KR20030006792A - Method for recovering high-value metals from waste printed circuit boards - Google Patents

Method for recovering high-value metals from waste printed circuit boards Download PDF

Info

Publication number
KR20030006792A
KR20030006792A KR1020010042706A KR20010042706A KR20030006792A KR 20030006792 A KR20030006792 A KR 20030006792A KR 1020010042706 A KR1020010042706 A KR 1020010042706A KR 20010042706 A KR20010042706 A KR 20010042706A KR 20030006792 A KR20030006792 A KR 20030006792A
Authority
KR
South Korea
Prior art keywords
separating
residue
printed circuit
waste printed
circuit boards
Prior art date
Application number
KR1020010042706A
Other languages
Korean (ko)
Other versions
KR100421937B1 (en
Inventor
김명준
이성오
오치정
Original Assignee
오치정
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오치정 filed Critical 오치정
Priority to KR10-2001-0042706A priority Critical patent/KR100421937B1/en
Publication of KR20030006792A publication Critical patent/KR20030006792A/en
Application granted granted Critical
Publication of KR100421937B1 publication Critical patent/KR100421937B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: A method for recovering valuable metals from waste printed circuit boards is provided to separately recover the valuable metals and rare metals by physically pretreating and chemically treating the waste printed circuit boards to recycle the waste printed circuit boards. CONSTITUTION: The method for recovering valuable metals from waste printed circuit boards comprises the processes of (i) crushing the waste printed circuit boards; (ii) separating the crushed material into a low specific gravity materials and a high specific gravity materials by wind separation; (iii) separating the high specific gravity materials into conductive materials and nonconductive materials by electrostatic separation; (iv) separating the conductive materials into magnetic materials and non-magnetic materials by magnetic separation; and (v) chemical treating the non-magnetic materials, wherein the chemical treating process comprises the steps of (a) melting and separating Cu, Fe, Zn, Ni and Al from the non-magnetic materials by adding a mixture of sulfuric acid and hydrogen peroxide to the non-magnetic materials so that they are reacted with each other; (b) melting and separating gold and silver by adding insoluble residue of the step (a) to a mixed solvent comprising (NH4)2S2O3, CuSO4 and NH4OH in mole ratios of 0.2, 0.02 and 0.4 respectively so that they are reacted with each other; (c) melting and separating lead from the residue by adding brine to the residue of the step (b) so that they are reacted with each other; and (d) reacting the residue of the step (c) with aqua regia, thereby melting and separating palladium from the residue.

Description

폐 인쇄회로기판으로부터 유가금속을 회수하는 방법{METHOD FOR RECOVERING HIGH-VALUE METALS FROM WASTE PRINTED CIRCUIT BOARDS}Recovery of valuable metals from waste printed circuit boards {METHOD FOR RECOVERING HIGH-VALUE METALS FROM WASTE PRINTED CIRCUIT BOARDS}

본 발명은 폐기된 인쇄회로기판(Printed Circuit Boards; PCB)으로부터 금속을 회수하기 위한 방법에 관한 것이다. 보다 구체적으로 본 발명은 폐 인쇄회로기판을 재활용하기 위해, 이를 물리적인 전처리 및 화학적인 처리를 함으로써 유가금속 및 희유금속을 분리 회수하기 위한 방법에 관한 것이다.The present invention relates to a method for recovering metals from discarded printed circuit boards (PCBs). More specifically, the present invention relates to a method for separating and recovering valuable metals and rare metals by physical pretreatment and chemical treatment in order to recycle waste printed circuit boards.

일반적으로, 인쇄회로기판 조립품은 복잡한 구조를 가지며, 이것이 재활용의 중대한 문제점이다. 인쇄회로기판 조립품의 경우에, 유가금속과 오염물질이 서로 매우 가깝게 존재하므로, 이용 또는 처리를 별도로 진행시켜야 한다. 구리, 철, 주석, 납과 같은 금속이 인쇄회로기판 조립품에서 발견되는 유가 금속으로서 주목되고 있다. 또한 금, 은 및 팔라듐과 같은 귀금속이 특히 고급의 인쇄회로기판 조립품에서 상당한 양으로 발견된다.In general, printed circuit board assemblies have a complex structure, which is a significant problem of recycling. In the case of printed circuit board assemblies, valuable metals and contaminants are very close to each other, so use or processing must be carried out separately. Metals such as copper, iron, tin and lead are attracting attention as valuable metals found in printed circuit board assemblies. In addition, precious metals such as gold, silver and palladium are found in significant amounts, particularly in high quality printed circuit board assemblies.

국내외적으로 전자 폐기물로부터 금, 은 및 동을 비롯한 유가금속의 회수에 대한 연구는 오래 전부터 행해져 오고 있으며, 현재 상업적으로 이들을 회수하는 공장이 가동되고 있다. 전자 폐기물로부터 유가금속을 회수하기 위한 상업적 방법으로는 일반적으로 습식법 및 건식법이 혼용되어 사용되고 있다.At home and abroad, research on the recovery of valuable metals, including gold, silver, and copper, from electronic waste has been conducted for a long time, and a factory for commercially recovering them is currently in operation. As a commercial method for recovering valuable metals from electronic waste, a wet method and a dry method are generally used in combination.

건식법으로는 염소화 반응법, 및 전자 폐기물을 플라즈마(plasma), 전기 아크로 등에서 용해시켜 조금속을 회수하고, 이러한 조금속을 화학적으로 처리하여 금속을 수득하는 방법이 있다. 이러한 건식법은 모든 형태의 스크랩(scrap)을 처리할 수 있으므로, 물성의 제한을 받지 않는 장점을 갖는 반면에, 대기오염을 유발하고, 처리시 슬래그(slag)의 증가로 인해 유가금속의 회수율이 감소하며, 특히,아연, 알루미늄, 납 및 주석과 같은 비철금속의 회수는 불가능하다는 단점을 갖는다.The dry method includes a chlorination reaction and a method of dissolving an electronic waste in a plasma, an electric arc furnace, or the like to recover a crude metal, and chemically treating the crude metal to obtain a metal. This dry method has the advantage of being able to handle all types of scrap, which is not limited by physical properties, while causing air pollution and reducing the recovery of valuable metals due to the increase of slag during treatment. In particular, the recovery of non-ferrous metals such as zinc, aluminum, lead and tin is impossible.

습식법으로는 전자 폐기물로부터 귀금속을 회수하기 위해, 시안용액 침출법, 염화수 침출법 및 가성소다 용해법이 주로 이용되고 있으며, 최근에는 S2O3에 의한 처리법이 연구되고 있다. 습식법은, 건식법과 비교하여 환경오염을 덜 발생시키고, 스크랩의 주요성분을 각각 분리회수 할 수 있는 장점이 있으나, 복잡한 스크랩의 처리가 불가능하고, 전처리를 필요로 하며, 침출액의 부피가 크고, 부식성이 강하며, 독성이 있다는 단점을 갖는다. 따라서, 최근에는 전기화학법 및 생화학적 처리에 의한 회수방법이 연구되고 있지만, 경제적인 측면에서는 유용하지 못하다.A wet method in order to recover the precious metals from electronic waste, cyanide solution leaching method, can be chlorinated Leaching and caustic dissolution method is mainly used, in recent years, has become the treatment by S 2 O 3 studies. The wet method has the advantage of generating less environmental pollution and recovering the main components of the scrap separately than the dry method, but it is impossible to process complex scraps, requires pretreatment, and has a large volume of leachate and corrosiveness. It is strong and has the disadvantage of being toxic. Therefore, in recent years, recovery methods by electrochemical methods and biochemical treatments have been studied, but they are not useful economically.

상기로부터, 본 발명자들은 인쇄회로기판을 물리적 및 화학적 방법을 병행하여 처리하고, 이를 분쇄하여 금속 및 비금속을 선별적으로 분리하고, 회수된 금속함유 물질을 용매로 처리하여, 생성된 혼합용액으로부터 유가금속 및 희유금속을 추출하기 위한, 환경친화적이며 단순화된 재활용 방법을 개발하기에 이른 것이다.From the above, the present inventors treated the printed circuit board in parallel with physical and chemical methods, and pulverized it to selectively separate metals and nonmetals, and treated the recovered metal-containing material with a solvent, thereby producing oil value from the mixed solution. It has led to the development of environmentally friendly and simplified recycling methods for the extraction of metals and rare metals.

본 발명의 목적은 폐 인쇄회로기판으로부터 금, 은, 동, 아연과 같은 유가금속 및 팔라듐 같은 희유금속을 각 단계에서 선택적이고 효율적으로 회수함과 동시에, 함유되어 있는 금속을 대부분 회수함으로써 중금속 함유된 폐가전제품의 폐기로 인한 환경오염 문제를 극복하고, 회수시 발생되는 환경 오염을 최소화함으로써자원을 재활용할 수 있는 금속의 회수방법을 제공하는데 있다.An object of the present invention is to selectively and efficiently recover valuable metals such as gold, silver, copper, and zinc and rare metals such as palladium from waste printed circuit boards, while recovering most of the metals contained therein. The present invention provides a method of recovering metals that can recycle resources by overcoming the environmental pollution problem caused by the disposal of waste home appliances and minimizing environmental pollution generated during recovery.

도 1은 본 발명에 따라 폐 인쇄회로기판으로부터 금속을 회수하기 위한 공정도이고,1 is a process chart for recovering metal from a waste printed circuit board according to the present invention,

도 2는 본 발명에 따른 회수 공정의 추출 단계에서 침출용매인 황산과의 반응시간에 따른 금속(구리, 니켈, 알루미늄, 철, 아연)의 회수율을 나타내는 그래프이고;2 is a graph showing the recovery rate of metals (copper, nickel, aluminum, iron, zinc) according to reaction time with sulfuric acid as a leaching solvent in the extraction step of the recovery process according to the present invention;

도 3은 본 발명에 따른 회수 공정의 추출 단계에서 침출용매인 황산의 농도에 따른 금속(금, 은, 구리, 니켈, 철, 아연, 납)의 회수율을 나타내는 그래프이고;Figure 3 is a graph showing the recovery rate of the metal (gold, silver, copper, nickel, iron, zinc, lead) according to the concentration of sulfuric acid as a leaching solvent in the extraction step of the recovery process according to the present invention;

도 4는 본 발명에 따른 회수 공정의 추출 단계에서 혼합용매((NH3)2S2O3, CuSO4및 NH4OH)로부터 반응시간에 따른 금, 은의 회수율을 나타내는 그래프이다.4 is a graph showing the recovery rate of gold and silver with reaction time from the mixed solvent ((NH 3 ) 2 S 2 O 3 , CuSO 4 and NH 4 OH) in the extraction step of the recovery process according to the present invention.

상기 목적을 달성하기 위하여, 본 발명의 폐 인쇄회로기판으로부터 유가금속을 회수하는 방법은In order to achieve the above object, a method for recovering valuable metals from the waste printed circuit board of the present invention

(1) 폐 인쇄회로기판을 분쇄하고;(1) grinding the waste printed circuit board;

(2) 상기 분쇄물을 풍력선별에 의해 비중이 가벼운 부분과 비중이 무거운 부분으로 분리하고;(2) separating the pulverized product into a portion having a light specific gravity and a portion having a high specific gravity by wind screening;

(3) 상기 비중이 무거운 부분을 정전선별에 의해 도체와 부도체로 분리하고;(3) separating the heavy portion into a conductor and an insulator by electrostatic screening;

(4) 상기 도체 부분을 자력선별에 의해 자성체와 비자성체로 분리하고;(4) separating the conductor portion into magnetic and nonmagnetic materials by magnetic screening;

(5) 상기 비자성체 부분을 화학처리하는 것을 포함하며,(5) chemically treating the nonmagnetic portion,

상기 화학처리 단계는The chemical treatment step

(a) 황산과 과산화수소수의 혼합물을 상기 비자성체 부분에 첨가하여 반응시켜, 상기 비자성체 부분으로부터 구리, 철, 아연, 니켈 및 알루미늄 성분을 용해시켜 분리하고;(a) adding a mixture of sulfuric acid and hydrogen peroxide to the nonmagnetic portion to react, dissolving and separating the copper, iron, zinc, nickel and aluminum components from the nonmagnetic portion;

(b) 상기 (a) 단계의 난용성 잔사에, (NH4)2S2O3, CuSO4및 NH4OH를 포함하는 혼합용매를 첨가하여 반응시켜, 잔사로부터 금 및 은을 용해분리시키고;(b) adding a mixed solvent containing (NH 4 ) 2 S 2 O 3 , CuSO 4 and NH 4 OH to the poorly soluble residue of step (a) to dissolve and separate gold and silver from the residue. ;

(c) 상기 (b) 단계의 잔사에 염수를 첨가하여 반응시켜, 잔사로부터 납을 용해 분리시키고;(c) reacting the residue of step (b) by adding brine to dissolve and separate lead from the residue;

(d) 상기 (c) 단계의 잔사를 왕수와 반응시켜 잔사로부터 팔라듐을 용해분리시키는 것을 포함한다.(d) reacting the residue of step (c) with aqua regia to dissolve and separate the palladium from the residue.

이하 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 특히 사용될 수 있는 폐 인쇄회로기판은 사용된 후 폐기된 컴퓨터내장용 인쇄회로기판으로서, 기판의 형태나 특성을 고려하지 않고 일괄적으로 컴퓨터 본체로부터 분리하여 사용할 수 있다. 상기 인쇄회로기판의 일반적 조성은 금속 화합물 30 %, 플라스틱 물질 30 % 및 난용성 화합물 40 %로 이루어진다. 상기 금속 화합물은 일반금속(29 %) 및 귀금속(1 %)을 포함하며, 상기 일반금속은 구리(10 %), 철(8 %), 니켈(2 %), 주석(4 %), 납(2 %), 알루미늄(2 %), 아연(1 %) 등을 포함하고, 상기 귀금속은 금(0.08 %), 은(1.7 %), 팔라듐(0.005 %) 등을 포함한다. 상기 플라스틱 물질은 ① C-H-O 고분자(예를 들면, 폴리에스테르 및 페놀포름알데하이드) 25 % 이상, ② 할로겐화 고분자(예를 들면, PVC, 추적 PTFE 및 폴리브로모 화합물) 5% 이하 및 ③ 질소 함유 고분자(예를 들면, 나일론 및 폴리우레탄) 1 % 이하를 포함한다. 또한 상기 난용성 화합물은 실리카(15 %), 알칼리 및 알칼리 토산화물(6 %), 알루미나(6 %), 및 기타 산화물(13 %)을 포함한다.A waste printed circuit board that can be used in particular in the present invention is a printed circuit board for computer-embedded that is discarded after being used, and can be used separately from the computer body without considering the shape or characteristics of the substrate. The general composition of the printed circuit board is composed of 30% metal compound, 30% plastic material and 40% poorly soluble compound. The metal compound comprises a general metal (29%) and a noble metal (1%), the general metal is copper (10%), iron (8%), nickel (2%), tin (4%), lead ( 2%), aluminum (2%), zinc (1%) and the like, the precious metals include gold (0.08%), silver (1.7%), palladium (0.005%) and the like. The plastic material can be: ① 25% or more of CHO polymers (e.g., polyester and phenolformaldehyde), ② 5% or less of halogenated polymers (e.g., PVC, tracer PTFE and polybromo compounds), and ③ nitrogen-containing polymers ( Nylon and polyurethane) for example 1% or less. The poorly soluble compounds also include silica (15%), alkali and alkaline earth oxides (6%), alumina (6%), and other oxides (13%).

본 발명의 방법에 따른 폐 인쇄회로기판으로부터의 금속의 개략적인 회수 공정도를 도 1에 나타내었으며, 이를 설명하면 다음과 같다:A schematic recovery process diagram of a metal from a closed printed circuit board according to the method of the present invention is shown in FIG. 1, which is described as follows:

사용된 후 폐기된 컴퓨터용 인쇄회로기판을 분쇄기, 예를 들면 슈레더(shredder)를 사용하여 분쇄한다. 상기 분쇄된 산물을 입자의 사이즈 조절이 가능한 스크린(screen)을 통과시킴으로써, 약 1 ㎜ 이하의 산물은 회수하고, 그이상의 입자는 재분쇄하여 균일한 분쇄물을 획득하는 것이 바람직하다.Discarded computer printed circuit boards after use are ground using a grinder, for example a shredder. By passing the pulverized product through a screen capable of controlling the size of the particles, it is preferable to recover a product of about 1 mm or less, and to re-mill the further particles to obtain a uniform pulverized product.

상기 분쇄물을, 예를 들면 풍력선별법에 의해 비중이 가벼운 부분과 무거운 부분으로 분리한 후, 비중이 무거운 부분을 정전선별법(electrostatic separation)에 의해 도체와 부도체로 분리한다. 정전선별에 의한 도체와 부도체의 분리시에는 정전류의 세기를 500 내지 3,000 W의 범위로 유지하는 것이 좋으며, 특히 약 1,500 W가 바람직하다. 이때 도체, 부도체 및 도체와 부도체의 중간산물인 중간도체의 회수율은 각각 약 12 %, 약 72 % 및 약 16 %이다. 상기 도체는 주로 금속성분을 포함하며, 상기 부도체는 플라스틱계 물질을 포함한다.The pulverized product is separated into a light portion and a heavy portion by, for example, a wind screening method, and then the heavy portion is separated into a conductor and a non-conductor by an electrostatic separation method. When separating the conductor and the non-conductor by the electrostatic screening, it is preferable to maintain the intensity of the constant current in the range of 500 to 3,000 W, particularly about 1,500 W. At this time, the recovery rate of the conductor, the non-conductor, and the intermediate conductor as the intermediate product of the conductor and the non-conductor is about 12%, about 72% and about 16%, respectively. The conductor mainly comprises a metal component, and the insulator includes a plastic material.

이어서, 상기 부도체를 제외한 도체 및 중간도체를 자력선별법에 의해 자력의 세기에 따라, 자성체와 비자성체로 분리한다. 이때, 자력의 세기는 3,000 내지 12,000 가우스로 변화시키는 것이 좋으며, 특히 약 8,000 가우스가 바람직하다. 자력선별법에 의해 분리된 자성체와 비자성체의 함량은 각각 약 42 % 및 약 58 %이다. 자력의 세기가 8,000 가우스인 경우에, 자성체는 대부분 분리 제거되며, 유가금속을 주로 함유하는 비자성체를 연속되는 유가물 추출공정에 투입하여 유가금속을 회수하게 된다.Subsequently, the conductors and the intermediate conductors except the non-conductors are separated into magnetic bodies and non-magnetic bodies according to the strength of the magnetic force by the magnetic force selection method. At this time, the strength of the magnetic force is preferably changed to 3,000 to 12,000 gauss, particularly about 8,000 gauss. The content of magnetic material and nonmagnetic material separated by magnetic screening is about 42% and about 58%, respectively. When the strength of the magnetic force is 8,000 gauss, the magnetic substance is mostly separated and removed, and the non-magnetic substance mainly containing the valuable metal is put in a continuous valuable material extraction process to recover the valuable metal.

유가금속 추출 공정에서는 출발 침출용매로서 황산을 사용하고, 산화촉진제로서 과산화수소수를 사용한다. 이 과산화수소수를 첨가한 황산 용매는 폐인쇄회로기판에 함유되어 있는 구리, 철, 아연 및 니켈 성분을 용해시킬 수 있다. 상기 황산 용매에 상기 금속 성분들이 침출된 용액은 각각의 금속추출을 위해 분리제거되며, 상기 침출용매에 난용성인 잔사는 이어지는 침출 공정에서 사용하기 위해 여과하여 분리제거한다. 이러한 황산 침출 공정에서 반응온도는 75 내지 85℃에서 수행하는 것이 좋으며, 특히 약 85 ℃가 바람직하다. 사용되는 황산의 농도는 1.0 내지 2.0M의 범위가 좋으며, 특히 약 2.0 M이 바람직하다. 과산화수소수의 첨가량은 0.1 내지 0.2 M의 범위가 좋으며, 특히 약 0.2 M이 바람직하다. 황산을 이용한 구리, 철, 아연 및 니켈 금속의 침출 반응은 각각 하기 반응식 1, 2, 3 및 4로 나타내어진다:In the valuable metal extraction process, sulfuric acid is used as a starting leach solvent and hydrogen peroxide water is used as an oxidation promoter. The sulfuric acid solvent to which the hydrogen peroxide solution is added can dissolve the copper, iron, zinc and nickel components contained in the waste printed circuit board. The solution in which the metal components are leached in the sulfuric acid solvent is separated and removed for each metal extraction, and the residues which are poorly soluble in the leaching solvent are separated by filtration for use in the subsequent leaching process. In this sulfuric acid leaching process, the reaction temperature is preferably carried out at 75 to 85 ℃, particularly about 85 ℃. The concentration of sulfuric acid used is preferably in the range of 1.0 to 2.0 M, with about 2.0 M being particularly preferred. The amount of hydrogen peroxide added is preferably in the range of 0.1 to 0.2 M, particularly preferably about 0.2 M. Leaching reactions of copper, iron, zinc and nickel metals with sulfuric acid are represented by the following schemes 1, 2, 3 and 4, respectively:

Cu + H2SO4+ H2O2↔ CuSO4+ 2H2OCu + H 2 SO 4 + H 2 O 2 ↔ CuSO 4 + 2H 2 O

Zn + H2SO4+ H2O2↔ ZnSO4+ 2H2OZn + H 2 SO 4 + H 2 O 2 ↔ ZnSO 4 + 2H 2 O

Fe + H2SO4+ H2O2↔ FeSO4+ 2H2OFe + H 2 SO 4 + H 2 O 2 ↔ FeSO 4 + 2H 2 O

Ni + H2SO4+ H2O2↔ NiSO4+ 2H2ONi + H 2 SO 4 + H 2 O 2 ↔ NiSO 4 + 2H 2 O

상기 반응식 1 내지 4로부터 생성된 황산 침출용액으로부터 Cu 금속은 전기분해법에 의해 회수하며, ZnSO4,FeSO4및 NiSO4는 침전법으로부터 회수된다(T. Tran,Hydrometallurgy -Theory & Practice, Chem. Eng. & Ind. Chem., UNSW, 2000)Cu metal is recovered from the sulfuric acid leaching solution produced by the reaction schemes 1 to 4 by electrolysis, and ZnSO 4, FeSO 4 and NiSO 4 are recovered from the precipitation method (T. Tran, Hydrometallurgy -Theory & Practice, Chem. Eng). & Ind. Chem. , UNSW, 2000)

이어서, 상기 황산 침출 공정의 난용성 잔사로부터 금 및 은을 선택적으로 추출하게 되는데, 이때 용매로서 (NH3)2S2O3, CuSO4및 NH3OH가 각각 0.2, 0.02 및 0.4의 몰비로 구성된 혼합 용매를 사용한다. 혼합 용매를 이용한 금 및 은의 침출 반응은 각각 하기 반응식 5 및 6으로 나타내어진다:Subsequently, gold and silver are selectively extracted from the poorly soluble residue of the sulfuric acid leaching process, wherein (NH 3 ) 2 S 2 O 3 , CuSO 4 and NH 3 OH are used as molar ratios of 0.2, 0.02 and 0.4, respectively. Configured mixed solvents are used. The leaching reactions of gold and silver using mixed solvents are shown in Schemes 5 and 6, respectively:

Au + 5S2O3 2-+ Cu(NH3)4 2+→ Au(S2O3)2 3-+ Cu(S2O3)3 5-+ 4NH3 Au + 5S 2 O 3 2- + Cu (NH 3 ) 4 2+ → Au (S 2 O 3 ) 2 3- + Cu (S 2 O 3 ) 3 5- + 4NH 3

Ag + 5S2O3 2-+ Cu(NH3)4 2+→ Ag(S2O3)2 3-+ Cu(S2O3)3 5-+ 4NH3 Ag + 5S 2 O 3 2- + Cu (NH 3 ) 4 2+ → Ag (S 2 O 3 ) 2 3- + Cu (S 2 O 3 ) 3 5- + 4NH 3

상기 생성된 침출 용액으로부터 Au 및 Ag 금속은 공지된 시멘테이션(cementation)법에 의해 회수한다(T. Tran,Hydrometallurgy-Theory & Practice, Chem. Eng. & Ind. Chem., UNSW, 2000).Au and Ag metals from the resulting leaching solution are recovered by known cementation (T. Tran, Hydrometallurgy-Theory & Practice, Chem. Eng. & Ind. Chem. , UNSW, 2000).

이어서, 상기 혼합용매[(NH4)2S2O3+CuSO4+NH4OH]에 침출되지 않고 잔류된 침출 잔사로부터 Pb 및 Sn을 선택적으로 분리하기 위해, 상기 잔사를 NaCl 용액과 같은 염수와 반응시킨다. Pb과 NaCl 용액과의 침출 반응은 각각 하기 반응식 7 로 나타내어진다:Subsequently, the residue was reacted with brine such as a NaCl solution to selectively separate Pb and Sn from the leach residue remaining without leaching into the mixed solvent [(NH 4 ) 2 S 2 O 3 + CuSO 4 + NH 4 OH]. Let's do it. The leaching reaction of Pb with NaCl solution is represented by the following scheme 7:

PbSO4+ 2NaCl ↔ PbCl2+ Na2SO4 PbSO 4 + 2NaCl ↔ PbCl 2 + Na 2 SO 4

상기 생성된 침출 용액으로부터 Pb 금속은 각각 통상의 침전법에 의해 회수한다.The Pb metal is recovered from the produced leaching solution by the usual precipitation method, respectively.

상기 염수 침출 과정에서 잔류된 최종 잔사로부터 팔라듐을 분리하기 위하여, 침출 용매로서 왕수(HCl : HNO3= 3 : 1)를 사용한다. 팔라듐과 왕수의 침출 반응은 하기 반응식 8로 나타내어진다:In order to separate the palladium from the final residue remaining in the brine leaching process, aqua regia (HCl: HNO 3 = 3: 1) is used as the leaching solvent. The leaching reaction of palladium and aqua regia is shown in Scheme 8 below:

Pd + 8HCl + 2HNO3→ H2PdCl6+ 4H2O + 2NOClPd + 8HCl + 2HNO 3 → H 2 PdCl 6 + 4H 2 O + 2NOCl

상기 반응식 8에서 생성된 추출 용액으로부터 팔라듐 금속의 회수는 용매추출법에 의해 농축액을 얻은 후에 침전법에 의해 수행한다(T. Tran,Hydrometallurgy-Theory & Practice, Chem. Eng. & Ind. Chem., UNSW, 2000).Recovery of the palladium metal from the extraction solution generated in Scheme 8 is carried out by precipitation after obtaining the concentrate by solvent extraction (T. Tran, Hydrometallurgy-Theory & Practice, Chem. Eng. & Ind. Chem. , UNSW) . , 2000).

상술한 바와 같은 본 발명의 금속 회수 방법에 따르면, 출발물질인 폐인쇄회로기판으로부터 유가금속 및 희유금속을 비롯한 금속을 95% 이상 회수할 수 있다. 또한 출발원료로부터 금속 부분과 비금속 부분을 우선 선분리함으로써, 금속뿐만 아니라 비금속 부분인 플라스틱을 회수할 수 있으며, 특히 고가의 금, 은을 거의 100 %에 가까운 고순도로서 회수할 수 있다. 이때 용매로서 S2O3를 사용하므로, 본 발명의 방법은 환경친화적이고 단순하며 경제적이다.According to the metal recovery method of the present invention as described above, 95% or more of metals including valuable metals and rare metals can be recovered from a waste printed circuit board as a starting material. In addition, by first separating the metal part and the nonmetal part from the starting material, not only the metal but also the non-metal part plastic can be recovered, and particularly, expensive gold and silver can be recovered with a high purity of almost 100%. Since S 2 O 3 is used as the solvent, the method of the present invention is environmentally friendly, simple and economical.

본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다. 본원에서 사용된 %는 달리 언급하지 않으면 중량에 의한다.The invention can be better understood by the following examples, which are intended for the purpose of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims. As used herein,% is by weight unless otherwise indicated.

또한, 본 발명의 실시예에서, 시료의 성분 분석은 AAS(Atomic Adsorption Spectrometer-Spectra 220, Varian, 호주) 및 ICP(Inductively Coupled Plasma-Atomic Emission Spectrometer-JY 38Plus, Jobin Yvon, 프랑스)를 사용하였다.In addition, in the embodiment of the present invention, the component analysis of the sample used AAS (Atomic Adsorption Spectrometer-Spectra 220, Varian, Australia) and ICP (Inductively Coupled Plasma-Atomic Emission Spectrometer-JY 38Plus, Jobin Yvon, France).

실시예Example

실시예 1: 풍력선별에 의한 비중이 가벼운 부분과 무거운 부분의 분리Example 1 Separation of Lightweight Part from Heavy Part by Windscreen

폐 인쇄회로기판을 슈레더(삼보정밀공업사)에 도입하여 입자 크기 1mm 이하로 분쇄시킨 후 100 Kg/hr의 속도로 풍력선별기에 투입하여 비중이 가벼운 플라스틱류와 비중이 무거운 금속류의 분리 실험을 수행하였다. 각 단계별 싸이클론(cyclone)에 분급된 금속의 함량을 표 1에 나타내었다.The waste printed circuit board was introduced into a shredder (Sambo Precision Industries), which was pulverized to a particle size of 1 mm or less, and put into a wind separator at a speed of 100 Kg / hr to separate plastics with light gravity and heavy metals. . Table 1 shows the content of metals classified in each cyclone.

1 단계Stage 1 2 단계2 steps 3 단계3 steps 금속의 함량(%)% Of metal 84.484.4 25.325.3 4.14.1

실시예 2: 정전선별에 의한 도체와 부도체의 분리Example 2 Separation of Conductor and Non-Conductor by Electrostatic Screening

풍력선별에 의해 분리된 금속성분이 함유된 시료를 정전선별기(딩즈 마그네틱 그룹 컴퍼니(Dings Magnetic group Co.))에 투입하여 도체와 부도체로 분리하는 실험을 수행하였다. 정전선별 실험조건으로는 전류의 세기를 500 내지 3,000 W로 하여 시간당 300 g의 시료를 처리하였으며, 그 결과를 표 2에 나타내었다.A sample containing a metal component separated by wind screening was put into an electrostatic separator (Dings Magnetic group Co.) to conduct an experiment to separate the conductor and the insulator. As the experimental condition of the electrostatic screening, 300 g of the sample was treated per hour with the strength of the current of 500 to 3,000 W, and the results are shown in Table 2.

정전류의 세기(W)Constant current intensity (W) 500500 10001000 15001500 20002000 30003000 도체 (중량%)Conductor (wt%) 5.665.66 9.459.45 12.0012.00 13.3513.35 13.6813.68 중간도체 (중량%)Intermediate (wt%) 13.8213.82 13.5013.50 16.2316.23 15.1515.15 15.0015.00 부도체 (중량%)Insulator (% by weight) 80.5280.52 77.0577.05 72.7772.77 71.5071.50 71.3271.32

상기 표 2로부터, 정전류의 세기가 1,500 W인 경우에 분리 효율이 가장 높음을 알 수 있다.From Table 2, it can be seen that the separation efficiency is the highest when the intensity of the constant current is 1,500 W.

실시예 3: 자력선별에 의한 자성체와 비자성체의 분리Example 3 Separation of Magnetic and Nonmagnetic Materials by Magnetic Separation

상기 실시예 2에서 분리된 부분 중에서, 플라스틱계 물질을 주로 함유한 부도체를 제외하고, 도체 및 중간도체를, 이어지는 자력선별기(딩즈 마그네틱 그룹 컴퍼니) 장치에 투입하여, 자력선별에 의해 자성체와 비자성체로 분리하는 실험을 수행하였다. 이때 자력선별에는 건식 자력선별기를 사용하였으며, 자력의 세기를 3,000 내지 12,000 가우스로 변화시키면서 시간당 1,000 g의 시료를 처리하였다. 그 결과를 표 3에 나타내었다.Among the parts separated in Example 2, except for the non-conductor mainly containing the plastic material, the conductor and the intermediate conductor were put into the following magnetic separator (Dings Magnetic Group Company) apparatus, and the magnetic and nonmagnetic materials were separated by magnetic separation. The experiment was performed to separate. At this time, a dry magnetic separator was used for magnetic separation, and 1,000 g of sample was processed per hour while changing the strength of the magnetic force to 3,000 to 12,000 gauss. The results are shown in Table 3.

자력의 세기(gauss)Gauss 30003000 60006000 80008000 1200012000 자성체 (중량%)Magnetic material (% by weight) 28.3528.35 36.5036.50 41.6141.61 42.0542.05 비자성체 (중량%)Nonmagnetic material (% by weight) 71.6571.65 63.063.0 58.3958.39 57.9557.95

상기 표 3으로부터, 자력의 세기가 8,000 가우스인 경우에 자성체와 비자성체가 대부분 분리됨을 알 수 있다. 8,000 가우스에서의 상기 분리 회수된 비자성체를 성분 분석한 결과를 표 4에 나타내었다.From Table 3, it can be seen that the magnetic material and the nonmagnetic material are mostly separated when the magnetic force is 8,000 Gauss. Table 4 shows the results of component analysis of the separated and recovered nonmagnetic material at 8,000 gauss.

AuAu AgAg PdPd CuCu NiNi FeFe ZnZn PbPb AlAl SnSn 함량content mg/gmg / g 0.2270.227 1.0971.097 0.0990.099 589.0589.0 0.9150.915 4.294.29 2.12.1 15.115.1 25.125.1 1.561.56 %% 0.02270.0227 0.10970.1097 0.00990.0099 58.958.9 0.009150.00915 0.4290.429 0.210.21 1.511.51 2.512.51 0.1560.156

상기 표 4로부터, 금 및 은의 함량이 각각 0.227 mg/g 및 1.097 mg/g으로 높은 분리 효율을 나타냄을 알 수 있다. 자력선별로부터 회수된 비자성체를 다음 유가물 추출공정에서 시료로서 사용하였다.From Table 4, it can be seen that the gold and silver contents are 0.227 mg / g and 1.097 mg / g, respectively, indicating high separation efficiency. The nonmagnetic material recovered from the magnetic screening was used as a sample in the next valuables extraction process.

실시예 4: 황산을 이용한 유가금속물질 추출Example 4 Extraction of Valuable Metals Using Sulfuric Acid

상기 실시예 3에서 획득된 비자성체를 유가금속 추출을 위한 시료로 사용하고, 여기에 산화촉진제인 과산화수소수를 첨가한 황산을 출발 침출 용매로서 첨가하였다. 이러한 황산 용매를 이용한 침출공정은 인쇄회로기판에 함유된 성분 중 침출이 용이한 Cu, Fe, Zn 및 Ni 성분을 용해시키기 위함이다. 침출된 용액은 각각의 금속추출을 위해 분리제거되었으며, 침출용매에 난용성인 잔사는 여과하여 연속되는 침출 과정에 사용하였다. 황산 침출에서 침출 조건으로는 반응온도를 각각 65, 75 및 85℃에서 수행하였으며, 황산의 농도는 1.0 내지 2.0 M의 범위로, 그리고 과산화수소수의 첨가량은 0.025 내지 0.2 M의 범위로 변화시켰다. 사용한 시료의 양은 5 g/l 이었으며, 교반속도는 350rpm으로 고정시켰다.The nonmagnetic material obtained in Example 3 was used as a sample for valuable metal extraction, and sulfuric acid to which hydrogen peroxide solution, an oxidation promoter was added, was added as a starting leach solvent. The leaching process using the sulfuric acid solvent is to dissolve the Cu, Fe, Zn and Ni components that are easily leached among the components contained in the printed circuit board. The leached solution was separated and removed for each metal extraction, and the residue which was poorly soluble in the leaching solvent was filtered and used in the subsequent leaching process. In leaching sulfuric acid, the leaching conditions were carried out at 65, 75 and 85 ° C., respectively, and the concentration of sulfuric acid was changed in the range of 1.0 to 2.0 M, and the amount of hydrogen peroxide added was in the range of 0.025 to 0.2 M. The amount of the sample used was 5 g / l, and the stirring speed was fixed at 350 rpm.

황산 침출반응에서 황산 2.0 M 및 과산화수소수 0.2 M의 농도로 반응온도 85℃에서 침출이 잘 이루어졌다. Cu 및 Zn는 8시간 이내에 100% 침출되었으며, Fe, Ni 및 Al은 24시간 반응 후에 90% 이상 침출되었다. 도 2에는 황산을 이용한 반응온도 85℃에서의 반응시간에 따른 금속의 회수율을 나타내었으며, 도 3에는 황산 농도별 각 금속의 회수율을 나타내었다.In the sulfuric acid leaching reaction, leaching was carried out at a reaction temperature of 85 ° C. at a concentration of 2.0 M sulfuric acid and 0.2 M hydrogen peroxide. Cu and Zn leached 100% within 8 hours, while Fe, Ni and Al leached over 90% after 24 hours reaction. 2 shows the recovery of the metal according to the reaction time at the reaction temperature of 85 ℃ using sulfuric acid, Figure 3 shows the recovery of each metal by sulfuric acid concentration.

실시예 5: 혼합용매를 이용한 금, 은의 선택적 분리Example 5 Selective Separation of Gold and Silver Using Mixed Solvents

황산침출 후 난용성인 잔사로부터 금, 은을 선택적으로 추출하기 위해, 혼합용매 (NH4)2S2O3+ CuSO4+ NH4OH를 각각 0.2 M, 0.02 M, 0.4 M의 농도로서 사용하였다. 반응온도 40℃에서, 5 g/l 농도의 시료를 사용하여 반응시켰다. 은은 24시간 이내에 100% 침출하였으며, 금은 반응시간 48시간 이후에 100% 침출하였다. 반응시간에 따른 금, 은의 용출율을 도 4에 나타내었다.To selectively extract gold and silver from poorly soluble residues after sulfuric acid leaching, mixed solvents (NH 4 ) 2 S 2 O 3 + CuSO 4 + NH 4 OH were used as concentrations of 0.2 M, 0.02 M, and 0.4 M, respectively. . The reaction was carried out at a reaction temperature of 40 ° C. using a sample having a concentration of 5 g / l. Silver leached 100% within 24 hours and gold leached 100% after 48 hours. Dissolution rates of gold and silver according to the reaction time are shown in FIG. 4.

실시예 6: NaCl 용액에 의한 납의 선택적 분리Example 6: Selective Separation of Lead by NaCl Solution

상기 실시예 5에서 생성된 침출 잔사로부터 Pb을 선택적으로 분리하기 위해 NaCl 용액을 이용하였다. 침출 조건으로는 NaCl의 농도를 0.5 내지 1 M의 범위로 변화하였으며, 시료는 10 g/l의 농도로 사용하였고, 상온에서 300 rpm의 교반조건으로 실험하였다. 상기 침출 잔사를 1 M NaCl 용액과 2시간 반응시킨 결과, PbCl2의 침전물을 98 % 분리 추출할 수 있었다.NaCl solution was used to selectively separate Pb from the leaching residue produced in Example 5. As the leaching conditions, the concentration of NaCl was changed in the range of 0.5 to 1 M, and the sample was used at a concentration of 10 g / l, and the experiment was conducted under a stirring condition of 300 rpm at room temperature. When the leaching residue was reacted with 1 M NaCl solution for 2 hours, the precipitate of PbCl 2 could be separated and extracted 98%.

실시예 7: 왕수용액에 의한 팔라듐의 선택적 추출Example 7 Selective Extraction of Palladium by Aqua Solution

상기 실시예 6으로부터 생성된 최종 잔류물에 침출 용매로서 왕수를 첨가하였다. 상기 왕수는 HCl : HNO3= 3 : 1의 비율로 제조하였다. 시료 10 g/l의 농도를 이용하여 실온에서 60분간 반응시킨 후 팔라듐이 상기 용액에 완전히 침출되었다. 이들 금속은 치환법에 의해 95% 이상을 회수할 수 있었다.To the final residue resulting from Example 6 was added aqua regia as a leaching solvent. The aqua regia was prepared in the ratio of HCl: HNO 3 = 3: 1. After reacting at room temperature for 60 minutes using a concentration of 10 g / l of sample, palladium was completely leached into the solution. These metals were able to recover 95% or more by the substitution method.

본 발명의 금속 회수방법은 물리적 및 화학적인 방법을 병용하여 폐 인쇄회로기판으로부터 유가금속을 비롯한 자원을 고효율로 회수할 수 있으며, 물리적인 방법을 이용하여 금속 부분과 비금속 부분을 선분리함으로써 금속뿐만 아니라 플라스틱을 회수할 수 있으며, 금, 은과 같은 유가금속을 고순도로 회수할 수 있고, 또한 희유금속인 팔라듐을 분리할 수 있고, 특히 금, 은의 회수시에 용매로서 S2O3를 포함하는 용매를 사용함으로써, 환경친화적이며 경제적인 효과를 갖는다.The metal recovery method of the present invention can recover valuable resources including valuable metals from the waste printed circuit board with high efficiency by using physical and chemical methods, and pre-separates metal and non-metal parts using physical methods. In addition, plastics can be recovered, valuable metals such as gold and silver can be recovered with high purity, and palladium, a rare metal, can be separated, and in particular, S 2 O 3 is contained as a solvent in the recovery of gold and silver. By using a solvent, it has an environmentally friendly and economic effect.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (3)

(1) 폐 인쇄회로기판을 분쇄하고;(1) grinding the waste printed circuit board; (2) 상기 분쇄물을 풍력선별에 의해 비중이 가벼운 부분과 비중이 무거운 부분으로 분리하고;(2) separating the pulverized product into a portion having a light specific gravity and a portion having a high specific gravity by wind screening; (3) 상기 비중이 무거운 부분을 정전선별에 의해 도체와 부도체로 분리하고;(3) separating the heavy portion into a conductor and an insulator by electrostatic screening; (4) 상기 도체 부분을 자력선별에 의해 자성체와 비자성체로 분리하고;(4) separating the conductor portion into magnetic and nonmagnetic materials by magnetic screening; (5) 상기 비자성체 부분을 화학처리하는 것을 포함하며,(5) chemically treating the nonmagnetic portion, 상기 화학처리 단계는The chemical treatment step (a) 황산과 과산화수소수의 혼합물을 상기 비자성체 부분에 첨가하여 반응시켜, 상기 비자성체 부분으로부터 구리, 철, 아연, 니켈 및 알루미늄 성분을 용해시켜 분리하고;(a) adding a mixture of sulfuric acid and hydrogen peroxide to the nonmagnetic portion to react, dissolving and separating the copper, iron, zinc, nickel and aluminum components from the nonmagnetic portion; (b) 상기 (a) 단계의 난용성 잔사를, (NH4)2S2O3, CuSO4및 NH4OH가 각각 0.2, 0.02 및 0.4의 몰비로 구성된 혼합용매에 첨가하여 반응시킴으로써, 금 및 은을 용해분리시키고;(b) reacting the poorly soluble residue of step (a) by adding (NH 4 ) 2 S 2 O 3 , CuSO 4 and NH 4 OH to a mixed solvent having a molar ratio of 0.2, 0.02 and 0.4, respectively, And dissolving silver; (c) 상기 (b) 단계의 잔사에 염수를 첨가하여 반응시켜, 잔사로부터 납을 용해분리시키고;(c) reacting the residue of step (b) by adding brine to dissolve and separate lead from the residue; (d) 상기 (c) 단계의 잔사를 왕수와 반응시켜, 잔사로부터 팔라듐을 용해분리시키는 것을 포함하는 것을 특징으로 하는,(d) reacting the residue of step (c) with aqua regia to dissolve and separate the palladium from the residue, 폐 인쇄회로기판으로부터 유가금속을 회수하는 방법.A method for recovering valuable metals from waste printed circuit boards. 제1항에 있어서,The method of claim 1, 구리는 전기분해에 의해, 아연은 침전법에 의해, 금, 은 및 팔라듐은 시멘테이션(cementation)에 의해, 그리고 납은 용매추출법에 의해 각각의 성분으로 회수하는 것을 특징으로 하는 방법.Wherein copper is recovered by electrolysis, zinc by precipitation, gold, silver and palladium by cementation, and lead by solvent extraction. 제1항에 있어서,The method of claim 1, (a) 단계의 황산 침출 공정에서 황산의 농도는 1.0 내지 2.0 M이고, 과산화수소수의 함량은 0.1 내지 0.2 M이며, 반응시간은 20 내지 24 시간이고, 반응온도는 80 내지 85℃에서 수행되는 것을 특징으로 하는 방법.In the sulfuric acid leaching step (a), the concentration of sulfuric acid is 1.0 to 2.0 M, the hydrogen peroxide content is 0.1 to 0.2 M, the reaction time is 20 to 24 hours, and the reaction temperature is performed at 80 to 85 ° C. How to feature.
KR10-2001-0042706A 2001-07-16 2001-07-16 Method for recovering high-value metals from waste printed circuit boards KR100421937B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0042706A KR100421937B1 (en) 2001-07-16 2001-07-16 Method for recovering high-value metals from waste printed circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0042706A KR100421937B1 (en) 2001-07-16 2001-07-16 Method for recovering high-value metals from waste printed circuit boards

Publications (2)

Publication Number Publication Date
KR20030006792A true KR20030006792A (en) 2003-01-23
KR100421937B1 KR100421937B1 (en) 2004-03-12

Family

ID=27715247

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0042706A KR100421937B1 (en) 2001-07-16 2001-07-16 Method for recovering high-value metals from waste printed circuit boards

Country Status (1)

Country Link
KR (1) KR100421937B1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542609B1 (en) * 2002-12-11 2006-01-11 조성용 Method of recovering valuable metal from waste varister chip
KR100691734B1 (en) * 2004-09-22 2007-03-12 고병철 Method for Retrieving PET and EVA from Laminating Film
KR100889315B1 (en) * 2007-11-16 2009-03-18 한국지질자원연구원 Novel pre-treatment process for liberation of metals from waste printed circuit boards using organic solution
CN102108442A (en) * 2010-12-16 2011-06-29 广东奥美特集团有限公司 Method for extracting copper from waste circuit boards
CN102108441A (en) * 2010-12-16 2011-06-29 惠州市鼎晨实业发展有限公司 Multiple-step purifying method for precious metals of waste PCB (printed circuit board)
WO2012024603A2 (en) * 2010-08-20 2012-02-23 Advanced Technology Materials, Inc. Sustainable process for reclaiming precious metals and base metals from e-waste
KR101322083B1 (en) * 2007-05-30 2013-10-25 주식회사 케이씨씨 A method for eliminating iron content from pyrophyllite
US20130336858A1 (en) * 2011-03-31 2013-12-19 Mitsui Mining & Smelting Co. Ltd Tantalum recovery method
KR101426518B1 (en) * 2012-10-08 2014-08-05 한국지질자원연구원 Method for Recovering Precious Metals from Printed Circuit Boards Scrap of End-of-Life Mobile Phones
KR101494667B1 (en) * 2014-09-12 2015-02-23 주식회사 에이이 Ammonia Solvent for Removing Fe Impurity of Low Grade Pyrophyllite
US9215813B2 (en) 2010-04-15 2015-12-15 Advanced Technology Materials, Inc. Method for recycling of obsolete printed circuit boards
US9221114B2 (en) 2011-12-15 2015-12-29 Advanced Technology Materials, Inc. Apparatus and method for stripping solder metals during the recycling of waste electrical and electronic equipment
CN105506289A (en) * 2015-11-24 2016-04-20 四川长虹格润再生资源有限责任公司 Method and equipment for recovering gold and silver in waste printed boards
US10197395B2 (en) 2012-02-29 2019-02-05 Samsung Electronics Co., Ltd. System, apparatus, and method for estimating three-dimensional (3D) position and direction precisely
US20220176412A1 (en) * 2019-03-29 2022-06-09 Jx Nippon Mining & Metals Corporation Method for processing electronic/electrical device component scraps
CN115215920A (en) * 2022-07-29 2022-10-21 重庆工商大学 Method for preparing small peptide chelated copper by using waste printed circuit board
KR20230136949A (en) * 2022-03-21 2023-10-04 전남대학교산학협력단 Valuable metal recovery method using solvent extraction from zinc and copper waste
WO2023212815A1 (en) * 2022-05-04 2023-11-09 Seneca Experts-Conseils Inc. Process for extraction of common and precious metals from wasted circuit boards

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101941558B1 (en) 2017-11-20 2019-01-23 (주)엔코 Method for electrolytically refining of coarse copper recovered from scrap of a printed circuit board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218486A (en) * 1989-02-21 1990-08-31 Sanko:Kk Recovery of metal copper from cutting refuse of printed circuit board
JPH0760227A (en) * 1993-08-23 1995-03-07 Nec Corp Recovery of valuables from printed circuit board
JPH09324222A (en) * 1996-06-03 1997-12-16 Clean Japan Center Method for recovering metal from plastic adhered with nonferrous metals
KR100395400B1 (en) * 2001-02-27 2003-08-25 (주)아이티그린 Separation and preconcentration method for precious metals from printed circuit boards using chelating resin

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542609B1 (en) * 2002-12-11 2006-01-11 조성용 Method of recovering valuable metal from waste varister chip
KR100691734B1 (en) * 2004-09-22 2007-03-12 고병철 Method for Retrieving PET and EVA from Laminating Film
KR101322083B1 (en) * 2007-05-30 2013-10-25 주식회사 케이씨씨 A method for eliminating iron content from pyrophyllite
KR100889315B1 (en) * 2007-11-16 2009-03-18 한국지질자원연구원 Novel pre-treatment process for liberation of metals from waste printed circuit boards using organic solution
WO2009064063A1 (en) * 2007-11-16 2009-05-22 Korea Institute Of Geoscience And Mineral Resources(Kigam) Novel pre-treatment process for liberation of metals from waste printed circuit boards using organic solution
US7867317B2 (en) 2007-11-16 2011-01-11 Korea Institute of Geoscience and Minderal Resources Pre-treatment process for liberation of metals from waste printed circuit boards using organic solution
US9215813B2 (en) 2010-04-15 2015-12-15 Advanced Technology Materials, Inc. Method for recycling of obsolete printed circuit boards
US10034387B2 (en) 2010-04-15 2018-07-24 Entegris, Inc. Method for recycling of obsolete printed circuit boards
WO2012024603A3 (en) * 2010-08-20 2012-05-18 Advanced Technology Materials, Inc. Sustainable process for reclaiming precious metals and base metals from e-waste
CN103249849A (en) * 2010-08-20 2013-08-14 高级技术材料公司 Sustainable process for reclaiming precious metals and base metals from e-aste
WO2012024603A2 (en) * 2010-08-20 2012-02-23 Advanced Technology Materials, Inc. Sustainable process for reclaiming precious metals and base metals from e-waste
CN105274338A (en) * 2010-08-20 2016-01-27 安格斯公司 Sustainable process for reclaiming precious metals and base metals from e-waste
US9238850B2 (en) 2010-08-20 2016-01-19 Advanced Technology Materials, Inc. Sustainable process for reclaiming precious metals and base metals from e-waste
CN103249849B (en) * 2010-08-20 2015-11-25 安格斯公司 The sustainable method of precious metal and base metal is reclaimed from electronic waste
CN102108441A (en) * 2010-12-16 2011-06-29 惠州市鼎晨实业发展有限公司 Multiple-step purifying method for precious metals of waste PCB (printed circuit board)
CN102108442A (en) * 2010-12-16 2011-06-29 广东奥美特集团有限公司 Method for extracting copper from waste circuit boards
US8961910B2 (en) * 2011-03-31 2015-02-24 Mitsui Mining & Smelting Co., Ltd. Tantalum recovery method
US20130336858A1 (en) * 2011-03-31 2013-12-19 Mitsui Mining & Smelting Co. Ltd Tantalum recovery method
US9649712B2 (en) 2011-12-15 2017-05-16 Entegris, Inc. Apparatus and method for stripping solder metals during the recycling of waste electrical and electronic equipment
US9731368B2 (en) 2011-12-15 2017-08-15 Entegris, Inc. Apparatus and method for stripping solder metals during the recycling of waste electrical and electronic equipment
US9221114B2 (en) 2011-12-15 2015-12-29 Advanced Technology Materials, Inc. Apparatus and method for stripping solder metals during the recycling of waste electrical and electronic equipment
US10197395B2 (en) 2012-02-29 2019-02-05 Samsung Electronics Co., Ltd. System, apparatus, and method for estimating three-dimensional (3D) position and direction precisely
KR101426518B1 (en) * 2012-10-08 2014-08-05 한국지질자원연구원 Method for Recovering Precious Metals from Printed Circuit Boards Scrap of End-of-Life Mobile Phones
KR101494667B1 (en) * 2014-09-12 2015-02-23 주식회사 에이이 Ammonia Solvent for Removing Fe Impurity of Low Grade Pyrophyllite
CN105506289B (en) * 2015-11-24 2018-01-26 四川长虹格润再生资源有限责任公司 The recovery method of gold and silver in waste and old printed board
CN105506289A (en) * 2015-11-24 2016-04-20 四川长虹格润再生资源有限责任公司 Method and equipment for recovering gold and silver in waste printed boards
US20220176412A1 (en) * 2019-03-29 2022-06-09 Jx Nippon Mining & Metals Corporation Method for processing electronic/electrical device component scraps
US11819885B2 (en) * 2019-03-29 2023-11-21 Jx Metals Corporation Method for processing electronic/electrical device component scraps
KR20230136949A (en) * 2022-03-21 2023-10-04 전남대학교산학협력단 Valuable metal recovery method using solvent extraction from zinc and copper waste
WO2023212815A1 (en) * 2022-05-04 2023-11-09 Seneca Experts-Conseils Inc. Process for extraction of common and precious metals from wasted circuit boards
CN115215920A (en) * 2022-07-29 2022-10-21 重庆工商大学 Method for preparing small peptide chelated copper by using waste printed circuit board

Also Published As

Publication number Publication date
KR100421937B1 (en) 2004-03-12

Similar Documents

Publication Publication Date Title
KR100421937B1 (en) Method for recovering high-value metals from waste printed circuit boards
Hsu et al. Advancements in the treatment and processing of electronic waste with sustainability: a review of metal extraction and recovery technologies
Ashiq et al. Hydrometallurgical recovery of metals from e-waste
Oh et al. Selective leaching of valuable metals from waste printed circuit boards
Cui et al. Literature review of hydrometallurgical recycling of printed circuit boards (PCBs)
Kumar et al. LEACHING OF METALS FROM WASTE PRINTED CIRCUIT BOARDS (WPCBs) USING SULFURIC AND NITRIC ACIDS.
Sum The recovery of metals from electronic scrap
Kumari et al. A critical review of the pre-processing and metals recovery methods from e-wastes
CN101928840B (en) Method for recovering gold and silver from waste circuit board
US20110274598A1 (en) Sustainable recovery of metal compounds
CN111041207A (en) Electrochemical gold leaching agent and method for recovering gold from waste gold-plated circuit board
KR101567499B1 (en) A selectively recovery method for valuable metal from the LED wastes
Gulliani et al. Recovery of metals and valuable chemicals from waste electric and electronic materials: a critical review of existing technologies
WO2006013568A2 (en) Recovery of precious metals from electronic scrap by hydrometallurgical processing
CN105886768A (en) Method for efficiently enriching precious metal from electronic waste
KR20190074676A (en) method of seperating metal from recycling to boards
EP3768869A1 (en) Method for the selective recovery of tin and a reactor for use in said method
Alam et al. E-waste recycling technologies: an overview, challenges and future perspectives
Li et al. Review on the gentle hydrometallurgical treatment of WPCBs: Sustainable and selective gradient process for multiple valuable metals recovery
CN114134337B (en) Low-cost and high-efficiency method for recovering noble metal in circuit board components
CN104178629B (en) The method that valuable metal is reclaimed from many metal dusts of waste electronic wiring board
Saadatjoo et al. Recovery of gold from computer circuit board scraps: the study of the effect of different reductants
CN109943721B (en) Process for leaching copper in electronic waste by low acid
Xiao et al. An environmentally friendly system for high efficient silver recovery from anode slime
赵由才 Extraction of zinc from electric arc furnace dust by alkaline leaching followed by fusion of the leaching residue with caustic soda

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070216

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee