KR100413379B1 - Regenerable manganese-based sorbents(MA) for removal of hydrogen sulfide and method for preparing the same - Google Patents

Regenerable manganese-based sorbents(MA) for removal of hydrogen sulfide and method for preparing the same Download PDF

Info

Publication number
KR100413379B1
KR100413379B1 KR10-2002-0080028A KR20020080028A KR100413379B1 KR 100413379 B1 KR100413379 B1 KR 100413379B1 KR 20020080028 A KR20020080028 A KR 20020080028A KR 100413379 B1 KR100413379 B1 KR 100413379B1
Authority
KR
South Korea
Prior art keywords
desulfurization agent
weight
hydrogen sulfide
manganese
desulfurization
Prior art date
Application number
KR10-2002-0080028A
Other languages
Korean (ko)
Other versions
KR20030007324A (en
Inventor
오광중
손병현
최은화
조상원
Original Assignee
오광중
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오광중 filed Critical 오광중
Priority to KR10-2002-0080028A priority Critical patent/KR100413379B1/en
Publication of KR20030007324A publication Critical patent/KR20030007324A/en
Application granted granted Critical
Publication of KR100413379B1 publication Critical patent/KR100413379B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0248Compounds of B, Al, Ga, In, Tl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate

Abstract

본 발명은 고온에서 황화수소를 제거하기 위한 탈황제(엠에이) 및 이의 제조방법에 관한 것이다.The present invention relates to a desulfurization agent (MA) for removing hydrogen sulfide at a high temperature and a method for preparing the same.

본 발명의 황화수소 제거용 탈황제는 MnCO380중량% + Al2O315∼18중량% + 벤토나이트 5∼2중량%로 이루어지고, 분말상태의 각 시료를 혼합하는 단계; 적정량의 탈이온수를 가해 슬러리 상태로 만드는 단계; 항량이 될 때까지 건조하는 단계; 소성하는 단계; 경화하는 단계; 및 경화된 탈황제를 분쇄 및 체거름 하는 단계를 포함하므로써 이루어지는 것으로, 본 발명의 탈황제는 고온에서 우수한 황화수소 제거효과가 있다.Desulfurization agent for removing hydrogen sulfide of the present invention comprises 80% by weight of MnCO 3 + 15 to 18 % by weight of Al 2 O 3 + 5 to 2 % by weight of bentonite, mixing each sample in a powder state; Adding an appropriate amount of deionized water to make a slurry; Drying until constant weight; Firing; Curing; And by pulverizing and sieving the cured desulfurization agent, the desulfurization agent of the present invention has excellent hydrogen sulfide removal effect at high temperature.

Description

황화수소 제거용 재생 가능한 망간계 탈황제(엠에이) 및 이의 제조방법{Regenerable manganese-based sorbents(MA) for removal of hydrogen sulfide and method for preparing the same}Regenerable manganese-based sorbents (MA) for removal of hydrogen sulfide and method for preparing the same}

본 발명은 황화수소를 제거하고 재생이 가능한 효율적인 탈황제 및 이의 제조방법에 관한 것이다.The present invention relates to an efficient desulfurization agent capable of removing hydrogen sulfide and regeneration and a method for producing the same.

석탄은 세계적으로 매장량이 풍부하며 공급의 안정성과 경제성 측면에서 유리한 조건을 가지고 있음에도 불구하고 현재의 석탄 직접연소방식으로는 지속적인 이용증가가 어려우므로 CCT(Clean coal Technology)라 불리는 석탄의 청정이용기술개발을 통한 합리적인 석탄활용 기술개발이 절실히 필요한 실정이다.Although coal has abundant reserves worldwide and favorable conditions in terms of supply stability and economic feasibility, it is difficult to continuously increase the use of current coal direct combustion method. Therefore, the development of clean use technology of coal called CCT (Clean coal Technology) The development of rational coal utilization technology is urgently needed.

이러한 석탄 신발전방식 중 석탄가스화복합발전(IGCC:Integrated Gasification Combined Cycle) 기술은 환경친화성, 연료확보 및 열효율 측면에서 미분탄 화력발전을 대체할 수 있는 매우 우수한 발전방식이므로 여러 국가에서 기술개발 및 실증사업이 꾸준히 지속되어 심화단계까지 이르고 있다.The Integrated Gasification Combined Cycle (IGCC) technology is one of the best alternatives to pulverized coal-fired power generation in terms of environmental friendliness, fuel security and thermal efficiency. The business continues steadily, reaching the deepening stage.

석탄가스화복합발전은 석탄을 산소와 함께 고온, 고압(1200∼1500℃, 25kg/㎠)의 가스화기에서 반응시켜 가스화한 후 집진장치와 탈황장치에서 분진과 황성분을 제거한 청정 석탄가스를 가스터빈 연료로 사용한다. 이 시스템의 열효율은 45∼50%로 종래의 미분탄 화력발전의 열효율(30∼33%)보다 15%이상 높은 것으로 평가되고 있으며, 특히 CO2배출량이 10%이상 억제되어 점점 강화되는 CO2배출 규제 측면에서도 매우 바람직하다.The coal gasification combined cycle powers coal with oxygen in a gasifier of high temperature and high pressure (1200 ~ 1500 ℃, 25kg / ㎠) and gasifies it, and clean coal gas which removes dust and sulfur components from dust collector and desulfurization gas is gas turbine fuel. Used as. The thermal efficiency of the system has been evaluated to be more than 15% higher than the thermal efficiency by 45-50% (30-33%) of a conventional pulverized coal-fired power generation, in particular CO 2 emissions regulations are increasingly enhanced CO 2 emission is suppressed by more than 10% It is also very preferable from the viewpoint.

석탄내 함유된 재, 황, 질소, 알칼리금속과 여러 가지 미량의 오염물질 등에 의해 오염된 연료가스는 가스터빈에 침적하거나 부식을 일으켜 시스템의 내구성을 단축시키고 환경문제를 유발하므로 이러한 오염물질을 반드시 제거하여야 한다.Fuel gases contaminated with ash, sulfur, nitrogen, alkali metals and various trace contaminants in coal are deposited or corroded in gas turbines, which shortens the durability of the system and causes environmental problems. Should be removed.

미국에서는 DOE(Department of Energy) 산하의 METC(Morgantown Energy Technology Center) 주관으로 약 20년 전부터 여러 연구기관, 기업체, 대학 등의 공동연구를 통해 고온건식 탈황제와 공정의 개발이 표준화 및 상업화 수준에 이르고 있다.In the US, the METC (Morgantown Energy Technology Center) under the Department of Energy (DOE) has been involved in research and development of high-temperature dry desulfurizers and processes for about 20 years. have.

지금까지 연구된 금속산화물 탈황제는 Zn, Fe, Cu, Ca, Mg, V, Mn, Ni, Co,Sn, Pb, Bi, Cd, Mo, W, Cr 등이며 이러한 각각의 산화물들은 고온가스 정화에 장점과 단점을 모두 가지고 있다.The metal oxide desulfurization agents studied so far are Zn, Fe, Cu, Ca, Mg, V, Mn, Ni, Co, Sn, Pb, Bi, Cd, Mo, W, Cr and so on. It has both advantages and disadvantages.

여러 실험결과에 의하면 석탄가스 중 황화수소(H2S)의 농도를 20ppmv이하로 줄일 수 있는 1차 활성성분으로 Zn, Fe, Cu, Mn, Ce 등을 들 수 있고 첨가제로는 Cu, Fe, Mn, Cr, Ce, Co, Mo, Ni 등이 있으며 지지체로는 Al2O3,SiO2,TiO2,ZrO2등을 사용할 수 있는 것으로 보고되고 있다(류청걸 등, Chemical Industry and Technology, 1998).또한 탈황제의 제조에 있어 금속산화물을 합성하는 조건에는 탈황제의 소성온도, 소성시간, 경화온도, 경화시간 그리고 바인더(binder)의 종류 및 함량 등이 중요한 변수로 작용한다. 이 중에서 바인더의 종류나 첨가제가 탈황제의 내마모성 향상에 중요한 인자로 작용하는 것으로 알려져 있다.바인더는 유기성 바인더와 무기성 바인더로 나눌 수 있는데, 유기성 바인더의 경우는 탈황제의 성형 과정에서 입자의 모양을 결정하기 위해서 사용되며, 무기성 바인더는 복합금속 산화물의 고체-고체간 결합을 돕기 위해서 사용된다. 따라서 입자의 성형방법에 따라 유기성 바인더와 무기성 바인더의 적절한 선택과 배합방법이 필요하다.According to various experiments, Zn, Fe, Cu, Mn, Ce, etc. are the primary active ingredients that can reduce the concentration of hydrogen sulfide (H 2 S) in coal gas below 20ppmv, and the additives include Cu, Fe, Mn , Cr, Ce, Co, Mo, Ni and the like, Al 2 O 3, SiO 2, TiO 2, ZrO 2 and the like is reported that can be used (Ryu Cheong-gal, Chemical Industry and Technology, 1998). In addition, in the preparation of the metal oxide in the preparation of the desulfurization agent, the sintering temperature, the sintering time, the cure temperature, the cure time and the type and content of the binder (binder) act as important variables. It is known that the type or additive of the binder acts as an important factor for improving the wear resistance of the desulfurization agent. The binder can be divided into an organic binder and an inorganic binder. In the case of the organic binder, the shape of the particles is determined during molding of the desulfurization agent. Inorganic binders are used to assist solid-solid bonding of the composite metal oxides. Therefore, there is a need for an appropriate selection and blending method of an organic binder and an inorganic binder according to the molding method of the particles.

지금까지 개발된 탈황제들 중에서 상용화단계에 도달한 것은 혼합 아연계 탈황제이며, 최근들어 아연계 탈황제의 단점을 극복하기 위한 시도로 망간계 탈황제의 제조와 실험에 많은 관심이 집중되고 있다.Among the desulfurization agents developed so far, the commercialization stage is a mixed zinc desulfurization agent, and in recent years, much attention has been focused on the preparation and experimentation of manganese desulfurization agents in an attempt to overcome the disadvantages of the zinc desulfurization agent.

Westmoreland 등(Environmental Science Technology, 22(5), 1977)은 속도론적 연구를 하여 망간산화물의 안정성과 1000℃ 이상의 고온에서 탈황능을 예측하였다. 이러한 속도론적 고찰로부터 300∼800℃에서 H2S와 MnO, CaO, ZnO 그리고 V2O3와의 초기 반응속도의 상대적인 크기는 MnO > CaO > ZnO > V2O3였다. 그러므로, 이 연구에서 연구자들은 MnO가 고온탈황공정에 가장 효과적이라는 결론을 내렸다.Westmoreland et al. (Environmental Science Technology, 22 (5), 1977) conducted a kinetic study to predict the stability of manganese oxides and desulfurization at temperatures above 1000 ° C. From these kinetic considerations, the relative magnitudes of the initial reaction rates between H 2 S and MnO, CaO, ZnO and V 2 O 3 at 300 to 800 ° C were MnO>CaO>ZnO> V 2 O 3 . Therefore, in this study, the researchers concluded that MnO was most effective for high temperature desulfurization processes.

Turkdogan and Olsson 등(Proceedings of the Third International Iron and Steel Congress ASM, pp.277-288, 1979)은 고온탈황공정에서 망간산화물의 이용가능성을 실험하여 Mn과 alumina를 3:1의 무게비로 혼합한 혼합물은 800℃의 H2-H2S 가스 혼합물로부터 황성분을 제거할 수 있고 공기로 재생할 수 있음을 발견했다.Turkdogan and Olsson et al. (Proceedings of the Third International Iron and Steel Congress ASM, pp. 277-288, 1979) have tested the availability of manganese oxides at high temperature desulfurization and mix Mn and alumina in a 3: 1 weight ratio. It has been found that sulfur can be removed from the H 2 -H 2 S gas mixture at 800 ° C. and regenerated with air.

Hepworth 등(Energy Fuels, 7(6), 1993)은 열역학적 관점에서 고온연료가스로부터 황을 제거하기 위한 단일 혹은 복합금속 탈황제의 거동을 평가하기 위해 망간, 철, 니켈, 마그네슘, 구리, 나트륨, 아연계 금속에 대한 연구를 행한 바 환원성이 낮으며 넓은 온도 범위에 걸쳐 사용할 수 있는 최고의 금속은 망간산화물이라고 평가하였다.Hepworth et al. (Energy Fuels, 7 (6), 1993) reported that, from a thermodynamic perspective, to evaluate the behavior of single or complex metal desulfurization agents to remove sulfur from hot fuel gases, manganese, iron, nickel, magnesium, copper, sodium, Studies on linked metals have shown that manganese oxide is the best metal with low reducibility and can be used over a wide temperature range.

황성분을 제거하기 위하여 IGCC 발전의 핵심기술이라 할 수 있는 고온건식 탈황기술을 상업화하는데 있어 우선적으로 극복해야 할 과제는 물리화학적 특성이 서로 잘 조화된 재생 가능한 탈황제의 개발이다.The first challenge to commercialize high-temperature dry desulfurization technology, which is the core technology of IGCC power generation, is to develop a renewable desulfurization agent with good physical and chemical properties.

망간계 탈황제는 실공정의 가스화기에서 발생하는 모든 연료가스에 적용하여도 원소 망간으로의 환원저항이 크며 용융온도가 1,232℃이므로 고온에서도 조업할 수 있다.Manganese-based desulfurization agents can be operated at high temperatures because they have a high reduction resistance to elemental manganese and a melting temperature of 1,232 ℃ even when applied to all fuel gases generated in the actual gasifier.

또한, 아연계 탈황제보다 반응속도가 훨씬 빠르다는 장점이 있다.In addition, there is an advantage that the reaction rate is much faster than the zinc-based desulfurization agent.

이에 본 발명에서는 석탄가스화복합발전에서 발생하는 황화수소를 고온에서 흡착 제거할 수 있는 망간계 탈황제 및 이를 제조하는 방법을 제공하는 것이다.Accordingly, the present invention provides a manganese-based desulfurization agent capable of adsorbing and removing hydrogen sulfide generated from coal gasification combined cycle power generation at a high temperature, and a method of manufacturing the same.

상기 목적을 달성하기 위한 본 발명의 탈황제 조성은 MnCO380중량% 와 Al2O315∼18중량% 및 벤토나이트 5∼2중량%로 탈황제를 제조하는 것으로, 본 발명의 탈황제 제조방법은 분말상태의 각 시료를 혼합하는 단계; 적정량의 탈이온수를 가해 슬러리 상태로 만드는 단계; 항량이 될 때까지 건조하는 단계; 소성하는 단계; 경화하는 단계; 및 경화된 탈황제를 분쇄 및 체거름 하는 단계를 포함하므로써 이루어진다.Desulfurization agent composition of the present invention for achieving the above object is to prepare a desulfurization agent in 80% by weight of MnCO 3 and 15 to 18 % by weight of Al 2 O 3 and 5 to 2 % by weight of bentonite, the method for producing a desulfurizing agent of the present invention is powder Mixing each sample of; Adding an appropriate amount of deionized water to make a slurry; Drying until constant weight; Firing; Curing; And pulverizing and sieving the cured desulfurization agent.

도 1은 본 발명의 탈황제 제조공정을 개략적으로 도시한 공정도1 is a process diagram schematically showing a desulfurization agent manufacturing process of the present invention

도 2는 본 발명의 조성물을 이용하여 황화수소 제거량을 파과곡선(Breakthrough Curve)으로 나타낸 그래프2 is a graph showing a breakthrough curve of hydrogen sulfide removal using the composition of the present invention.

이하 본 발명을 좀 더 구체적으로 살펴보면 다음과 같다.Looking at the present invention in more detail as follows.

황화수소와 반응성을 가지는 망간산화물과 철산화물에 의한 황화수소 제거 메카니즘은 환원과 황화단계로 나눌 수 있으며, 먼저 가스기류내 포함된 수소나 일산화탄소에 의해 MaOb→ McOd(여기에서, b/a 〉d/c, M은 망간이나 철)로 환원이 일어나고 McOd가 H2S와 반응하여 MS로 황화반응이 일어난다.Mechanisms of hydrogen sulfide removal by manganese oxides and iron oxides that are reactive with hydrogen sulfide can be divided into reduction and sulfidation stages. First, M a O b → M c O d (where b / a> d / c, M is manganese or iron) and M c O d reacts with H 2 S to sulfide into MS.

또한, MnO는 수소에 의한 환원반응의 평형상수가 매우 작기 때문에 금속망간으로의 환원이 거의 일어나지 않는 반면 Fe2O3는 환원성이 커서 수소나 일산화탄소에 의해 쉽게 환원된다.In addition, since MnO has a very small equilibrium constant of the reduction reaction by hydrogen, reduction to manganese rarely occurs, whereas Fe 2 O 3 has a high reducibility and is easily reduced by hydrogen or carbon monoxide.

대부분의 금속산화물 탈황제의 재생은 공기나 산소가 부족한 공기, 희석제로서 스팀을 포함한 공기/스팀 혼합가스를 이용하며 온도, 산소농도, 재생가스 특성과 같은 재생조건의 조절을 통해 탈황제의 물리적 내구성과 반응성을 유지하는 것이 필요하다.Most regeneration of metal oxide desulfurization agents uses air / steam mixture gas including steam as air or oxygen-deficient air and diluent, and physical durability and reactivity of desulfurization agent by adjusting regeneration conditions such as temperature, oxygen concentration and regeneration gas characteristics. It is necessary to maintain.

재생에서 과다한 온도상승은 탈황제의 신터링을 일으켜 기공도의 손실과 반응성의 저하를 가져오며 낮은 온도에서의 재생은 황산염의 생성을 초래하는데 황산염은 한번 생성되면 분해가 어렵고 산소의 확산장벽으로 작용하므로 바람직하지 못하다.Excessive temperature rise in regeneration leads to sintering of the desulfurization agent, which leads to loss of porosity and decrease in reactivity. Regeneration at low temperature leads to the formation of sulphate, which is difficult to decompose once produced and acts as a diffusion barrier for oxygen. Not desirable

따라서, 재생반응에서 온도조절과 산소농도의 조절을 통한 hot spot의 방지로 황산염 생성과 신터링효과를 최소화하는 최적의 운전조건을 찾는 것이 중요하다.Therefore, it is important to find the optimal operating conditions to minimize sulfate formation and sintering effect by preventing hot spots through temperature control and oxygen concentration control in regenerative reaction.

망간계 탈황제의 환원, 황화, 재생시 반응메카니즘은 다음과 같다.Reaction mechanisms for reduction, sulfidation and regeneration of manganese desulfurization agents are as follows

반응식 1Scheme 1

(MnO2,Mn2O, Mn3O4) + H2(or CO) → MnO + H2O(MnO 2, Mn 2 O, Mn 3 O 4 ) + H 2 (or CO) → MnO + H 2 O

반응식 1은 망간산화물이 환원성가스와 반응하여 환원되는 과정을 나타낸 것이다.Scheme 1 shows a process in which manganese oxide is reduced by reacting with a reducing gas.

반응식 2Scheme 2

MnO + H2S → MnS + H2OMnO + H 2 S → MnS + H 2 O

반응식 2는 망간산화물이 환원 후 황화수소와 반응하여 황화수소를 제거하는 공정을 나타낸 것이다.Scheme 2 shows a process in which manganese oxide removes hydrogen sulfide by reacting with hydrogen sulfide after reduction.

반응식 3Scheme 3

2MnS + 7/2O2→ Mn2O3+ 2SO2 2MnS + 7 / 2O 2 → Mn 2 O 3 + 2SO 2

반응식 3은 망간산화물이 황화반응 후 산소에 의해 재생되는 공정을 나타낸 것이다.Scheme 3 shows a process in which manganese oxide is regenerated by oxygen after sulfidation.

제조예Production Example

도 1의 탈황제 제조공정을 살펴보면, 망간계 탈황제 제조에 사용한 물질은 MnCO380중량%, Al2O315∼18중량%, 벤토나이트 5∼2중량% 등이다.Looking at the desulfurization agent manufacturing process of Figure 1, the material used to prepare the manganese-based desulfurization agent is 80% by weight of MnCO 3 , 15 to 18 % by weight of Al 2 O 3 , 5 to 2 % by weight of bentonite.

위 시약을 이용하여 1차 활성성분이 망간계인 MA(MnCO3, Al2O3, 벤토나이트)탈황제를 제조하였으며, 상기된 MA의 탈황제 명칭은 본 출원인의 편의상 명명한 것이다.지금까지 개발된 여러 가지 탈황제에 사용된 지지체로는 Al2O3, SiO2, TiO2, ZrO2등이 있는데 본 발명에서는 지지체로 Al2O3를 사용하였고, Al2O3는 다른 지지체에 비해 가격이 저렴하고 성능도 다른 지지체에 비해 떨어지지 않으면서 Al2O3의 탈황제 내에서의 역할은 탈황제 내의 기공도를 유지하여 반응가스인 황화수소의 원활한 확산을 유도하여 반응성의 향상을 꾀하는데 목적이 있다.또한 본 발명에 사용된 바인더(binder)로는 비표면적이 매우 넓은 콜로이드성 광물이며, 양이온포착제인 몬모릴로나이트 함량이 많은 점토질 재료인 벤토나이트를 사용하였으며, 이러한 몬모릴로나이트를 지닌 점토는 자연적으로 응고되는 경향이 있으며 비교적 강력한 응고제와 결합제이고, 이러한 점토성 바인더인 벤토나이트는 고온에서도 결합이 파괴되지 않고 입자들이 강한 결합을 유지하는 특징이 있어, 본 발명에서는 바인더로서 벤토나이트를 사용하였다.The above reagent was used to prepare a desulfurization agent of MA (MnCO 3 , Al 2 O 3 , bentonite) whose primary active ingredient is manganese, and the name of the desulfurization agent of MA is named for convenience of the applicant. Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2, etc. are used for the desulfurization agent. In the present invention, Al 2 O 3 is used as the support, and Al 2 O 3 is inexpensive and has a higher performance than other supports. The role of Al 2 O 3 in the desulfurization agent without falling down compared to other supports is to maintain the porosity in the desulfurization agent to induce a smooth diffusion of hydrogen sulfide, a reaction gas, to improve the reactivity. The binder used was a colloidal mineral having a very large specific surface area and bentonite, a clay material having a high content of montmorillonite, a cationic trapping agent, was used. Clay having a tendency to coagulate naturally and is a relatively strong coagulant and a binder. Bentonite, such a clay binder, is characterized in that the bond is not broken even at a high temperature and the particles maintain a strong bond. Was used.

본 발명의 탈황제의 제조방법에 대하여 살펴본다.It looks at the manufacturing method of the desulfurization agent of the present invention.

분말상태의 MnCO380중량%, Al2O315∼18중량%, 벤토나이트 5∼2중량%의 시료를 각각의 무게비율에 따라 혼합한 후 탈이온수를 가해 슬러리 상태로 만들어 건조오븐(drying oven)에서 항량이 될 때까지 건조한 다음(110℃), 400℃에서 5시간 소성시켜 망간카보네이트(manganese carbonate)를 분해하였다.80% by weight of powdered MnCO 3 , 15-18% by weight of Al 2 O 3 and 5-2% by weight of bentonite were mixed according to the weight ratio, and then deionized water was added to make a slurry, followed by drying oven. ) Was dried until it became a constant (110 ° C.), and calcined at 400 ° C. for 5 hours to decompose manganese carbonate.

소성 후, 400℃로 예열된 고온로에 옮겨서 경화온도(1000∼1200℃)까지 승온시킨 다음 공기분위기(약 1ℓ/min)하에서 2∼4시간 동안 경화시켰다.After firing, the mixture was transferred to a high temperature furnace preheated to 400 ° C., heated to a curing temperature (1000 to 1200 ° C.), and cured for 2 to 4 hours under an air atmosphere (about 1 L / min).

최종 생성물은 분쇄한 후 입경별로 체거름하여 20/40mesh는 황화와 재생실험에 이용하고 60mesh 이하의 미세한 입자는 탈황제의 물성 분석에 이용하였다.탈황제의 제조시 사용된 지지체와 바인더의 물질명 및 구성 함량이 탈황제의 특성 및 반응성이 결정적으로 영향을 미치기 때문에 이에 대한 예를 살펴보기로 한다.[표 1]은 경화온도와 시간이 탈황제의 강도에 미치는 영향을 비교한 도표이다. 이 실험조건은 MnCO380중량%, Al2O315중량%, 벤토나이트 5중량%를 이용하여 제조한 탈황제를 경화온도를 1000∼1200℃로 변화시키면서 경화시간(2∼4시간)에 따른 탈황제의 강도변화를 살펴본 것이다.[표 1]에서 사용한 Al(%)는 탈황제의 강도를 살펴보기 위해 구멍이 3개 뚫린 내마모도 장치(three jet hole attrition tester)를 이용하여 적정량의 탈황제를 충진한 후 공기를 이용하여 5시간 유동화 시킨 다음 마멸손실(attrition loss)정도를 중량%로 나타낸 것으로서, 수치가 적으면 탈황제의 마멸정도가 적어 강도가 큰 탈황제를 의미한다.[표 1]에서 알 수 있듯이 경화시간이 증가하여도 탈황제의 강도에 미치는 영향은 미미한 것으로 나타났으나(약 2∼3%증가) 온도에는 영향을 크게 받는 것으로 나타났다.그러므로, 유동층 반응기와 같이 탈황제의 마멸이 심한 반응기에 사용할 탈황제를 제조할 경우 경화온도를 증가시키면 원하는 강도를 갖는 맞춤형 탈황제를 제조할 수 있을 것으로 판단된다.[표 1] 경화온도와 시간이 탈황제의 강도에 미치는 영향 [표 2]는 경화온도와 벤토나이트의 함량이 탈황제의 강도에 미치는 영향을 비교한 도표이다. 실험조건은 MnCO380중량%로 고정하고 Al2O3(15∼18중량%)와 벤토나이트(5∼2중량%)의 함량을 변화시키면서 2시간 경화하여 제조한 탈황제를 경화온도에 따른 탈황제의 강도변화를 살펴 본 것이다.이 표에서 사용한 Al(%)는 [표 1]과 같다.[표 2]에서 알 수 있듯이 탈황제의 강도는 벤토나이트의 함량에 크게 영향을 받는 것으로 나타났다(12.7∼19.2%). 그러므로 유동층, 이동층 반응기와 같이 탈황제의 마멸이 심한 반응기에 사용할 탈황제를 제조할 경우 벤토나이트의 함량을 증가시키면 원하는 강도를 갖는 탈황제를 제조할 수 있는 것이다.[표 2] 벤토나이트의 함량이 탈황제의 강도에 미치는 영향 The final product was pulverized and sieved by particle diameter, 20/40 mesh was used for sulfiding and regeneration experiments, and fine particles of 60 mesh or less were used for the physical property analysis of the desulfurization agent. Since the characteristics and reactivity of this desulfurization agent have a decisive influence, let's take a look at an example. [Table 1] is a chart comparing the effect of curing temperature and time on the strength of desulfurization agent. This experimental condition is based on the desulfurization agent prepared by using 80% by weight of MnCO 3 , 15% by weight of Al 2 O 3 and 5% by weight of bentonite while changing the curing temperature to 1000 ~ 1200 ℃. The Al (%) used in [Table 1] is a three-jet hole attrition tester to check the strength of the desulfurization agent. After 5 hours of fluidization using the attrition loss (attrition loss) is shown in weight percent, the smaller the value means the desulfurization agent having a higher strength due to less wear of the desulfurization agent. As shown in [Table 1] curing time This increase was found to have a negligible effect on the strength of the desulfurizer (approximately 2-3% increase), but was significantly affected by temperature. If the production of the desulfurizing agent used, increasing the cure temperature it is determined to be able to manufacture a custom desulfurizing agent having a desired strength. [Table 1] Effect of curing temperature and time on strength of desulfurization agent [Table 2] is a chart comparing the effect of curing temperature and bentonite content on the strength of the desulfurization agent. Experimental conditions were fixed to 80% by weight of MnCO 3 and the desulfurization agent prepared by curing for 2 hours while varying the content of Al 2 O 3 (15-18% by weight) and bentonite (5-2% by weight) of the desulfurization agent according to the curing temperature The Al (%) used in this table is shown in [Table 1]. As can be seen from [Table 2], the strength of the desulfurization agent was significantly influenced by the content of bentonite (12.7 ~ 19.2%). ). Therefore, when the desulfurization agent to be used in a reactor with high desulfurization wear, such as a fluidized bed, a moving bed reactor, increasing the content of bentonite can produce a desulfurization agent having a desired strength. [Table 2] Effect of Bentonite Content on the Desulfurization Strength

실시예Example

도 2는 온도 700, 800℃에서 정규화 황화시간 t/t*에 따른 배출 황화수소의 농도를 나타낸 것이다.Figure 2 shows the concentration of the exhaust hydrogen sulfide according to the normalized sulfide time t / t * at temperature 700, 800 ℃.

평형상수는 온도만의 함수이므로 0.75% H2S-20% H2-79% N2, 혼합가스를 유량 200㎖/min으로 흘려보내면서 온도에 따른 황화반응을 수행하였다. 도 2에서 볼 수 있듯이, 망간계 탈황제의 황화반응은 가역반응임을 알 수 있으며 파과시간(breakthrough time) 이전의 배출 황화수소 농도를 평형황화수소 농도라고 볼 수 있다.Since the equilibrium constant is a function of temperature only, the sulfidation reaction was carried out with a flow rate of 0.75% H 2 S-20% H 2 -79% N 2 and a mixed gas at a flow rate of 200 ml / min. As can be seen in Figure 2, it can be seen that the sulfidation reaction of the manganese-based desulfurization agent is a reversible reaction, and the exhaust hydrogen sulfide concentration before the breakthrough time can be regarded as the equilibrium hydrogen sulfide concentration.

온도 700℃에서의 평형농도는 엠에이(MA) 탈황제의 경우는 30ppmv로 나타났으며, 부분전환율은 0.82로 탈황제의 이용효율과 성능면에서 자연산 망간광석보다 본 발명에서 제조한 엠에이 탈황제가 더 좋은 결과를 얻었다.The equilibrium concentration at the temperature of 700 ℃ was 30ppmv for the MA desulfurization agent, and the partial conversion rate was 0.82. Got good results.

온도 800℃에서의 평형농도는 엠에이(MA) 탈황제의 경우는 90ppmv로 나타나 700℃의 경우와 비슷한 경향을 보였고 부분 전환율은 0.92로 나타나 탈황제 이용 효율면에서 700℃보다 향상된 결과를 보였다.The equilibrium concentration at 800 ℃ was 90ppmv for the MA desulfurizer and showed a similar tendency to that of 700 ℃, and the partial conversion was 0.92.

본 발명은 황화수소를 고온에서 흡착 제거하는 망간계 탈황제 및 이를 제조하는 방법에 관한 것으로, 모든 연료가스에 적용하여도 원소망간으로서의 환원저항이 크고, 고온에서도 조업할 수 있으며, 특히 반응속도가 빠른 장점이 있다.The present invention relates to a manganese-based desulfurization agent that adsorbs and removes hydrogen sulfide at a high temperature, and a method of manufacturing the same. The present invention has a high reduction resistance as elemental manganese even when applied to all fuel gases, and can operate at high temperatures. There is this.

Claims (2)

석탄연료가스로부터 망간계 산화물을 주성분으로 하는 황화수소 제거용 탈황제에 있어서, 탈황제는 MnCO380중량%에 지지체 Al2O315∼18중량%, 바인더 벤토나이트 5∼2중량%로 이루어지고 온도범위는 550∼800℃에서 황화수소를 제거하는 황화수소 제거용 탈황제.In the desulfurization agent for removing hydrogen sulfide mainly containing manganese oxide from coal fuel gas, the desulfurization agent is composed of 80% by weight of MnCO 3 , 15-18% by weight of support Al 2 O 3 , and 5-2% by weight of binder bentonite. Desulfurization agent for hydrogen sulfide removal which removes hydrogen sulfide at 550-800 degreeC. MnCO380중량%, Al2O315∼18중량%, 벤토나이트 5∼2중량%를 원료로 하는 탈황제는 구성원료를 혼합하는 혼합단계; 탈이온수를 가해 슬러리 상태로 만드는 단계; 상기 시료를 항량이 될 때까지 110℃에서 건조하는 건조단계; 건조된 시료를 400℃에서 소성하는 소성단계; 소성된 시료를 1000∼1200℃에서 경화하는 경화단계; 경화된 탈황제를 분쇄 및 체거름 하는 분쇄단계를 포함하여 제조되는 것을 특징으로 하는 황화수소 제거용 탈황제의 제조방법.A desulfurization agent having 80% by weight of MnCO 3 , 15-18% by weight of Al 2 O 3 , and 5-2% by weight of bentonite as a raw material; Adding deionized water to make slurry; Drying the sample at 110 ° C. until it reaches a constant weight; Firing the dried sample at 400 ° C .; A curing step of curing the fired sample at 1000 to 1200 ° C; Method for producing a desulfurization agent for removing hydrogen sulfide, characterized in that it comprises a pulverizing step of pulverizing and sieving the cured desulfurization agent.
KR10-2002-0080028A 2002-12-14 2002-12-14 Regenerable manganese-based sorbents(MA) for removal of hydrogen sulfide and method for preparing the same KR100413379B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0080028A KR100413379B1 (en) 2002-12-14 2002-12-14 Regenerable manganese-based sorbents(MA) for removal of hydrogen sulfide and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0080028A KR100413379B1 (en) 2002-12-14 2002-12-14 Regenerable manganese-based sorbents(MA) for removal of hydrogen sulfide and method for preparing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0021020A Division KR100375331B1 (en) 2000-04-20 2000-04-20 Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same

Publications (2)

Publication Number Publication Date
KR20030007324A KR20030007324A (en) 2003-01-23
KR100413379B1 true KR100413379B1 (en) 2004-01-03

Family

ID=27729826

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0080028A KR100413379B1 (en) 2002-12-14 2002-12-14 Regenerable manganese-based sorbents(MA) for removal of hydrogen sulfide and method for preparing the same

Country Status (1)

Country Link
KR (1) KR100413379B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010151461A2 (en) * 2009-06-26 2010-12-29 Uop Llc Compounds and process for desulfurization of hot fuel gases

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105406064B (en) * 2015-10-31 2017-12-08 华北理工大学 The high added value conversion of nanoscale spent oxide desulfurizing agent and renovation process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010151461A2 (en) * 2009-06-26 2010-12-29 Uop Llc Compounds and process for desulfurization of hot fuel gases
WO2010151461A3 (en) * 2009-06-26 2011-04-21 Uop Llc Compounds and process for desulfurization of hot fuel gases

Also Published As

Publication number Publication date
KR20030007324A (en) 2003-01-23

Similar Documents

Publication Publication Date Title
Vamvuka et al. Flue gas desulfurization at high temperatures: A review
Liu et al. A review of sorbents for high-temperature hydrogen sulfide removal from hot coal gas
Meng et al. In bed and downstream hot gas desulphurization during solid fuel gasification: A review
Ohtsuka et al. Recent progress in Japan on hot gas cleanup of hydrogen chloride, hydrogen sulfide and ammonia in coal-derived fuel gas
CN111093828A (en) Desulfurization catalyst, method for producing desulfurization catalyst, and desulfurization method using desulfurization catalyst
CN105289648A (en) Globular low temperature flue gas denitration catalyst as well as preparation method and application thereof
ITTO950220A1 (en) DURABLE ABSORBENTS CONTAINING ZINC OXIDE FOR THE DESULPHORATION OF CARBON GAS.
US4091076A (en) Method of removing sulfur emissions from a fluidized-bed combustion process
Atimtay Cleaner energy production with integrated gasification combined cycle systems and use of metal oxide sorbents for H2S cleanup from coal gas
US5753198A (en) Hot coal gas desulfurization
CN101475844B (en) Preparation of high temperature gas desulfurizer
Zhang et al. Performance of iron ore oxygen carrier modified by biomass ashes in coal‐fueled chemical looping combustion
KR100413379B1 (en) Regenerable manganese-based sorbents(MA) for removal of hydrogen sulfide and method for preparing the same
CN113600198A (en) Biomass tar reforming catalyst and preparation method thereof
KR100413380B1 (en) Regenerable manganese-based sorbents(MOA) for removal of hydrogen sulfide and method for preparing the same
KR100413378B1 (en) Regenerable manganese-based sorbents(MFT) for removal of hydrogen sulfide and method for preparing the same
US20060067866A9 (en) Attrition resistant, zinc titanate-containing, reduced sorbents and methods of use thereof
JP4424653B2 (en) Gaseous mercury removing agent, method for producing the same, and gaseous mercury removing method
KR100375331B1 (en) Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same
CN114874818B (en) Blast furnace gas desulfurizer and preparation method and application thereof
Gao et al. Effect of blast furnace sludge on SO2 emissions from coal combustion
CN101767041A (en) Preparation method of flue gas denitration catalyst
TWI625305B (en) Preparing method of complex oxygen carrier
JP2633886B2 (en) Desulfurizing agent and method for treating hydrogen sulfide-containing gas using it
JP3762795B2 (en) Desulfurization agent and method for producing the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081216

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee