KR20030007323A - Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same - Google Patents

Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same Download PDF

Info

Publication number
KR20030007323A
KR20030007323A KR1020020080026A KR20020080026A KR20030007323A KR 20030007323 A KR20030007323 A KR 20030007323A KR 1020020080026 A KR1020020080026 A KR 1020020080026A KR 20020080026 A KR20020080026 A KR 20020080026A KR 20030007323 A KR20030007323 A KR 20030007323A
Authority
KR
South Korea
Prior art keywords
hydrogen sulfide
desulfurizer
manganese
weight
desulfurization agent
Prior art date
Application number
KR1020020080026A
Other languages
Korean (ko)
Other versions
KR100413378B1 (en
Inventor
오광중
손병현
이강우
정덕영
Original Assignee
오광중
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오광중 filed Critical 오광중
Priority to KR10-2002-0080026A priority Critical patent/KR100413378B1/en
Publication of KR20030007323A publication Critical patent/KR20030007323A/en
Application granted granted Critical
Publication of KR100413378B1 publication Critical patent/KR100413378B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate

Abstract

PURPOSE: A manganese based desulfurizer for adsorbing thus removing at a high temperature hydrogen sulfide generated from integrated gasification combined cycle, and a manufacturing method of the manganese based desulfurizer are provided. CONSTITUTION: The desulfurizer for removing hydrogen sulfide is characterized in that MFT desulfurizer, a manganese desulfurizer reacted with hydrogen sulfide at a temperature of 550 to 800 deg.C, comprises 55 wt.% of MnCO3, 20 wt.% of Fe2O3, 20 wt.% of TiO2 and 5 wt.% of bentonite. The manufacturing method of the desulfurizer for removing hydrogen sulfide comprises mixing step of mixing raw materials of the desulfurizer comprising 55 wt.% of MnCO3, 20 wt.% of Fe2O3, 20 wt.% of TiO2 and 5 wt.% of bentonite; drying step of drying the mixture at 110 deg.C until the mixture becomes constant; baking step of baking the dried mixture at 400 deg.C; hardening step of hardening the baked material at 1100 deg.C; and crushing step of crushing and sieving the hardened desulfurizer.

Description

황화수소 제거용 재생 가능한 망간계 탈황제(엠에프티) 및 이의 제조방법{Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same}Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same}

본 발명은 황화수소를 제거하고 재생이 가능한 효율적인 탈황제 및 이의 제조방법에 관한 것이다.The present invention relates to an efficient desulfurization agent capable of removing hydrogen sulfide and regeneration and a method for producing the same.

국내의 전력생산은 1996년 현재 원자력 발전이 36%, 화력발전이 28%를 차지하고 있으며 화력발전에 이용되는 석탄 사용량은 2000년 초기에 약 36%까지 증가될 것으로 전망된다.Domestic electricity production accounts for 36% of nuclear power generation and 28% of thermal power generation as of 1996, and coal consumption for thermal power generation is expected to increase to about 36% in early 2000.

석탄은 세계적으로 매장량이 풍부하며 공급의 안정성과 경제성 측면에서 유리한 조건을 가지고 있음에도 불구하고 현재의 석탄 직접연소방식으로는 지속적인 이용증가가 어려우므로 CCT(Clean coal Technology)라 불리는 석탄의 청정이용기술개발을 통한 합리적인 석탄활용 기술개발이 절실히 필요한 실정이다.Although coal has abundant reserves worldwide and favorable conditions in terms of supply stability and economic feasibility, it is difficult to continuously increase the use of current coal direct combustion method. Therefore, the development of clean use technology of coal called CCT (Clean coal Technology) The development of rational coal utilization technology is urgently needed.

이러한 석탄 신발전방식 중 석탄가스화 복합발전(IGCC:Integrated Gasification Combined Cycle) 기술은 환경친화성, 연료확보 및 열효율 측면에서 미분탄 화력발전을 대체할 수 있는 매우 우수한 발전방식이므로 여러 국가에서 기술개발 및 실증사업이 꾸준히 지속되어 심화단계까지 이르고 있다.The Integrated Gasification Combined Cycle (IGCC) technology is one of the best alternatives to pulverized coal-fired power generation in terms of environmental friendliness, fuel security and thermal efficiency. The business continues steadily, reaching the deepening stage.

석탄가스화 복합발전은 석탄을 산소와 함께 고온, 고압(1200∼1500℃, 25kg/㎠)의 가스화기에서 반응시켜 가스화한 후 집진장치와 탈황장치에서 분진과 황성분을 제거한 청정 석탄가스를 가스터빈 연료로 사용한다. 이 시스템의 열효율은 45∼50%로 종래의 미분탄 화력발전의 열효율(30∼33%)보다 15%이상 높은 것으로 평가되고 있으며, 특히 CO2배출량이 10%이상 억제되어 점점 강화되는 CO2배출 규제 측면에서도 매우 바람직하다.Coal gasification combined cycle powers coal with oxygen in a gasifier of high temperature and high pressure (1200 ~ 1500 ℃, 25kg / ㎠) and gasifies it, and removes dust and sulfur components from dust collector and desulfurization unit. Used as. The thermal efficiency of the system has been evaluated to be more than 15% higher than the thermal efficiency by 45-50% (30-33%) of a conventional pulverized coal-fired power generation, in particular CO 2 emissions regulations are increasingly enhanced CO 2 emission is suppressed by more than 10% It is also very preferable from the viewpoint.

석탄내 함유된 재, 황, 질소, 알칼리금속과 여러 가지 미량의 오염물질 등에 의해 오염된 연료가스는 가스터빈에 침적하거나 부식을 일으켜 시스템의 내구성을 단축시키고 환경문제를 유발하므로 이러한 오염물질을 반드시 제거하여야 한다.Fuel gases contaminated with ash, sulfur, nitrogen, alkali metals and various trace contaminants in coal are deposited or corroded in gas turbines, which shortens the durability of the system and causes environmental problems. Should be removed.

미국에서는 DOE(Department of Energy) 산하의 METC(Morgantown Energy Technology Center) 주관으로 약 20년 전부터 여러 연구기관, 기업체, 대학 등의 공동연구를 통해 고온건식 탈황제와 공정의 개발이 표준화 및 상업화 수준에 이르고 있다.In the US, the METC (Morgantown Energy Technology Center) under the Department of Energy (DOE) has been involved in research and development of high-temperature dry desulfurizers and processes for about 20 years. have.

지금까지 연구된 금속산화물 탈황제는 Zn, Fe, Cu, Ca, Mg, V, Mn, Ni, Co,Sn, Pb, Bi, Cd, Mo, W, Cr 등이며 이러한 각각의 산화물들은 고온가스 정화에 장점과 단점을 모두 가지고 있다.The metal oxide desulfurization agents studied so far are Zn, Fe, Cu, Ca, Mg, V, Mn, Ni, Co, Sn, Pb, Bi, Cd, Mo, W, Cr and so on. It has both advantages and disadvantages.

여러 실험결과에 의하면 석탄가스 중 H2S의 농도를 20ppmv이하로 줄일 수 있는 1차 활성성분으로 Zn, Fe, Cu, Mn, Ce 등을 들 수 있고 첨가제로는 Cu, Fe, Mn, Cr, Ce, Co, Mo, Ni 등이 있으며 지지체로는 Al2O3,SiO2,TiO2,ZrO2등을 사용할 수 있는 것으로 보고되고 있다(류청걸 등, Chemical Industry and Technology, 1998).According to various experiments, Zn, Fe, Cu, Mn, Ce, etc. are the primary active ingredients that can reduce the concentration of H 2 S in coal gas below 20ppmv, and additives include Cu, Fe, Mn, Cr, Ce, Co, Mo, Ni, and the like, Al 2 O 3, SiO 2, TiO 2, ZrO 2 and the like has been reported that can be used (Ryu Cheong-gal, Chemical Industry and Technology, 1998).

지금까지 개발된 탈황제들 중에서 상용화단계에 도달한 것은 혼합 아연계 탈황제이며, 최근들어 아연계 탈황제의 단점을 극복하기 위한 시도로 망간계 탈황제의 제조와 실험에 많은 관심이 집중되고 있다.Among the desulfurization agents developed so far, the commercialization stage is a mixed zinc desulfurization agent, and in recent years, much attention has been focused on the preparation and experimentation of manganese desulfurization agents in an attempt to overcome the disadvantages of the zinc desulfurization agent.

Westmoreland 등(Environmental Science & Technology, 22(5), 1977)은 속도론적 연구를 하여 망간산화물의 안정성과 1000℃ 이상의 고온에서 탈황능을 예측하였다. 이러한 속도론적 고찰로부터 300∼800℃에서 H2S와 MnO, CaO, ZnO 그리고 V2O3와의 초기 반응속도의 상대적인 크기는 MnO > CaO > ZnO > V2O3였다. 그러므로, 이 연구에서 연구자들은 MnO가 고온탈황공정에 가장 효과적이라는 결론을 내렸다.Westmoreland et al. (Environmental Science & Technology, 22 (5), 1977) conducted a kinetic study to predict the stability of manganese oxides and desulfurization at high temperatures above 1000 ° C. From these kinetic considerations, the relative magnitudes of the initial reaction rates between H 2 S and MnO, CaO, ZnO and V 2 O 3 at 300 to 800 ° C were MnO>CaO>ZnO> V 2 O 3 . Therefore, in this study, the researchers concluded that MnO was most effective for high temperature desulfurization processes.

Turkdogan and Olsson 등(Proceedings of the Third International Iron and Steel Congress ASM, pp.277-288, 1979)은 고온탈황공정에서 망간산화물의 이용가능성을 실험하여 Mn과 alumina를 3:1의 무게비로 혼합한 혼합물은 800℃의 H2-H2S 가스 혼합물로부터 황성분을 제거할 수 있고 공기로 재생할 수 있음을 발견했다.Turkdogan and Olsson et al. (Proceedings of the Third International Iron and Steel Congress ASM, pp. 277-288, 1979) have tested the availability of manganese oxides at high temperature desulfurization and mix Mn and alumina in a 3: 1 weight ratio. It has been found that sulfur can be removed from the H 2 -H 2 S gas mixture at 800 ° C. and regenerated with air.

Hepworth 등(Energy & Fuels, 7(6), 1993)은 열역학적 관점에서 고온연료가스로부터 황을 제거하기 위한 단일 혹은 복합금속 탈황제의 거동을 평가하기 위해 망간, 철, 니켈, 마그네슘, 구리, 나트륨, 아연계 금속에 대한 연구를 행한 바 환원성이 낮으며 넓은 온도 범위에 걸쳐 사용할 수 있는 최고의 금속은 망간산화물이라고 평가하였다.Hepworth et al. (Energy & Fuels, 7 (6), 1993) assessed the behavior of single or complex metal desulfurizers to remove sulfur from hot fuel gases from a thermodynamic perspective. Studies on zinc-based metals have shown that manganese oxide is the best metal that has low reducibility and can be used over a wide temperature range.

황성분을 제거하기 위하여 IGCC 발전의 핵심기술이라 할 수 있는 고온건식 탈황기술을 상업화하는데 있어 우선적으로 극복해야 할 과제는 물리화학적 특성이 서로 잘 조화된 재생 가능한 탈황제의 개발이다.The first challenge to commercialize high-temperature dry desulfurization technology, which is the core technology of IGCC power generation, is to develop a renewable desulfurization agent with good physical and chemical properties.

망간계 탈황제는 실공정의 가스화기에서 발생하는 모든 연료가스에 적용하여도 원소 망간으로의 환원저항이 크며 용융온도가 1,232℃이므로 고온에서도 조업할 수 있다.Manganese-based desulfurization agents can be operated at high temperatures because they have a high reduction resistance to elemental manganese and a melting temperature of 1,232 ℃ even when applied to all fuel gases generated in the actual gasifier.

또한, 아연계 탈황제보다 반응속도가 훨씬 빠르다는 장점이 있다.In addition, there is an advantage that the reaction rate is much faster than the zinc-based desulfurization agent.

이에 본 발명에서는 석탄가스화복합발전에서 발생하는 황화수소를 고온에서 흡착 제거할 수 있는 망간계 탈황제 및 이를 제조하는 방법을 제공하는 것이다.Accordingly, the present invention provides a manganese-based desulfurization agent capable of adsorbing and removing hydrogen sulfide generated from coal gasification combined cycle power generation at a high temperature, and a method of manufacturing the same.

상기 목적을 달성하기 위한 본 발명의 탈황제 조성은 MnCO355중량%와 Fe2O320중량% 및 TiO220중량% 와 벤토나이트 5중량%로 탈황제를 제조하는 것으로, 본 발명의 탈황제 제조방법은 분말상태의 각 시료를 혼합하는 단계; 항량이 될 때까지 건조하는 단계; 소성하는 단계; 경화하는 단계; 및 경화된 탈황제를 분쇄 및 체거름 하는 단계를 포함하므로써 이루어진다.Desulfurization agent composition of the present invention for achieving the above object is to prepare a desulfurization agent in 55% by weight of MnCO 3 and 20% by weight of Fe 2 O 3 and 20% by weight of TiO 2 and 5% by weight of bentonite, the desulfurizing agent manufacturing method of the present invention Mixing each sample in powder form; Drying until constant weight; Firing; Curing; And pulverizing and sieving the cured desulfurization agent.

도 1은 본 발명의 탈황제 제조공정을 개략적으로 도시한 공정도1 is a process diagram schematically showing a desulfurization agent manufacturing process of the present invention

도 2는 본 발명의 조성물을 이용하여 황화수소 제거량을 파과곡선(Breakthrough Curve)으로 나타낸 그래프2 is a graph showing a breakthrough curve of hydrogen sulfide removal using the composition of the present invention.

이하 본 발명을 좀 더 구체적으로 살펴보면 다음과 같다.Looking at the present invention in more detail as follows.

황화수소와 반응성을 가지는 망간산화물과 철산화물에 의한 황화수소 제거 메카니즘은 환원과 황화단계로 나눌 수 있으며, 먼저 가스기류내 포함된 수소나 일산화탄소에 의해 MaOb→ McOd(여기에서, b/a 〉d/c, M은 망간이나 철)로 환원이 일어나고 McOd가 H2S와 반응하여 MS로 황화반응이 일어난다.Mechanisms of hydrogen sulfide removal by manganese oxides and iron oxides that are reactive with hydrogen sulfide can be divided into reduction and sulfidation stages. First, M a O b → M c O d (where b / a> d / c, M is manganese or iron) and M c O d reacts with H 2 S to sulfide into MS.

또한, MnO는 수소에 의한 환원반응의 평형상수가 매우 작기 때문에 금속망간으로의 환원이 거의 일어나지 않는 반면 Fe2O3는 환원성이 커서 수소나 일산화탄소에 의해 쉽게 환원된다.In addition, since MnO has a very small equilibrium constant of the reduction reaction by hydrogen, reduction to manganese rarely occurs, whereas Fe 2 O 3 has a high reducibility and is easily reduced by hydrogen or carbon monoxide.

대부분의 금속산화물 탈황제의 재생은 공기나 산소가 부족한 공기, 희석제로서 스팀을 포함한 공기/스팀 혼합가스를 이용하며 온도, 산소농도, 재생가스 특성과 같은 재생조건의 조절을 통해 탈황제의 물리적 내구성과 반응성을 유지하는 것이 필요하다.Most regeneration of metal oxide desulfurization agents uses air / steam mixture gas including steam as air or oxygen-deficient air and diluent, and physical durability and reactivity of desulfurization agent by adjusting regeneration conditions such as temperature, oxygen concentration and regeneration gas characteristics. It is necessary to maintain.

재생에서 과다한 온도상승은 탈황제의 신터링을 일으켜 기공도의 손실과 반응성의 저하를 가져오며 낮은 온도에서의 재생은 황산염의 생성을 초래하는데 황산염은 한번 생성되면 분해가 어렵고 산소의 확산장벽으로 작용하므로 바람직하지 못하다.Excessive temperature rise in regeneration leads to sintering of the desulfurization agent, which leads to loss of porosity and decrease in reactivity. Regeneration at low temperature leads to the formation of sulphate, which is difficult to decompose once produced and acts as a diffusion barrier for oxygen. Not desirable

따라서, 재생반응에서 온도조절과 산소농도의 조절을 통한 hot spot의 방지로 황산염 생성과 신터링효과를 최소화하는 최적의 운전조건을 찾는 것이 중요하다.Therefore, it is important to find the optimal operating conditions to minimize sulfate formation and sintering effect by preventing hot spots through temperature control and oxygen concentration control in regenerative reaction.

망간과 철의 환원, 황화, 재생시 반응메카니즘은 다음과 같다.The reaction mechanisms for reduction, sulfidation and regeneration of manganese and iron are as follows.

반응식 1Scheme 1

(MnO2,Mn2O, Mn3O4) + H2(or CO) → MnO + H2O(MnO 2, Mn 2 O, Mn 3 O 4 ) + H 2 (or CO) → MnO + H 2 O

반응식 2Scheme 2

Fe2O3→ Fe3O4→ FeO → FeFe 2 O 3 → Fe 3 O 4 → FeO → Fe

반응식 1과 2는 망간산화물과 철산화물이 환원성가스와 반응하여 환원되는 과정을 나타낸 것이다.Schemes 1 and 2 show a process in which manganese oxide and iron oxide are reduced by reacting with a reducing gas.

반응식 3Scheme 3

MnO + H2S → MnS + H2OMnO + H 2 S → MnS + H 2 O

반응식 4Scheme 4

Fe3O4+ 3H2S + H2→ 3FeS + 4H2OFe 3 O 4 + 3H 2 S + H 2 → 3FeS + 4H 2 O

반응식 3과 4는 망간산화물과 철산화물이 환원 후 황화수소와 반응하여 황화수소를 제거하는 공정을 나타낸 것이다.Schemes 3 and 4 show a process for removing hydrogen sulfide by reacting manganese oxide and iron oxide with hydrogen sulfide after reduction.

반응식 5Scheme 5

2MnS + 7/2O2→ Mn2O3+ 2SO2 2MnS + 7 / 2O 2 → Mn 2 O 3 + 2SO 2

반응식 6Scheme 6

2FeS + 7/2O2→ Fe2O3+ 2SO2 2FeS + 7 / 2O 2 → Fe 2 O 3 + 2SO 2

반응식 5와 6은 망간산화물과 철산화물이 황화반응 후 산소에 의해 재생되는 공정을 나타낸 것이다.Schemes 5 and 6 show a process in which manganese oxide and iron oxide are regenerated by oxygen after sulfidation.

제조예Production Example

도 1의 탈황제 제조공정을 살펴보면, 망간계 탈황제 제조에 사용한 물질은 MnCO355중량%, Fe2O320중량%, TiO220중량%, 벤토나이트 5중량% 이다.Looking at the desulfurizer manufacturing process of Figure 1, the material used to prepare the manganese-based desulfurization agent is MnCO 3 55% by weight, Fe 2 O 3 20% by weight, TiO 2 20% by weight, bentonite 5% by weight.

위 시약을 이용하여 1차 활성성분이 망간계인 MFT(MnCO3, Fe2O3, TiO2)의 탈황제를 제조하였으며, 상기된 MFT의 탈황제 명칭은 본 출원인의 편의상 명명한 것이다.Using the above reagent, the desulfurization agent of MFT (MnCO 3 , Fe 2 O 3 , TiO 2 ) whose primary active ingredient is manganese was prepared, and the desulfurization agent of MFT described above was named for the convenience of the applicant.

MFT 탈황제는 지지체로 TiO2를 사용하였으며, 2차 활성성분으로 Fe2O3를 첨가하여 반응성을 향상시켰고, 탈황제에 결합제로 벤토나이트를 이용하였다.The MFT desulfurization agent used TiO 2 as a support, Fe 2 O 3 was added as a secondary active ingredient to improve reactivity, and bentonite was used as a binder for the desulfurization agent.

본 발명의 탈황제의 제조방법에 대하여 살펴본다.It looks at the manufacturing method of the desulfurization agent of the present invention.

분말상태의 MnCO355중량%, Fe2O320중량%, TiO220중량%, 벤토나이트 5중량% 시료를 각각의 무게비율에 따라 혼합한 후 탈이온수를 가해 슬러리 상태로 만들어 건조오븐(drying oven)에서 항량이 될 때까지 건조한 다음(110℃), 400℃에서 5시간 소성시켜 망간 카보네이트(manganese carbonate)를 분해하였다.55% by weight of powdered MnCO 3 , 20% by weight of Fe 2 O 3, 20% by weight of TiO 2 , 5% by weight of bentonite were mixed according to the weight ratio of each sample, and then deionized water was added to make a slurry, followed by drying oven. Manganese carbonate was decomposed by drying in an oven (110 ° C.) and calcining at 400 ° C. for 5 hours.

소성 후, 400℃로 예열된 고온로에 옮겨서 경화온도까지 승온시킨 다음 공기분위기(약 1ℓ/min)하에서 2시간 동안 경화시켰다.After firing, the mixture was transferred to a high temperature furnace preheated to 400 ° C., heated to a curing temperature, and cured for 2 hours under an air atmosphere (about 1 L / min).

최종 생성물은 분쇄한 후 입경별로 체거름하여 20/40mesh는 황화와 재생실험에 이용하고 60mesh 이하의 미세한 입자는 탈황제의 물성분석에 이용하였다.The final product was pulverized and sieved by particle diameter, 20 / 40mesh was used for sulfidation and regeneration experiments, and fine particles below 60mesh were used for physical property analysis of the desulfurization agent.

실시예Example

망간계 탈황제가 H2S 제거에 효과적이라고 제시된 400∼800℃ 범위 중 보다 낮은 온도인 550, 650℃에서 MFT의 온도별 황화특성을 살펴보았다.The sulfidation characteristics of MFTs at different temperatures were examined at 550 and 650 ° C, which is lower than the range of 400-800 ° C that manganese-based desulfurizer is effective for H 2 S removal.

0.5%H2S-10%H2-bal N2,유량 190㎖/min 에서 온도에 따른 황화실험 결과를 도 2 에 나타내었다.The sulfidation results according to temperature at 0.5% H 2 S-10% H 2 -bal N 2 and flow rate 190ml / min are shown in FIG. 2.

정규화 황화시간 t/t*는 MnS와 FeS를 형성하기 위해 각 실험에 사용된 솔벤트(sorbent)가 완전히 황화되는데 필요한 이론시간 t*에 대한 실제시간 t의 비로서 정의된다. 따라서 t/t*는 탈황제 부분전환율에 해당한다.The normalized sulfidation time t / t * is defined as the ratio of the actual time t to the theoretical time t * required for complete sulphation of the solvent used in each experiment to form MnS and FeS. T / t * thus corresponds to the desulphurization partial conversion.

MFT 탈황제의 경우 부분전환율은 550℃와 650℃에서 각각 0.58, 0.91로 나타났으며, MFT 탈황제의 평형농도는 10∼50ppmv로 나타나 우수한 열역학적 특성을 보였다.The partial conversion of MFT desulfurizer was 0.58 and 0.91 at 550 ℃ and 650 ℃, respectively, and the equilibrium concentration of MFT desulfurizer was 10 ~ 50ppmv, showing excellent thermodynamic properties.

도 2의 결과로부터 MFT 탈황제는 중온온도 영역에서 매우 우수한 탈황능을 관찰할 수 있었다.From the results of FIG. 2, the MFT desulfurization agent was able to observe a very good desulfurization ability in the middle temperature range.

본 발명은 황화수소를 고온에서 흡착 제거하는 망간계 탈황제 및 이를 제조하는 방법에 관한 것으로, 모든 연료가스에 적용하여도 원소망간으로서의 환원저항이 크고, 고온에서도 조업할 수 있으며, 특히 반응속도가 빠른 장점이 있다.The present invention relates to a manganese-based desulfurization agent that adsorbs and removes hydrogen sulfide at a high temperature, and a method of manufacturing the same. The present invention has a high reduction resistance as elemental manganese even when applied to all fuel gases, and can operate at high temperatures. There is this.

Claims (2)

550-800℃에서 황화수소와 반응하는 망간계 탈황제 물질인 MFT 탈황제는 MnCO355중량% + Fe2O320중량% + TiO220중량% + 벤토나이트 5중량%로 이루어지는 것을 특징으로 하는 황화수소 제거용 탈황제.MFT desulfurization agent, which is a manganese desulfurization agent reacting with hydrogen sulfide at 550-800 ° C., for removing hydrogen sulfide, comprising 55% by weight of MnCO 3 + 20% by weight of Fe 2 O 3 + 20% by weight of TiO 2 + 5% by weight of bentonite. Desulfurization agent. MnCO355중량%, Fe2O320중량%, TiO220중량%, 벤토나이트 5중량%를 원료로 하는 탈황제는 구성원료를 혼합하는 혼합단계; 상기 시료를 항량이 될 때까지 110℃에서 건조하는 건조단계; 건조된 시료를 400℃에서 소성하는 소성단계; 소성된 시료를 1100℃에서 경화하는 경화단계; 경화된 탈황제를 분쇄 및 체거름 하는 분쇄단계를 포함하여 제조되는 것을 특징으로 하는 황화수소 제거용 탈황제의 제조방법.Desulfurization agent based on 55% by weight of MnCO 3 , 20% by weight of Fe 2 O 3, 20% by weight of TiO 2 , 5% by weight of bentonite mixing step of mixing the component material; Drying the sample at 110 ° C. until it reaches a constant weight; Firing the dried sample at 400 ° C .; A curing step of curing the fired sample at 1100 ° C .; Method for producing a desulfurization agent for removing hydrogen sulfide, characterized in that it comprises a pulverizing step of pulverizing and sieving the cured desulfurization agent.
KR10-2002-0080026A 2002-12-14 2002-12-14 Regenerable manganese-based sorbents(MFT) for removal of hydrogen sulfide and method for preparing the same KR100413378B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0080026A KR100413378B1 (en) 2002-12-14 2002-12-14 Regenerable manganese-based sorbents(MFT) for removal of hydrogen sulfide and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0080026A KR100413378B1 (en) 2002-12-14 2002-12-14 Regenerable manganese-based sorbents(MFT) for removal of hydrogen sulfide and method for preparing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0021020A Division KR100375331B1 (en) 2000-04-20 2000-04-20 Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same

Publications (2)

Publication Number Publication Date
KR20030007323A true KR20030007323A (en) 2003-01-23
KR100413378B1 KR100413378B1 (en) 2004-01-03

Family

ID=27729825

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0080026A KR100413378B1 (en) 2002-12-14 2002-12-14 Regenerable manganese-based sorbents(MFT) for removal of hydrogen sulfide and method for preparing the same

Country Status (1)

Country Link
KR (1) KR100413378B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100341983C (en) * 2005-04-19 2007-10-10 湖北省化学研究院 Converting and absorbing fine desulfurizer and its prepn

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100341983C (en) * 2005-04-19 2007-10-10 湖北省化学研究院 Converting and absorbing fine desulfurizer and its prepn

Also Published As

Publication number Publication date
KR100413378B1 (en) 2004-01-03

Similar Documents

Publication Publication Date Title
KR101864999B1 (en) A catalyst for desulfurization, a method for producing the same, and a desulfurization method using the same
Meng et al. In bed and downstream hot gas desulphurization during solid fuel gasification: A review
Vamvuka et al. Flue gas desulfurization at high temperatures: A review
Ohtsuka et al. Recent progress in Japan on hot gas cleanup of hydrogen chloride, hydrogen sulfide and ammonia in coal-derived fuel gas
Swisher et al. Review of metals and binary oxides as sorbents for removing sulfur from coal-derived gases
CN101791561B (en) Desulphurization and denitration catalyst and preparation method thereof
CN110404936B (en) Comprehensive treatment method for semi-dry desulfurized fly ash
CN101220313B (en) Multifunctional fire coal catalyst and method for producing the same
CN109794248A (en) A kind of low cost catalyst for denitrating flue gas and its preparation, application method
US5271907A (en) High temperature regenerable hydrogen sulfide removal agents
US5753198A (en) Hot coal gas desulfurization
Atimtay Cleaner energy production with integrated gasification combined cycle systems and use of metal oxide sorbents for H2S cleanup from coal gas
Zhang et al. Performance of iron ore oxygen carrier modified by biomass ashes in coal‐fueled chemical looping combustion
Xuan et al. Selection of desulfurizer and control of reaction products on flue-gas desulfurization using chemical-looping technology
CN113600198A (en) Biomass tar reforming catalyst and preparation method thereof
JP4424653B2 (en) Gaseous mercury removing agent, method for producing the same, and gaseous mercury removing method
KR100375331B1 (en) Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same
CN108192686B (en) Preparation method of steel slag oxygen carrier
KR100413379B1 (en) Regenerable manganese-based sorbents(MA) for removal of hydrogen sulfide and method for preparing the same
CN114874818B (en) Blast furnace gas desulfurizer and preparation method and application thereof
KR20030007323A (en) Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same
KR100413380B1 (en) Regenerable manganese-based sorbents(MOA) for removal of hydrogen sulfide and method for preparing the same
Gao et al. Effect of blast furnace sludge on SO2 emissions from coal combustion
JP2633886B2 (en) Desulfurizing agent and method for treating hydrogen sulfide-containing gas using it
TWI625305B (en) Preparing method of complex oxygen carrier

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081216

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee