것이 바람직하다.Oxides of alkali metals, that is, Na 2 O, K 2 O, Li 2 O improves the arc stability during welding to improve the workability, it is effective to ensure the depth of penetration by ensuring the arc concentration. If the sum of one or more components selected from Na 2 O, K 2 O, Li 2 O is less than 0.05% by weight, the effect is less. If the content exceeds 4.5% by weight, the hygroscopicity is deteriorated. Causes a defect. Therefore, the sum of one component or one or more components selected from Na 2 O, K 2 O, and Li 2 O in the flux is preferably 0.05 to 4.5% by weight.

CO2는 방해석, 탄산망간, 마그네사이트 등의 탄산염광물로부터 얻어지며, 용접시 분해되어 CO2가스를 발생시킴으로써 용착금속 외부의 질소, 산소 및 수증기 분압을 감소시켜 용융금속으로의 침입을 방지하여 인성을 향상시키는 효과가 있다. CO2의 함량(탄산염 광물에서의 환산치)이 0.5 중량% 미만이면 인성이 향상되는 효과가 미미하며, 2.5 중량%를 초과하면 비드 표면이 열화되고 지나친 가스발생으로 인해 포크마크 등의 결함이 발생된다. 따라서 플럭스 중에 CO2의 함량은 탄산염 광물에서의 환산치로 할때 0.5 ~ 2.5 중량%로 하는 것이 바람직하다.CO 2 is obtained from carbonate minerals such as calcite, manganese carbonate, and magnesite, and decomposes during welding to generate CO 2 gas, which reduces the partial pressure of nitrogen, oxygen and water vapor from the deposited metal, and prevents penetration into molten metal. There is an effect to improve. If the content of CO 2 (equivalent in carbonate minerals) is less than 0.5% by weight, the effect of improving toughness is insignificant. If it exceeds 2.5% by weight, the bead surface deteriorates and excessive gas is generated, such as a fork mark. do. Therefore, the content of CO 2 in the flux is preferably 0.5 to 2.5% by weight in terms of carbonate minerals.

플럭스는 이상에서 설명한 성분들을 구성 성분으로 하며, 잔부는 금속분말 및 합금철로 이루어진다. 합금철에 포함되어 있는 Si, Mn은 탈산제 및 합금원소로 작용하여 용접시 용착효율을 향상시키고 용접부의 산소는 감소시키며 기계적 성질을 향상시키는 효과가 있다.Flux uses the above-mentioned components as a component, and remainder consists of metal powder and ferroalloy. Si and Mn contained in ferroalloy act as deoxidizer and alloying element to improve welding efficiency during welding, reduce oxygen in welding area and improve mechanical properties.

한편, 플럭스는 용접작업성 향상을 위하여 상기와 같은 함량 이외에 하기의 식 1로 표기되는 염기도(B)가 0.95 ~ 2.10임을 만족해야 한다.On the other hand, the flux should satisfy the basicity (B) represented by the following formula 1 in addition to the above content to improve the weldability is 0.95 ~ 2.10.

.....식 1 ..... Equation 1

만일 염기도(B)가 0.95 미만이면 염기도가 지나치게 감소하여 용융금속 내부의 산소 등과 같은 가스성분이 충분히 제거되지 못하여 인성향상의 효과가 거의 없으며, 2.10을 초과하면 가스 성분의 제거는 양호하나 용접후 슬래그 박리성이 악화되어 용접작업성을 해치게 된다. 따라서 인성 및 용접작업성을 모두 확보하는 최적의 염기도(B)의 값은 0.95 ~ 2.10으로 하는 것이 바람직하다.If the basicity (B) is less than 0.95, the basicity is excessively reduced and gas components such as oxygen in the molten metal are not sufficiently removed, so that the effect of toughness is hardly improved. If it exceeds 2.10, the gas component is good but the slag after welding is good. Peelability deteriorates and damages weldability. Therefore, the optimum basicity (B) value for securing both toughness and weldability is preferably 0.95 to 2.10.

이상에서 설명한 조성을 갖는 플럭스는, 구성 성분들을 균일하게 혼합·입자화시킨 후 1차로 200 ~ 500℃에서 30 ~ 60 분정도 가열·건조된다. 건조된 플럭스를 냉각하고 다시 700 ~ 800℃로 소결하면 소정의 입자 크기를 갖는 플럭스로 제조된다. 이 과정은 통상의 서브머지드 아크 용접용 소결형 플럭스를 제조하는 방법을 따른 것이다.The flux having the composition described above is heated and dried for about 30 to 60 minutes at 200 to 500 ° C firstly after the components are uniformly mixed and granulated. After cooling the dried flux and sintering again to 700 ~ 800 ℃ to produce a flux having a predetermined particle size. This process follows the conventional method for producing sintered flux for submerged arc welding.

제조가 완료된 플럭스의 입도분포를 적절히 조절하면 용접시 양호한 비드 형상이 확보되고 언더컷이 방지되는 효과가 얻어진다. 또한 적절한 입도분포를 유지함으로써 용접중에 발생하는 가스 성분이 외부로 효과적으로 방출되게 하고 대기중의 성분이 용융금속으로 침입하는 것도 방지할 수 있는 이점이 있다.Properly adjusting the particle size distribution of the completed flux ensures good bead shape during welding and prevents undercutting. In addition, by maintaining an appropriate particle size distribution, there is an advantage that the gas component generated during welding can be effectively released to the outside, and also prevent the invasion of components in the atmosphere into the molten metal.

상기와 같은 조성 및 염기도를 갖는 플럭스에 적합한 입도분포로는 플럭스 전중량에 대하여 플럭스 입경이 1.70㎜이상인 입자가 5 중량%, 1.70㎜미만 1.00㎜이상인 입자가 15 ~ 30 중량%, 1.00㎜미만 0.30㎜이상인 입자가 65 ~ 85 중량% 및 0.30㎜미만인 입자가 10 중량% 이하로 하는 것이 바람직하다.Suitable particle size distributions for fluxes having such composition and basicity include 5% by weight of particles having a flux particle diameter of 1.70 mm or more, 15 to 30% by weight of particles having a particle size of 1.70 mm or more, and less than 1.00 mm or less 0.30 to the total weight of the flux. It is preferable to set it as 65 to 85 weight% of the particle | grains which are mm or more, and 10 weight% or less of the particle | grains less than 0.30 mm.

입경이 1.70㎜이상인 입자가 5 중량%를 초과하면 양면일층용접과 같은 대입열용접시 용융슬래그가 토출(吐出)되어 비드외관이 불균일하게 되고, 플럭스 사이의 공간이 커져 대기중의 성분이 용융금속으로 침입하게 되므로 용접부의 기계적 성질을 떨어뜨린다.If the particles having a particle size of 1.70 mm or more exceed 5% by weight, the molten slag is discharged during the high heat input welding such as double-sided single layer welding, resulting in uneven appearance of the beads, and the space between the fluxes increases, so that the components in the atmosphere are molten metal. As it penetrates into, it degrades the mechanical properties of the weld.

또한, 1.70㎜미만 1.00㎜이상인 입자가 15 중량% 미만이 되면 하향 필렛용접의 저전류 용접시 비드의 폭이 균일하지 못하고, 언더컷이 발생된다. 반면, 1.70㎜미만 1.00㎜이상인 입자가 30 중량%를 초과하면 양면일층용접의 대입열 용접시 비드가 볼록하게 되기 쉽다.In addition, when the particle size of less than 1.70 mm and less than 1.00 mm is less than 15% by weight, the width of the beads is not uniform during the low current welding of the downward fillet welding, and undercut occurs. On the other hand, when the particle size of less than 1.70 mm and more than 1.00 mm exceeds 30% by weight, the beads tend to be convex during the high heat input welding of the double-sided single layer welding.

1.00㎜미만 0.30㎜이상인 입자가 65 중량% 미만이면 양면일층용접의 대입열 용접시 비드가 볼록하게 되거나 비드결이 거칠게 나타나게 되며, 1.00㎜미만 0.30㎜이상인 입자가 85 중량% 이상이 되면 하향 필렛용접의 저전류 용접부에서 비드폭이 불균일하고 언더컷이 발생하기 쉽게 된다.When less than 65% by weight of particles less than 1.00 mm and less than 0.30 mm, beads are convex or rough in the heat input welding of double-sided single layer welding, and when the particles less than 0.30 mm and less than 1.00 mm are 85% by weight or more, downward fillet welding The bead width is non-uniform in the low current welds of and undercut is likely to occur.

또한, 0.3㎜미만인 입자가 플럭스 전중량의 10 중량%를 초과하면 용접중 발생되는 가스성분들의 방출이 이루어지지 못하고, 플럭스 및 용융슬래그가 토출되어 용접작업성을 해치게 된다.In addition, when particles smaller than 0.3 mm exceed 10 wt% of the total weight of the flux, gas components generated during welding cannot be released, and flux and molten slag are discharged to impair welding workability.

따라서 플럭스의 입도분포로는 플럭스 전중량에 대하여 플럭스 입경이 1.70㎜이상인 입자가 5 중량%, 1.70㎜미만 1.00㎜이상인 입자가 15 ~ 30 중량%, 1.00㎜미만 0.30㎜이상인 입자가 65 ~ 85 중량% 및 0.30㎜미만인 입자가 10 중량% 이하로 하는 것이 바람직하다.Therefore, the particle size distribution of the flux is 5% by weight of particles having a flux particle diameter of 1.70 mm or more, 15 to 30% by weight of particles less than 1.70 mm and 1.00 mm or more, and 65 to 85 weight of particles less than 1.00 mm and 0.30 mm to the total weight of the flux. It is preferable to make the particle | grain less than% and 0.30 mm into 10 weight% or less.

다음으로는 실시예를 통하여 본 발명에 따른 구성을 갖는 플럭스의 저온 인성 및 용접 작업성에 대한 특성을 보다 구체화하나 본 발명이 하기의 실시예에 한정되는 것은 아니다.Next, the characteristics of the low temperature toughness and welding workability of the flux having the configuration according to the present invention will be more specifically described through Examples, but the present invention is not limited to the following Examples.

상기와 같은 조성 및 입도분포를 만족하는 플럭스의 저온 인성 및 용접 작업성을 평가하기 위하여 표 1과 표 2의 조성 및 입도분포대로 각각의 플럭스를 제조하였다. 표 1의 조성을 갖는 플럭스를 300℃에서 30분 동안 1차 건조시킨 후, 다시800℃에서 1시간 소결시켜 소결 플럭스를 얻었다. 얻어진 플럭스를 표 2의 입도분포대로 스크리닝(screening)하여 최종 플럭스를 얻었다. 표 1에서 기타성분이라함은 Na2O, K2O, Li2O 및, 잔부인 금속분말 및 합금철을 포함한 것이다.In order to evaluate the low temperature toughness and welding workability of the flux satisfying the composition and particle size distribution as described above, each flux was prepared according to the composition and particle size distribution of Table 1 and Table 2. The flux having the composition of Table 1 was first dried at 300 ° C. for 30 minutes, and then sintered at 800 ° C. for 1 hour to obtain a sintered flux. The obtained flux was screened according to the particle size distribution of Table 2 to obtain the final flux. Other components in Table 1 include Na 2 O, K 2 O, Li 2 O and the balance metal powder and ferroalloy.

구분division 플럭스 구성 성분, 중량%Flux Components, Weight% BB CaOCaO MgOMgO SiO2 SiO 2 Al2O3 Al 2 O 3 CaF2 CaF 2 MnOMnO CO2 CO 2 기타성분Other Ingredients 합계Sum 발명예Inventive Example 1One 88 3131 2121 2626 55 44 1.01.0 4.04.0 100.0100.0 1.151.15 22 1010 3636 1919 1919 66 88 1.01.0 1.01.0 100.0100.0 1.611.61 33 1010 3434 1717 1515 88 77 1.51.5 7.57.5 100.0100.0 1.801.80 44 66 3030 2323 2828 55 33 1.51.5 3.53.5 100.0100.0 0.970.97 55 99 2828 2222 2727 77 55 0.50.5 1.51.5 100.0100.0 1.041.04 66 99 2727 1818 2525 99 99 2.02.0 1.01.0 100.0100.0 1.181.18 77 66 2727 1717 2525 1010 1111 1.51.5 2.52.5 100.0100.0 1.121.12 88 66 2626 1919 2929 1111 55 2.52.5 1.51.5 100.0100.0 0.960.96 99 1111 3131 1616 1515 1313 1111 2.02.0 1.01.0 100.0100.0 1.791.79 비교예Comparative example 1010 44 1717 3030 3232 1010 44 1.01.0 2.02.0 100.0100.0 0.460.46 1111 1010 3333 1919 1919 66 88 2.02.0 3.03.0 100.0100.0 1.511.51 1212 1515 3939 1616 1414 66 66 2.02.0 2.02.0 100.0100.0 2.352.35 1313 22 1515 2121 2525 2020 1515 1.51.5 0.50.5 100.0100.0 0.510.51 1414 55 2222 2323 2828 88 1111 1.01.0 2.02.0 100.0100.0 0.730.73 1515 88 2626 1717 2323 77 55 2.02.0 12.012.0 100.0100.0 1.191.19 1616 66 3030 2020 2424 99 88 1.51.5 1.51.5 100.0100.0 1.131.13 1717 77 2828 1010 2727 1111 99 2.52.5 5.55.5 100.0100.0 1.491.49 1818 1717 2222 2020 2121 55 1010 2.52.5 2.52.5 100.0100.0 1.281.28

구분division 플럭스의 입도분포, 중량%Particle size distribution of flux, weight% 1.70㎜이상1.70mm or more 1.70㎜미만 1.00㎜이상Less than 1.70mm More than 1.00mm 1.00㎜미만 0.30㎜이상Less than 1.00mm 0.30mm 0.30㎜미만Less than 0.30mm 합계Sum 발명예Inventive Example 1One 1One 2020 7575 44 100.0100.0 22 1One 2121 7373 55 100.0100.0 33 22 1919 7474 55 100.0100.0 44 22 2626 6969 33 100.0100.0 55 33 1818 7575 44 100.0100.0 66 1One 2323 7171 55 100.0100.0 77 1One 1616 8181 22 100.0100.0 88 22 2525 6969 44 100.0100.0 99 22 2424 7070 44 100.0100.0 비교예Comparative example 1010 22 1717 8181 -- 100.0100.0 1111 1010 4545 4444 1One 100.0100.0 1212 22 2121 7575 22 100.0100.0 1313 1One 2121 7676 22 100.0100.0 1414 1One 2323 7272 44 100.0100.0 1515 22 1717 7979 22 100.0100.0 1616 -- 1717 6767 1616 100.0100.0 1717 22 5151 3939 88 100.0100.0 1818 33 2828 6868 1One 100.0100.0

제조된 최종 플럭스를 사용하여 표 3에 나타낸 규격의 시험용 모재를 표 4에 나타낸 규격의 용접용 와이어로 용접하였으며, 각 용접조건은 표 5 ~ 7에, 그 평가 결과는 표 8 ~ 10에 나타내었다. 표 3에서 B1 ~ B4의 구분은 도1 ~ 도 3을 참조하며, 표 4에서 W1과 W2의 구분은 표 5 ~ 7을 참조로 한다.Using the prepared final flux, the test base material of the standard shown in Table 3 was welded with the welding wire of the standard shown in Table 4, each welding condition is shown in Tables 5 to 7, and the evaluation results are shown in Tables 8 to 10. . In Table 3, the division of B1 to B4 is referred to FIGS. 1 to 3, and in Table 4, the division of W1 and W2 is referred to Tables 5 to 7.

구분division 강종Steel grade 두께(㎜)Thickness (mm) 모재의 화학성분, 중량%Chemical composition of the base material, weight percent CC SiSi MnMn PP SS B1B1 SM490SM490 1515 0.150.15 0.300.30 1.381.38 0.0100.010 0.0010.001 B2B2 SM490SM490 2020 0.150.15 0.320.32 1.351.35 0.0100.010 0.0010.001 B3B3 SM490SM490 4040 0.160.16 0.320.32 0.390.39 0.0090.009 0.0010.001 B4B4 SM490SM490 5050 0.150.15 0.310.31 1.401.40 0.0100.010 0.0010.001

구분division 선경(㎜)Wire diameter (mm) 와이어의 화학성분, 중량%Chemical composition of the wire, weight percent CC SiSi MnMn PP SS W1W1 4.84.8 0.070.07 0.030.03 1.921.92 0.0110.011 0.0080.008 W2W2 6.46.4 0.070.07 0.030.03 1.931.93 0.0110.011 0.0070.007

표 5에는 하향 필렛 용접 조건을, 표 6에는 맞대기 용접 조건, 표 7에는 다층 용접 조건을 나타내었다.Table 5 shows down fillet welding conditions, Table 6 shows butt welding conditions, and Table 7 shows multilayer welding conditions.

전극 위치Electrode position 와이어 종류Wire type 전류(A)Current (A) 전압(V)Voltage (V) 속도(㎝/min)Speed (cm / min) 전극 간격(㎜)Electrode spacing (mm) 선행전극Leading electrode W1W1 11001100 3232 6565 4545 후행전극Trailing electrode W2W2 850850 4141

용접부Weld 전극위치Electrode position 와이어 종류Wire type 전류(A)Current (A) 전압(V)Voltage (V) 속도(㎝/min)Speed (cm / min) 전극 간격(㎜)Electrode spacing (mm) 전면Front 선행전극Leading electrode W1W1 12001200 3535 4545 4545 후행전극Trailing electrode W2W2 10501050 4141 후면back side 선행전극Leading electrode W1W1 13001300 3636 4545 4545 후행전극Trailing electrode W2W2 11001100 4242

패스pass 전극위치Electrode position 와이어 종류Wire type 전류(A)Current (A) 전압(V)Voltage (V) 속도(㎝/min)Speed (cm / min) 전극 간격(㎜)Electrode spacing (mm) 1One 선행전극Leading electrode W1W1 650650 3232 3535 -- 22 선행전극Leading electrode W1W1 850850 3333 5050 4545 후행전극Trailing electrode W2W2 800800 3535 33 선행전극Leading electrode W1W1 900900 3434 4545 4545 후행전극Trailing electrode W2W2 850850 3535 44 선행전극Leading electrode W1W1 950950 3535 4040 4545 후행전극Trailing electrode W2W2 900900 3737 55 선행전극Leading electrode W1W1 10001000 3535 4545 4545 후행전극Trailing electrode W2W2 950950 3838 6~106-10 선행전극Leading electrode W1W1 10001000 3535 4040 4545 후행전극Trailing electrode W2W2 950950 3838

또한 표 8은 하향 필렛 용접의 용접작업성 평가 결과이며, 표 9는 맞대기 용접의 용접작업성 평가 결과, 표 10은 다층용접의 용접작업성 평가 결과이다. 맞대기 용접 및 다층용접에 대한 저온인성의 평가는 각 용접부 단면의 정중앙(두께의 1/2위치)에 V-노치가 위치하도록하여 충격시험용 시편을 채취하였으며, -60℃에서의 샤르피 V-노치 충격시험에 의한 흡수에너지(J)로 나타내었다. 또한 각 표에서 O는 양호함을, △는 보통을, X는 열세함을 의미하며, 발명예와 비교예를 상대평가하여 나타내었다.In addition, Table 8 is a welding workability evaluation results of the downward fillet welding, Table 9 is a welding workability evaluation results of the butt welding, Table 10 is a welding workability evaluation results of the multi-layer welding. For evaluation of low temperature toughness for butt welding and multi-layer welding, impact test specimens were taken with the V-notch at the center of the weld section (half position of thickness), and Charpy V-notch impact at -60 ℃. Absorption energy (J) by the test is shown. In each table, O is good, Δ is normal, and X is inferior, and the comparative examples are shown for the invention examples and the comparative examples.

구분division 슬래그 박리성Slag peelability 비드외관Bead Appearance 비드파형Bead Waveform 비드 평행성Bead parallelism 언더컷Undercut 용입깊이Penetration depth 발명예Inventive Example 1One OO OO OO OO OO OO 22 OO OO OO OO OO OO 33 OO OO OO OO OO OO 44 OO OO OO OO OO OO 55 OO OO OO OO OO OO 66 OO OO OO OO OO OO 77 OO OO OO OO OO OO 88 OO OO OO OO OO OO 99 OO OO OO OO OO OO 비교예Comparative example 1010 XX XX XX OO 1111 OO XX OO 1212 XX XX XX XX OO 1313 XX XX XX OO 1414 OO OO OO OO OO OO 1515 XX XX XX OO 1616 XX XX OO 1717 XX XX OO 1818 XX OO OO OO

구분division 슬래그박리성Slag peeling 비드외관Bead Appearance 비드파형Bead Waveform 비드평행성Bead parallelism 언더컷Undercut 용입깊이Penetration depth 흡수에너지(J)Absorbed energy (J) 발명예Inventive Example 1One OO OO OO OO OO OO 7878 22 OO OO OO OO OO OO 9292 33 OO OO OO OO OO OO 9898 44 OO OO OO OO OO OO 7474 55 OO OO OO OO OO OO 7777 66 OO OO OO OO OO OO 7777 77 OO OO OO OO OO OO 7676 88 OO OO OO OO OO OO 7373 99 OO OO OO OO OO OO 9696 비교예Comparative example 1010 OO XX XX XX OO 3030 1111 OO XX XX XX OO 5656 1212 XX XX XX OO 112112 1313 XX XX XX OO 2929 1414 OO OO OO OO OO OO 2424 1515 XX XX XX OO 7373 1616 XX XX OO 7575 1717 XX XX XX XX OO 8585 1818 XX XX OO OO 7979

구분division 슬래그박리성Slag peeling 비드외관Bead Appearance 비드파형Bead Waveform 비드평행성Bead parallelism 언더컷Undercut 용입깊이Penetration depth 흡수에너지(J)Absorbed energy (J) 발명예Inventive Example 1One OO OO OO OO OO OO 8888 22 OO OO OO OO OO OO 101101 33 OO OO OO OO OO OO 103103 44 OO OO OO OO OO OO 8585 55 OO OO OO OO OO OO 8484 66 OO OO OO OO OO OO 8686 77 OO OO OO OO OO OO 8989 88 OO OO OO OO OO OO 9191 99 OO OO OO OO OO OO 103103 비교예Comparative example 1010 OO XX XX XX OO 3232 1111 XX OO 5151 1212 XX XX XX OO 114114 1313 XX XX XX OO 2525 1414 OO OO OO OO OO OO 2121 1515 XX XX XX OO 9090 1616 XX XX OO 8989 1717 XX XX OO 8383 1818 XX XX OO OO 9292

표 8 ~ 10 을 종합적으로 평가해보면 발명예는 하향필렛용접, 맞대기 용접 및 다층용접에서 양호한 용접작업성을 나타내었으며, 저온인성의 평가항목인 흡수에너지 수치도 비교예에 비하여 높은 것으로 나타났다. 특히 발명예 2, 3 및 9는 염기도 값이 다른 발명예보다 다소 높아 상대적으로 높은 인성을 나타내었다.When comprehensively evaluating Tables 8 to 10, the invention example showed good weldability in down fillet welding, butt welding and multi-layer welding, and the absorbed energy value, which is an evaluation item of low temperature toughness, was also higher than that of the comparative example. In particular, Inventive Examples 2, 3 and 9 showed a relatively high toughness with a slightly higher basicity than other Inventive Examples.

한편, 비교예 10은 입도분포는 양호하였으나, MgO함량이 낮아 인성이 매우 낮게 측정되었고, SiO2및 Al2O3의 함량이 초과되어 비드외관, 비드파형 및 비드평행성이 매우 불량하였다.On the other hand, Comparative Example 10 had a good particle size distribution, but the MgO content was very low toughness was measured, the content of SiO 2 and Al 2 O 3 was exceeded, the appearance of beads, bead waveform and bead parallelism was very poor.

비교예 11은 플럭스의 화학성분은 모두 본 발명의 조건을 만족하였으나, 입도분포에 있어서 1.70㎜이상의 입자 및 1.70㎜미만 1.00㎜이상 입자의 함량이 범위를 초과하였고, 1.00㎜미만 0.30㎜이상 입자의 함량은 범위에 미달되어 맞대기용접에 있어서 매우 불량한 비드외관과 비드파형 및 비드평행성을 나타내었다.In Comparative Example 11, all the chemical components of the flux satisfy the conditions of the present invention, but in the particle size distribution, the content of the particles of 1.70 mm or more and the particles of less than 1.70 mm or more and 1.00 mm or more exceeded the range, and the particles of the particles less than 1.00 mm and 0.30 mm or more. The content was less than the range and showed very poor bead appearance, bead waveform, and bead parallelism in butt welding.

비교예 12는 CaO와 MgO의 함량이 범위를 초과하여 염기도 값이 높아 매우 양호한 인성을 나타내었으나, 비드외관 등의 용접작업성이 매우 불량하였다.In Comparative Example 12, the content of CaO and MgO exceeded the range, and the basicity was high, indicating very good toughness. However, weldability such as bead appearance was very poor.

비교예 13은 CaO 및 MgO의 함량이 범위에 미달하여 염기도의 값이 매우 낮아져 인성이 불량한 것으로 나타났다. 또한 CaF2및 MnO의 함량이 범위를 초과하여 비드외관이 불량하였으며, 언더컷이 발생하였다.In Comparative Example 13, the content of CaO and MgO was less than the range, and the basicity was very low, indicating poor toughness. In addition, the content of CaF 2 and MnO exceeded the range of the bead appearance was poor, undercut occurred.

비교예 14는 플럭스를 구성하는 화학성분 및 입도분포 모두 본 발명의 범위를 만족하였으나 염기도의 값이 낮아 양호한 용접작업성에 비해 불량한 인성을 나타내었다.In Comparative Example 14, both the chemical composition and the particle size distribution constituting the flux satisfied the scope of the present invention, but showed a low toughness compared to good welding workability due to the low basicity.

비교예 15는 염기도 값 및 입도분포는 본 발명의 범위를 만족하였으나, Na2O, K2O 및 Li2O 중에서 선택된 1성분 또는 1 이상의 성분의 합이 지나치게 높아 용접중 아크가 매우 불안하고 볼록한 비드가 발생하여 비드외관이 매우 불량하였다.In Comparative Example 15, the basicity value and the particle size distribution satisfy the scope of the present invention, but the sum of one or more components selected from Na 2 O, K 2 O and Li 2 O is too high, making the arc very unstable and convex during welding. Beads occurred and the appearance of beads was very poor.

비교예 16은 플럭스 화학성분 및 염기도의 값이 본 발명의 범위를 만족하였으나, 입도분포에 있어서 0.30㎜미만 입자의 함량이 범위를 초과하여 인성은 양호한 반면 비드외관이 불량하였고, 특히 양면일층용접부의 대입열용접에서 비드평행성 및 비드파형이 매우 불량하였다.In Comparative Example 16, although the flux chemical composition and basicity value satisfied the scope of the present invention, the particle size distribution was less than 0.30 mm, the toughness was good because the content of the particles exceeded the range, but the appearance of the beads was poor, in particular, the double-sided single layer weld The bead parallelism and the bead waveform were very poor in the high heat input welding.

비교예 17은 SiO2의 함량이 범위에 미달하여 슬래그 박리성 및 비드 평행성이 불량하였다. 또한 입도분포에 있어서도 1.70㎜미만 1.00㎜이상 입자의 함량이 범위를 초과하여 양면일층용접 후 볼록한 비드가 발생하였다.In Comparative Example 17, the content of SiO 2 was less than the range, resulting in poor slag peelability and bead parallelism. In addition, in the particle size distribution, the content of the particles less than 1.70 mm and more than 1.00 mm exceeded the range, and convex beads occurred after double-layer welding.

비교예 18은 CaO의 함량이 범위를 초과하여 비드외관이 불량하였고 포크마크가 발생되었다.In Comparative Example 18, the content of CaO exceeded the range, resulting in poor bead appearance and generation of fork marks.

이상에서 설명한 바와 같이 본 발명에서는 플럭스의 화학성분 조성 및 입도분포를 최적화함으로써, 중·후판의 하향필렛용접, 맞대기용접 및 다층용접에서 우수한 용접작업성을 얻을 수 있으며, 특히 염기도(CaO+MgO)/(SiO2+0.5Al2O3)의 값을 조절하여 양호한 저온인성을 확보할 수 있었다.As described above, in the present invention, by optimizing the chemical composition and particle size distribution of the flux, it is possible to obtain excellent welding workability in the bottom fillet welding, butt welding and multilayer welding of the middle and thick plates, especially basicity (CaO + MgO) Good low-temperature toughness could be secured by adjusting the value of / (SiO 2 + 0.5Al 2 O 3 ).

Claims (1)

서브머지드 아크 용접용 플럭스에 있어서,In the flux for submerged arc welding, 상기 플럭스는 플럭스 전중량에 대하여, 3.0 ~ 11.5중량%의 CaO, 18.5 ~ 37.0중량%의 MgO, 15.5 ~ 25.5중량%의 SiO2, 13.5 ~ 30.0중량%의 Al2O3, 4.5 ~ 14.5중량%의 CaF2, 3.0 ~ 12.5중량%의 MnO, 탄산염광물에서의 환산치로 0.5 ~ 2.5중량%의 CO2, Na2O, K2O, Li2O중에서 선택된 1성분 또는 1성분 이상의 합이 0.05 ~ 4.5중량%이며 잔부로서의 금속분말 및 합금철로 이루어지고,The flux is 3.0 to 11.5 wt% CaO, 18.5 to 37.0 wt% MgO, 15.5 to 25.5 wt% SiO 2 , 13.5 to 30.0 wt% Al 2 O 3 , 4.5 to 14.5 wt% Of CaF 2 , 3.0 to 12.5% by weight of MnO and carbonate minerals in terms of 0.5 to 2.5% by weight of CO 2 , Na 2 O, K 2 O and Li 2 O 4.5 wt%, consisting of metal powder and ferroalloy as remainder, 하기의 식 1로 표시되는 상기 플럭스의 염기도(B) 값이 0.95 ~ 2.10을 만족하며,The basicity (B) value of the flux represented by Equation 1 below satisfies 0.95 to 2.10, .....식1 ..... Equation 1 상기 플럭스의 입도분포로서 입경이 플럭스 전중량에 대하여, 1.70㎜이상인 입자가 5중량%이하, 1.70㎜미만 1.00㎜이상인 입자가 15 ~ 30중량%, 1.00㎜미만 0.30㎜이상인 입자가 65 ~85중량%, 0.3㎜미만인 입자가 10중량% 이하임을 특징으로하는 서브머지드 아크 용접용 플럭스.As the particle size distribution of the flux, the particle size of the flux is not less than 5% by weight of particles of 1.70 mm or more, 15 to 30% by weight of particles less than 1.70 mm and 1.00 mm or more, and 65 to 85 weight of particles less than 1.00 mm and 0.30 mm or more. %, Sub-merge arc welding flux, characterized in that the particles less than 0.3mm 10% by weight or less.
KR10-2001-0050435A 2001-08-21 2001-08-21 Sintered flux for submerged arc welding KR100427545B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0050435A KR100427545B1 (en) 2001-08-21 2001-08-21 Sintered flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0050435A KR100427545B1 (en) 2001-08-21 2001-08-21 Sintered flux for submerged arc welding

Publications (2)

Publication Number Publication Date
KR20030016731A true KR20030016731A (en) 2003-03-03
KR100427545B1 KR100427545B1 (en) 2004-04-30

Family

ID=27720143

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0050435A KR100427545B1 (en) 2001-08-21 2001-08-21 Sintered flux for submerged arc welding

Country Status (1)

Country Link
KR (1) KR100427545B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104128716A (en) * 2014-08-01 2014-11-05 南京航空航天大学 Sintered flux containing nano plastic particles
US20150027994A1 (en) * 2013-07-29 2015-01-29 Siemens Energy, Inc. Flux sheet for laser processing of metal components
CN104588918A (en) * 2015-01-21 2015-05-06 武汉天高熔接股份有限公司 Sintered flux for corner welds suitable for twin thin wire high-speed submerged arc welding
US20160096234A1 (en) * 2014-10-07 2016-04-07 Siemens Energy, Inc. Laser deposition and repair of reactive metals

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191590A (en) * 1983-04-13 1984-10-30 Kobe Steel Ltd Submerged arc welding method of cr-mo alloy steel
JPH01157797A (en) * 1987-12-16 1989-06-21 Kawasaki Steel Corp Sintered flux for submerged arc welding
KR100313603B1 (en) * 1999-06-09 2001-11-26 김영환 Control circuit of sense amplifier in semiconductor memory
KR100347292B1 (en) * 1999-12-29 2002-08-07 현대종합금속 주식회사 Flux for using one side submerged arc welding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150027994A1 (en) * 2013-07-29 2015-01-29 Siemens Energy, Inc. Flux sheet for laser processing of metal components
CN104128716A (en) * 2014-08-01 2014-11-05 南京航空航天大学 Sintered flux containing nano plastic particles
CN104128716B (en) * 2014-08-01 2016-04-20 南京航空航天大学 Containing the sintered flux of nano plastic particle
US20160096234A1 (en) * 2014-10-07 2016-04-07 Siemens Energy, Inc. Laser deposition and repair of reactive metals
CN104588918A (en) * 2015-01-21 2015-05-06 武汉天高熔接股份有限公司 Sintered flux for corner welds suitable for twin thin wire high-speed submerged arc welding

Also Published As

Publication number Publication date
KR100427545B1 (en) 2004-04-30

Similar Documents

Publication Publication Date Title
US4764224A (en) Baked flux for submerged arc welding
JP3529362B2 (en) Metal shielded wire for gas shielded arc welding
KR100706026B1 (en) High speed submerged arc welding flux
JP4297880B2 (en) Bond flux for submerged arc welding
EP0066660B1 (en) Basic bonded fluxes for submerged arc welding having an excellent removability of slag at a narrow groove
KR100427545B1 (en) Sintered flux for submerged arc welding
JP7179639B2 (en) Sintered flux for submerged arc welding for high-strength steel
JP3552375B2 (en) Large heat input latent arc welding method for thick steel plate with excellent toughness of weld metal
KR100513214B1 (en) A bond flux for submerged arc welding
JP2544479B2 (en) Bond flux for submerged arc welding
KR100466205B1 (en) A flux composition for submerged arc welding
JPH0513040B2 (en)
KR100494010B1 (en) Flux cored wire for Gas shielded arc welding
KR100466204B1 (en) A flux composition for submerged arc welding
JP3157060B2 (en) Highly basic molten flux
KR100364873B1 (en) Agglomerated flux for submerged arc welding
JPH0852572A (en) Gas shielded metal-arc welding method
KR100505919B1 (en) Flux cored wire for Gas shielded arc welding
JPS6357154B2 (en)
JPH0378197B2 (en)
JP6908547B2 (en) Bond flux for multi-electrode single-sided submerged arc welding
KR100817828B1 (en) Metal cored wire for high speed twin-tandem arc welding
KR100550334B1 (en) Submerged arc welding flux
KR900001676B1 (en) Flux cored electrodes for self-shielded arc welding
JPH05111791A (en) Low hydrogen coated arc welding electrode

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130329

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140326

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160328

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170330

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180329

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190326

Year of fee payment: 16