KR100375331B1 - Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same - Google Patents

Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same Download PDF

Info

Publication number
KR100375331B1
KR100375331B1 KR10-2000-0021020A KR20000021020A KR100375331B1 KR 100375331 B1 KR100375331 B1 KR 100375331B1 KR 20000021020 A KR20000021020 A KR 20000021020A KR 100375331 B1 KR100375331 B1 KR 100375331B1
Authority
KR
South Korea
Prior art keywords
desulfurization agent
weight
hydrogen sulfide
manganese
desulfurization
Prior art date
Application number
KR10-2000-0021020A
Other languages
Korean (ko)
Other versions
KR20010097176A (en
Inventor
오광중
손병현
이재정
정영헌
Original Assignee
오광중
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오광중 filed Critical 오광중
Priority to KR10-2000-0021020A priority Critical patent/KR100375331B1/en
Publication of KR20010097176A publication Critical patent/KR20010097176A/en
Application granted granted Critical
Publication of KR100375331B1 publication Critical patent/KR100375331B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide

Abstract

본 발명은 고온에서 황화수소를 제거하기 위한 탈황제 및 이의 제조방법에 관한 것이다.The present invention relates to a desulfurization agent for removing hydrogen sulfide at a high temperature and a method for preparing the same.

본 발명의 황화수소 제거용 탈황제는 MnCO375중량%와 TiO220중량% 및 벤토나이트 5중량%로 이루어지고, 분말상태의 각 시료를 혼합하는 단계; 항량이 될 때까지 건조하는 단계; 소성하는 단계; 경화하는 단계; 및 경화된 탈황제를 분쇄 및 체거름 하는 단계를 포함하므로써 이루어지는 것으로, 본 발명의 탈황제는 고온에서 우수한 황화수소 제거효과가 있다.Desulfurization agent for removing hydrogen sulfide of the present invention comprises 75% by weight of MnCO 3, 20% by weight of TiO 2 and 5% by weight of bentonite, mixing each sample in a powder state; Drying until constant weight; Firing; Curing; And by pulverizing and sieving the cured desulfurization agent, the desulfurization agent of the present invention has excellent hydrogen sulfide removal effect at high temperature.

Description

황화수소 제거용 재생 가능한 망간계 탈황제(엠티) 및 이의 제조방법{Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same}Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same}

본 발명은 황화수소를 제거하고 재생이 가능한 효율적인 탈황제 및 이의 제조방법에 관한 것이다.The present invention relates to an efficient desulfurization agent capable of removing hydrogen sulfide and regeneration and a method for producing the same.

국내의 전력생산은 1996년 현재 원자력 발전이 36%, 화력발전이 28%를 차지하고 있으며 화력발전에 이용되는 석탄 사용량은 2000년 초기에 약 36%까지 증가될 것으로 전망된다.Domestic electricity production accounts for 36% of nuclear power generation and 28% of thermal power generation as of 1996, and coal consumption for thermal power generation is expected to increase to about 36% in early 2000.

석탄은 세계적으로 매장량이 풍부하며 공급의 안정성과 경제성 측면에서 유리한 조건을 가지고 있음에도 불구하고 현재의 석탄 직접연소방식으로는 지속적인 이용증가가 어려우므로 CCT(Clean coal Technology)라 불리는 석탄의 청정이용기술 개발을 통한 합리적인 석탄활용 기술개발이 절실히 필요한 실정이다.Although coal has abundant reserves worldwide and favorable conditions in terms of supply stability and economic feasibility, it is difficult to continuously increase the utilization of the coal direct combustion method. The development of rational coal utilization technology is urgently needed.

이러한 석탄 신발전방식 중 석탄가스화 복합발전(IGCC:Integrated Gasification Combined Cycle) 기술은 환경친화성, 연료확보 및 열효율 측면에서 미분탄 화력발전을 대체할 수 있는 매우 우수한 발전방식이므로 여러 국가에서 기술개발 및 실증사업이 꾸준히 지속되어 심화단계까지 이르고 있다.The Integrated Gasification Combined Cycle (IGCC) technology is one of the best alternatives to pulverized coal-fired power generation in terms of environmental friendliness, fuel security and thermal efficiency. The business continues steadily, reaching the deepening stage.

석탄가스화 복합발전은 석탄을 산소와 함께 고온, 고압(1200∼1500℃, 25kg/㎠)의 가스화기에서 반응시켜 가스화한 후 집진장치와 탈황장치에서 분진과 황성분을 제거한 청정 석탄가스를 가스터빈 연료로 사용한다. 이 시스템의 열효율은 45∼50%로 종래의 미분탄 화력발전의 열효율(30∼33%)보다 15%이상 높은 것으로 평가되고 있으며, 특히 CO2배출량이 10%이상 억제되어 점점 강화되는 CO2배출 규제 측면에서도 매우 바람직하다.Coal gasification combined cycle powers coal with oxygen in a gasifier of high temperature and high pressure (1200 ~ 1500 ℃, 25kg / ㎠) and gasifies it, and removes dust and sulfur components from dust collector and desulfurization unit. Used as. The thermal efficiency of the system has been evaluated to be more than 15% higher than the thermal efficiency by 45-50% (30-33%) of a conventional pulverized coal-fired power generation, in particular CO 2 emissions regulations are increasingly enhanced CO 2 emission is suppressed by more than 10% It is also very preferable from the viewpoint.

석탄내 함유된 재, 황, 질소, 알칼리금속과 여러 가지 미량의 오염물질 등에 의해 오염된 연료가스는 가스터빈에 침적하거나 부식을 일으켜 시스템의 내구성을 단축시키고 환경문제를 유발하므로 이러한 오염물질을 반드시 제거하여야 한다.Fuel gases contaminated with ash, sulfur, nitrogen, alkali metals and various trace contaminants in coal are deposited or corroded in gas turbines, which shortens the durability of the system and causes environmental problems. Should be removed.

미국에서는 DOE(Department of Energy) 산하의 METC(Morgantown Energy Technology Center) 주관으로 약 20년 전부터 여러 연구기관, 기업체, 대학 등의공동연구를 통해 고온건식 탈황제와 공정의 개발이 표준화 및 상업화 수준에 이르고 있다.In the United States, the METC (Morgantown Energy Technology Center) under the Department of Energy (DOE) has been involved in research and development of high-temperature dry desulphurizers and processes for about 20 years. have.

지금까지 연구된 금속산화물 탈황제는 Zn, Fe, Cu, Ca, Mg, V, Mn, Ni, Co, Sn, Pb, Bi, Cd, Mo, W, Cr 등이며 이러한 각각의 산화물들은 고온가스 정화에 장점과 단점을 모두 가지고 있다.The metal oxide desulfurization agents studied so far are Zn, Fe, Cu, Ca, Mg, V, Mn, Ni, Co, Sn, Pb, Bi, Cd, Mo, W, Cr and others. It has both advantages and disadvantages.

여러 실험결과에 의하면 석탄가스 중 H2S의 농도를 20ppmv이하로 줄일 수 있는 1차 활성성분으로 Zn, Fe, Cu, Mn, Ce 등을 들 수 있고 첨가제로는 Cu, Fe, Mn, Cr, Ce, Co, Mo, Ni 등이 있으며 지지체로는 Al2O3,SiO2,TiO2,ZrO2등을 사용할 수 있는 것으로 보고되고 있다(류청걸 등, Chemical Industry and Technology, 1998).According to various experiments, Zn, Fe, Cu, Mn, Ce, etc. are the primary active ingredients that can reduce the concentration of H 2 S in coal gas below 20ppmv, and additives include Cu, Fe, Mn, Cr, Ce, Co, Mo, Ni, and the like, Al 2 O 3, SiO 2, TiO 2, ZrO 2 and the like has been reported that can be used (Ryu Cheong-gal, Chemical Industry and Technology, 1998).

지금까지 개발된 탈황제들 중에서 상용화단계에 도달한 것은 혼합 아연계 탈황제이며, 최근들어 아연계 탈황제의 단점을 극복하기 위한 시도로 망간계 탈황제의 제조와 실험에 많은 관심이 집중되고 있다.Among the desulfurization agents developed so far, the commercialization stage is a mixed zinc desulfurization agent, and in recent years, much attention has been focused on the preparation and experimentation of manganese desulfurization agents in an attempt to overcome the disadvantages of the zinc desulfurization agent.

Westmoreland 등(Environmental Science Technology, 22(5), 1977)은 속도론적 연구를 하여 망간산화물의 안정성과 1000℃ 이상의 고온에서 탈황능을 예측하였다. 이러한 속도론적 고찰로부터 300∼800℃에서 H2S와 MnO, CaO, ZnO 그리고 V2O3와의 초기 반응속도의 상대적인 크기는 MnO > CaO > ZnO > V2O3였다. 그러므로, 이 연구에서 연구자들은 MnO가 고온탈황공정에 가장 효과적이라는 결론을 내렸다.Westmoreland et al. (Environmental Science Technology, 22 (5), 1977) conducted a kinetic study to predict the stability of manganese oxides and desulfurization at temperatures above 1000 ° C. From these kinetic considerations, the relative magnitudes of the initial reaction rates between H 2 S and MnO, CaO, ZnO and V 2 O 3 at 300 to 800 ° C were MnO>CaO>ZnO> V 2 O 3 . Therefore, in this study, the researchers concluded that MnO was most effective for high temperature desulfurization processes.

Turkdogan and Olsson 등(Proceedings of the Third International Iron and Steel Congress ASM, pp.277-288, 1979)은 고온탈황공정에서 망간산화물의 이용가능성을 실험하여 Mn과 alumina를 3:1의 무게비로 혼합한 혼합물은 800℃의 H2-H2S 가스 혼합물로부터 황성분을 제거할 수 있고 공기로 재생할 수 있음을 발견했다.Turkdogan and Olsson et al. (Proceedings of the Third International Iron and Steel Congress ASM, pp. 277-288, 1979) have tested the availability of manganese oxides at high temperature desulfurization and mix Mn and alumina in a 3: 1 weight ratio. It has been found that sulfur can be removed from the H 2 -H 2 S gas mixture at 800 ° C. and regenerated with air.

Hepworth 등(Energy Fuels, 7(6), 1993)은 열역학적 관점에서 고온연료가스로부터 황을 제거하기 위한 단일 혹은 복합금속 탈황제의 거동을 평가하기 위해 망간, 철, 니켈, 마그네슘, 구리, 나트륨, 아연계 금속에 대한 연구를 행한 바 환원성이 낮으며 넓은 온도 범위에 걸쳐 사용할 수 있는 최고의 금속은 망간산화물이라고 평가하였다.Hepworth et al. (Energy Fuels, 7 (6), 1993) reported that, from a thermodynamic perspective, to evaluate the behavior of single or complex metal desulfurization agents to remove sulfur from hot fuel gases, manganese, iron, nickel, magnesium, copper, sodium, Studies on linked metals have shown that manganese oxide is the best metal with low reducibility and can be used over a wide temperature range.

황성분을 제거하기 위하여 IGCC 발전의 핵심기술이라 할 수 있는 고온건식 탈황기술을 상업화하는데 있어 우선적으로 극복해야 할 과제는 물리화학적 특성이 서로 잘 조화된 재생 가능한 탈황제의 개발이다.The first challenge to commercialize high-temperature dry desulfurization technology, which is the core technology of IGCC power generation, is to develop a renewable desulfurization agent with good physical and chemical properties.

망간계 탈황제는 실공정의 가스화기에서 발생하는 모든 연료가스에 적용하여도 원소 망간으로의 환원저항이 크며 용융온도가 1,232℃이므로 고온에서도 조업할 수 있다.Manganese-based desulfurization agents can be operated at high temperatures because they have a high reduction resistance to elemental manganese and a melting temperature of 1,232 ℃ even when applied to all fuel gases generated in the actual gasifier.

또한, 아연계 탈황제보다 반응속도가 훨씬 빠르다는 장점이 있다.In addition, there is an advantage that the reaction rate is much faster than the zinc-based desulfurization agent.

이에 본 발명에서는 석탄가스화 복합발전에서 발생하는 황화수소를 고온에서 흡착 제거할 수 있는 망간계 탈황제 및 이를 제조하는 방법을 제공하는 것이다.Accordingly, the present invention provides a manganese-based desulfurization agent capable of adsorbing and removing hydrogen sulfide generated at a coal gasification combined cycle at high temperature, and a method of manufacturing the same.

상기 목적을 달성하기 위한 본 발명의 탈황제 조성은 MnCO375중량%와 TiO220중량% 및 벤토나이트 5중량%로 이루어지며, 본 발명의 탈황제 제조방법은 분말상태의 각 시료를 혼합하는 단계; 항량이 될 때가지 건조하는 단계; 소성하는 단계; 경화하는 단계; 및 경화된 탈황제를 분쇄 및 체거름 하는 단계를 포함하므로써 이루어진다.Desulfurization agent composition of the present invention for achieving the above object is composed of 75% by weight of MnCO 3, 20% by weight of TiO 2 and 5% by weight of bentonite, the desulfurizing agent manufacturing method of the present invention comprises the steps of mixing each sample in the powder state; Drying until constant weight; Firing; Curing; And pulverizing and sieving the cured desulfurization agent.

도 1은 본 발명의 탈황제 제조공정을 개략적으로 도시한 공정도1 is a process diagram schematically showing a desulfurization agent manufacturing process of the present invention

도 2는 본 발명의 조성물을 이용하여 황화수소 제거량을 파과곡선(Breakthrough Curve)으로 나타낸 그래프2 is a graph showing a breakthrough curve of hydrogen sulfide removal using the composition of the present invention.

이하 본 발명을 좀 더 구체적으로 살펴보면 다음과 같다.Looking at the present invention in more detail as follows.

황화수소와 반응성을 가지는 망간산화물과 철산화물에 의한 황화수소 제거 메카니즘은 환원과 황화단계로 나눌 수 있으며, 먼저 가스기류내 포함된 수소나 일산화탄소에 의해 MaOb→ McOd(여기에서, b/a 〉d/c, M은 망간이나 철)로 환원이 일어나고 McOd가 H2S와 반응하여 MS로 황화반응이 일어난다.Mechanisms of hydrogen sulfide removal by manganese oxides and iron oxides that are reactive with hydrogen sulfide can be divided into reduction and sulfidation stages. First, M a O b → M c O d (where b / a> d / c, M is manganese or iron) and M c O d reacts with H 2 S to sulfide into MS.

또한, MnO는 수소에 의한 환원반응의 평형상수가 매우 작기 때문에 금속망간으로의 환원이 거의 일어나지 않는 반면 Fe2O3는 환원성이 커서 수소나 일산화탄소에 의해 쉽게 환원된다.In addition, since MnO has a very small equilibrium constant of the reduction reaction by hydrogen, reduction to manganese rarely occurs, whereas Fe 2 O 3 has a high reducibility and is easily reduced by hydrogen or carbon monoxide.

대부분의 금속산화물 탈황제의 재생은 공기나 산소가 부족한 공기, 희석제로서 스팀을 포함한 공기/스팀 혼합가스를 이용하며 온도, 산소농도, 재생가스 특성과 같은 재생조건의 조절을 통해 탈황제의 물리적 내구성과 반응성을 유지하는 것이 필요하다.Most regeneration of metal oxide desulfurization agents uses air / steam mixture gas including steam as air or oxygen-deficient air and diluent, and physical durability and reactivity of desulfurization agent by adjusting regeneration conditions such as temperature, oxygen concentration and regeneration gas characteristics. It is necessary to maintain.

재생에서 과다한 온도상승은 탈황제의 신터링을 일으켜 기공도의 손실과 반응성의 저하를 가져오며 낮은 온도에서의 재생은 황산염의 생성을 초래하는데 황산염은 한번 생성되면 분해가 어렵고 산소의 확산장벽으로 작용하므로 바람직하지 못하다.Excessive temperature rise in regeneration leads to sintering of the desulfurization agent, which leads to loss of porosity and decrease in reactivity. Regeneration at low temperature leads to the formation of sulphate, which is difficult to decompose once produced and acts as a diffusion barrier for oxygen. Not desirable

따라서, 재생반응에서 온도조절과 산소농도의 조절을 통한 hot spot의 방지로 황산염 생성과 신터링효과를 최소화하는 최적의 운전조건을 찾는 것이 중요하다.Therefore, it is important to find the optimal operating conditions to minimize sulfate formation and sintering effect by preventing hot spots through temperature control and oxygen concentration control in regenerative reaction.

망간과 철의 환원, 황화, 재생시 반응메카니즘은 다음과 같다.The reaction mechanisms for reduction, sulfidation and regeneration of manganese and iron are as follows.

반응식 1Scheme 1

(MnO2,Mn2O, Mn3O4) + H2(or CO) → MnO + H2O반응식 1은 망간산화물이 환원성가스와 반응하여 환원되는 과정을 나타낸 것이다.(MnO 2, Mn 2 O, Mn 3 O 4 ) + H 2 (or CO) → MnO + H 2 O Scheme 1 shows a process in which manganese oxide is reduced by reacting with a reducing gas.

반응식 2Scheme 2

MnO + H2S → MnS + H2O반응식 2는 망간산화물이 환원 후 황화수소와 반응하여 황화수소를 제거하는 공정을 나타낸 것이다.MnO + H 2 S → MnS + H 2 O Scheme 2 shows a process in which manganese oxide is reacted with hydrogen sulfide after reduction to remove hydrogen sulfide.

반응식 3Scheme 3

2MnS + 7/2O2→ Mn2O3+ 2SO2반응식 3은 망간산화물이 황화반응 후 산소에 의해 재생되는 공정을 나타낸 것이다.2MnS + 7 / 2O 2 → Mn 2 O 3 + 2SO 2 Scheme 3 shows a process in which manganese oxide is regenerated by oxygen after sulfidation.

제조예Production Example

도 1의 탈황제 제조공정을 살펴보면, 본 발명의 망간계 탈황제 제조에 사용한 물질은 MnCO375중량%, TiO220중량%, 벤토나이트 5중량% 이다.Looking at the desulfurizer manufacturing process of Figure 1, the material used to prepare the manganese-based desulfurization agent of the present invention is MnCO 3 75% by weight, TiO 2 20% by weight, bentonite 5% by weight.

위 시약을 이용하여 1차활성성분이 망간계인 MT(MnCO3, TiO2) 탈황제를 제조하였으며, 상기된 MT 탈황제 명칭은 본 출원인의 편의상 명명한 것이다.MT (MnCO 3 , TiO 2 ) desulfurization agent of the manganese-based primary active ingredient was prepared using the above reagent, and the MT desulfurization agent name is named for convenience of the applicant.

여기서 MT 탈황제는 지지체로 TiO2를 사용하였으며, 탈황제에 결합제로 벤토나이트를 이용하였다.본 발명의 탈황제 제조방법에 대하여 살펴본다.분말상태의 MnCO375중량%, TiO220중량%, 벤토나이트 5중량% 시료들을 각각의 무게비율에 따라 혼합한 후 탈이온수를 가해 슬러리 상태로 만들어 건조오븐(drying oven)에서 항량이 될 때까지 건조한 다음(110℃), 400℃에서 5시간 소성시켜 망간 카보네이트(manganese carbonate)를 분해하였다.The MT desulfurization agent used TiO 2 as a support, and bentonite was used as a binder for the desulfurization agent. The desulfurization agent manufacturing method of the present invention will be described. 75 wt% MnCO 3 in powder form, 20 wt% TiO 2 , and 5 wt% Bentonite % Samples were mixed according to each weight ratio, deionized water was added to make a slurry, dried until it became a constant in a drying oven (110 ℃), and then calcined at 400 ℃ for 5 hours to manganese carbonate (manganese). carbonate) was decomposed.

소성 후, 400℃로 예열된 고온로에 옮겨서 경화온도까지 승온시킨 다음 공기분위기(약 1ℓ/min)하에서 2시간 동안 경화시켰다.After firing, the mixture was transferred to a high temperature furnace preheated to 400 ° C., heated to a curing temperature, and cured for 2 hours under an air atmosphere (about 1 L / min).

최종 생성물은 분쇄한 후 입경별로 체거름하여 20/40mesh는 황화와 재생실험에 이용하고 60mesh 이하의 미세한 입자는 탈황제의 물성분석에 이용하였다.The final product was pulverized and sieved by particle diameter, 20 / 40mesh was used for sulfidation and regeneration experiments, and fine particles below 60mesh were used for physical property analysis of the desulfurization agent.

실시예Example

망간계 탈황제가 H2S 제거에 효과적이라고 제시된 400∼800℃ 범위 중 보다 낮은 온도인 550, 650℃에서 MT의 온도별 황화특성을 살펴보았다.Manganese-based desulfurizing agent in the low temperature of 550, 650 ℃ more of 400~800 ℃ range shown to be effective in removing H 2 S examined the temperature characteristics of the specific sulfide MT.

0.5%H2S-10%H2-bal N2,유량 190㎖/min 에서 온도에 따른 황화실험 결과를 도 2 에 나타내었다.The sulfidation results according to temperature at 0.5% H 2 S-10% H 2 -bal N 2 and flow rate 190ml / min are shown in FIG. 2.

정규화 황화시간 t/t*는 MnS를 형성하기 위해 각 실험에 사용된 솔벤트(sorbent)가 완전히 황화되는데 필요한 이론시간 t*에 대한 실제시간 t의 비로서 정의된다. 따라서 t/t*는 탈황제 부분전환율에 해당한다.Normalized sulfidation time t / t * is defined as the ratio of the actual time t to the theoretical time t * required for the complete sulphation of the solvent used in each experiment to form MnS. T / t * thus corresponds to the desulphurization partial conversion.

MT의 경우 부분전환율은 550℃와 650℃에서 각각 0.89, 1.1로 나타났으며, 또한 MT의 평형농도가 20∼65ppmV로 나타나 우수한 열역학적 특성을 보였다.In case of MT, partial conversion was 0.89 and 1.1 at 550 ℃ and 650 ℃, respectively, and the equilibrium concentration of MT was 20 ~ 65ppmV, showing excellent thermodynamic characteristics.

도 2의 결과로부터 MT 탈황제는 중온온도 영역에서 매우 우수한 탈황능을 관찰할 수 있었다.From the results of FIG. 2, the MT desulfurization agent was able to observe a very good desulfurization ability in the middle temperature range.

본 발명은 황화수소를 고온에서 흡착 제거하는 망간계 탈황제 및 이를 제조하는 방법에 관한 것으로, 모든 연료가스에 적용하여도 원소망간으로서의 환원저항이 크고, 고온에서도 조업할 수 있으며, 특히 반응속도가 빠른 장점이 있다.The present invention relates to a manganese-based desulfurization agent that adsorbs and removes hydrogen sulfide at a high temperature, and a method of manufacturing the same. The present invention has a high reduction resistance as elemental manganese even when applied to all fuel gases, and can operate at high temperatures. There is this.

Claims (6)

550-800℃에서 황화수소와 반응하는 망간계 탈황제 물질인 MT 탈황제는 MnCO375중량% + TiO220중량% + 벤토나이트 5중량%로 이루어지는 것을 특징으로 하는 황화수소 제거용 탈황제.MT desulfurization agent which is a manganese desulfurization agent reacting with hydrogen sulfide at 550-800 ° C., desulfurization agent for removing hydrogen sulfide, characterized in that consisting of 75% by weight of MnCO 3 + 20% by weight of TiO 2 + 5% by weight of bentonite. MnCO3, 75중량%, TiO220중량%, 벤토나이트 5중량% 를 원료로 하는 탈황제는 구성원료를 혼합하는 혼합단계; 상기 시료를 항량이 될 때까지 110℃에서 건조하는 건조단계; 건조된 시료를 400℃에서 소성하는 소성단계; 소성된 시료를 1100℃에서 경화하는 경화단계; 경화된 탈황제를 분쇄 및 체거름 하는 분쇄단계를 포함하여 제조되는 것을 특징으로 하는 황화수소 제거용 탈황제의 제조방법.A desulfurization agent based on MnCO 3 , 75% by weight, 20% by weight of TiO 2 , and 5% by weight of bentonite; Drying the sample at 110 ° C. until it reaches a constant weight; Firing the dried sample at 400 ° C .; A curing step of curing the fired sample at 1100 ° C .; Method for producing a desulfurization agent for removing hydrogen sulfide, characterized in that it comprises a pulverizing step of pulverizing and sieving the cured desulfurization agent. 삭제delete 삭제delete 삭제delete 삭제delete
KR10-2000-0021020A 2000-04-20 2000-04-20 Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same KR100375331B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0021020A KR100375331B1 (en) 2000-04-20 2000-04-20 Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0021020A KR100375331B1 (en) 2000-04-20 2000-04-20 Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same

Related Child Applications (3)

Application Number Title Priority Date Filing Date
KR10-2002-0080028A Division KR100413379B1 (en) 2002-12-14 2002-12-14 Regenerable manganese-based sorbents(MA) for removal of hydrogen sulfide and method for preparing the same
KR10-2002-0080026A Division KR100413378B1 (en) 2002-12-14 2002-12-14 Regenerable manganese-based sorbents(MFT) for removal of hydrogen sulfide and method for preparing the same
KR10-2002-0080029A Division KR100413380B1 (en) 2002-12-14 2002-12-14 Regenerable manganese-based sorbents(MOA) for removal of hydrogen sulfide and method for preparing the same

Publications (2)

Publication Number Publication Date
KR20010097176A KR20010097176A (en) 2001-11-08
KR100375331B1 true KR100375331B1 (en) 2003-03-10

Family

ID=19665884

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0021020A KR100375331B1 (en) 2000-04-20 2000-04-20 Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same

Country Status (1)

Country Link
KR (1) KR100375331B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100598579B1 (en) * 2004-10-11 2006-07-07 경북대학교 산학협력단 De-SOx MgO Based Sorbent Promoted with Iron and Manufacturing Method thereof

Also Published As

Publication number Publication date
KR20010097176A (en) 2001-11-08

Similar Documents

Publication Publication Date Title
Meng et al. In bed and downstream hot gas desulphurization during solid fuel gasification: A review
Vamvuka et al. Flue gas desulfurization at high temperatures: A review
Ben-Slimane et al. Desulfurization of hot coal-derived fuel gases with manganese-based regenerable sorbents. 1. Loading (sulfidation) tests
CN111093828A (en) Desulfurization catalyst, method for producing desulfurization catalyst, and desulfurization method using desulfurization catalyst
Slimane et al. Utilization of metal oxide-containing waste materials for hot coal gas desulfurization
ITTO950220A1 (en) DURABLE ABSORBENTS CONTAINING ZINC OXIDE FOR THE DESULPHORATION OF CARBON GAS.
Yan et al. Enhancing the performance of iron ore by introducing K and Na ions from biomass ashes in a CLC process
CN101220313B (en) Multifunctional fire coal catalyst and method for producing the same
US5271907A (en) High temperature regenerable hydrogen sulfide removal agents
US4091076A (en) Method of removing sulfur emissions from a fluidized-bed combustion process
Dolan et al. Sulfur removal from coal‐derived syngas: thermodynamic considerations and review
US5753198A (en) Hot coal gas desulfurization
Atimtay Cleaner energy production with integrated gasification combined cycle systems and use of metal oxide sorbents for H2S cleanup from coal gas
Xuan et al. Selection of desulfurizer and control of reaction products on flue-gas desulfurization using chemical-looping technology
KR100375331B1 (en) Regenerable manganese-based sorbents for removal of hydrogen sulfide and method for preparing the same
CN113600198A (en) Biomass tar reforming catalyst and preparation method thereof
JP4424653B2 (en) Gaseous mercury removing agent, method for producing the same, and gaseous mercury removing method
KR100413379B1 (en) Regenerable manganese-based sorbents(MA) for removal of hydrogen sulfide and method for preparing the same
FR2937030A1 (en) OXYDO-REDUCTIVE MASSES WITH A SPINEL TYPE STRUCTURE AxA'x'ByB'y'O4 AND USE IN A CHEMICAL LOOP OXYDO-REDUCTION PROCESS
KR100413380B1 (en) Regenerable manganese-based sorbents(MOA) for removal of hydrogen sulfide and method for preparing the same
KR100413378B1 (en) Regenerable manganese-based sorbents(MFT) for removal of hydrogen sulfide and method for preparing the same
Gao et al. Effect of blast furnace sludge on SO2 emissions from coal combustion
CN114874818A (en) Blast furnace gas desulfurizer and preparation method and application thereof
JP2633886B2 (en) Desulfurizing agent and method for treating hydrogen sulfide-containing gas using it
EP2231525B1 (en) Use of a redox mass having a spinel type structure for a looping redox process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070108

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee