KR20030003907A - Method for using high density plasma chemical vapor deposition equipment - Google Patents
Method for using high density plasma chemical vapor deposition equipment Download PDFInfo
- Publication number
- KR20030003907A KR20030003907A KR1020010039763A KR20010039763A KR20030003907A KR 20030003907 A KR20030003907 A KR 20030003907A KR 1020010039763 A KR1020010039763 A KR 1020010039763A KR 20010039763 A KR20010039763 A KR 20010039763A KR 20030003907 A KR20030003907 A KR 20030003907A
- Authority
- KR
- South Korea
- Prior art keywords
- density plasma
- chemical vapor
- vapor deposition
- plasma chemical
- frequency
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/513—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
본 발명은 반도체 소자의 제조방법에 관한 것으로, 더욱 상세하게는 고밀도 플라즈마 화학기상증착 장비의 사용방법에 관한 것이다.The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method of using a high density plasma chemical vapor deposition equipment.
반도체 소자의 제조 기술이 점차 고집적화 되고 있으며, 또한 빠른 처리속도가 요구됨에 따라 다층 금속배선 구조가 필수적으로 사용되고 있다. 이와 같은 다층 금속배선 구조에서 각 층간의 층간절연막을 형성하기 위하여 화학기상증착(Chemical Vapor Deposition) 방식이 주로 사용되고 있다. 상기 화학기상증착 방식은 화학소스(Chemical source)를 가스 상태로 장치 내에 공급하여 웨이퍼 표면상에서 확산을 일으킴으로써 층간절연막 등을 웨이퍼 표면에 증착시키는기술이다.As the manufacturing technology of semiconductor devices is becoming increasingly integrated and a fast processing speed is required, a multilayer metallization structure is inevitably used. In such a multilayer metallization structure, a chemical vapor deposition method is mainly used to form an interlayer insulating film between layers. The chemical vapor deposition method is a technique of depositing an interlayer insulating film or the like on a wafer surface by supplying a chemical source into a device in a gas state to cause diffusion on the wafer surface.
이러한 화학기상증착 방식에는 특히 고밀도 플라즈마(High Density Plasma)를 이용한 화학기상증착법이 있는데, 고밀도 플라즈마 화학기상증착 방식은 종래의 플라즈마 화학기상증착 방식보다 이온화 효율을 향상시키기 위하여 훨씬 낮은 압력, 예컨대 수 mtorr에서 공정이 진행되고, 플라즈마 챔버 내에 전기장과 함께 자기장이 인가된다. 따라서 고밀도 플라즈마 화학기상증착 방식의 경우, 종래의 플라즈마 화학기상증착 방식보다 많은 가속 에너지를 얻을 수 있으며, 높은 이온화 밀도에 기인하여 더 많은 반응 라디칼이 생성된다. 이러한 고밀도 플라즈마 화학기상증착 방식은 침적과 불활성 가스를 이용한 에치백(etch back)을 동시에 실시하여, 높은 종횡비(aspect ratio)를 갖는 공간을 보다 효과적으로 채울 수 있도록 고안된 방식이다.In particular, the chemical vapor deposition method is a chemical vapor deposition method using a high density plasma (High Density Plasma), the high density plasma chemical vapor deposition method is a much lower pressure, such as several mtorr to improve the ionization efficiency than the conventional plasma chemical vapor deposition method In the process, a magnetic field is applied together with the electric field in the plasma chamber. Therefore, in the case of high density plasma chemical vapor deposition, more acceleration energy can be obtained than the conventional plasma chemical vapor deposition, and more reactive radicals are generated due to the high ionization density. The high-density plasma chemical vapor deposition method is a method designed to more effectively fill a space having a high aspect ratio by simultaneously performing deposition and etch back using an inert gas.
한편, 반도체 소자의 제조공정에서 발생한 단차를 채우기 위해 많은 다양한 방식의 산화막들이 사용되고 있으나, 그 중에서도 고밀도 플라즈마 산화막(high density plasma oxide)은 소자의 디자인 룰(design rule)이 감소함에 따라 좁은 트렌치 소자분리(shallow trench isolation), 층간 절연(interlevel dielectric layer), 배선간 절연(intermetal dielectric layer), 패시베이션(passivation layer) 등의 공정에 이르기까지 거의 모든 반도체 제조 공정에 사용되고 있다.On the other hand, many different types of oxide films are used to fill the steps generated in the manufacturing process of semiconductor devices. Among them, high density plasma oxide has a narrow trench isolation as the design rule of the device decreases. It is used in almost all semiconductor manufacturing processes ranging from shallow trench isolation, interlevel dielectric layer, intermetal dielectric layer, and passivation layer.
그러나, 반도체 소자의 고집적화에 따라 트랜치 소자분리 공정 및 층간절연막(ILD: Inter layer Dielectric) 구조에서 점점 더 정교한 임계치수(Critical Domension) 및 높은 종횡비(Aspect ratio)가 요구됨에 따라, 현재의 고밀도 플라즈마 산화막은 갭필(gap fill) 능력에 한계를 보이고 있다. 따라서, 고밀도 플라즈마 산화막의 갭필 능력을 향상시킬 수 있는 고밀도 플라즈마 화학기상증착 방법 및 장비에 대한 연구가 현재 활발하게 진행되고 있다.However, as high integration of semiconductor devices requires more sophisticated critical dimensions and higher aspect ratios in the trench device isolation process and the inter layer dielectric (ILD) structure, the current high density plasma oxide film is required. Shows a limitation in the gap fill capability. Therefore, studies on high density plasma chemical vapor deposition method and equipment that can improve the gap fill capability of the high density plasma oxide film are currently being actively conducted.
본 발명이 이루고자 하는 기술적 과제는 우수한 갭필 특성을 갖는 산화막을 형성하기 위한 고밀도 플라즈마 화학기상증착 장비의 사용방법을 제공함에 있다.An object of the present invention is to provide a method of using a high density plasma chemical vapor deposition apparatus for forming an oxide film having excellent gap fill characteristics.
도 1은 고밀도 플라즈마 화학기상증착 장비를 개략적으로 도시한 단면도이다.1 is a schematic cross-sectional view of a high density plasma chemical vapor deposition apparatus.
도 2a 내지 도 2c는 바이어스 주파수에 따른 고밀도 플라즈마 산화막의 증착 프로파일(deposition profile)을 시뮬레이션하여 나타낸 도면이다.2A to 2C are simulation diagrams showing deposition profiles of high density plasma oxide films according to bias frequencies.
상기 기술적 과제를 달성하기 위하여 본 발명은, 상부 고주파 발생기 및 바이어스 고주파 발생기를 포함하는 고밀도 플라즈마 화학기상증착 장비에 있어서, 상기 바이어스 고주파 발생기의 주파수는 상기 상부 고주파 발생기의 주파수보다는 높고, 상기 바이어스 고주파 발생기의 주파수를 13.56 MHz 보다는 높으면서 반응가스들을 안정하게 플라즈마화 할 수 있는 고주파 대역으로 설정하여 산화막을 증착하는 것을 특징으로 하는 고밀도 플라즈마 화학기상증착 장비의 사용방법을 제공한다.In order to achieve the above technical problem, the present invention, in the high-density plasma chemical vapor deposition apparatus including an upper high frequency generator and a bias high frequency generator, the frequency of the bias high frequency generator is higher than the frequency of the upper high frequency generator, the bias high frequency generator It provides a method of using a high-density plasma chemical vapor deposition equipment characterized in that the deposition of the oxide film is set to a high frequency band capable of stably plasma the reaction gases while higher than 13.56 MHz.
상기 13.56 MHz 보다는 높은 고주파 대역은 100 MHz 보다는 작은 주파수 대역이다.The high frequency band higher than 13.56 MHz is a frequency band smaller than 100 MHz.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명하기로 한다. 그러나, 이하의 실시예는 이 기술분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서, 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the following embodiments are provided to those skilled in the art to fully understand the present invention, and may be modified in various forms, and the scope of the present invention is described in the following embodiments. It is not limited. Like numbers refer to like elements in the figures.
도 1은 고밀도 플라즈마 화학기상증착 장비를 개략적으로 도시한 단면도이다.1 is a schematic cross-sectional view of a high density plasma chemical vapor deposition apparatus.
도 1을 참조하면, 도 1에 도시된 고밀도 플라즈마 화학기상증착 장비는 AMT(Applied Materials Technology)사의 고밀도 플라즈마 화학기상증착 장비로서, 상부 고주파 발생기(RF generator)(102), 측부 고주파 발생기(104) 및 바이어스(bias) 고주파 발생기(106)가 구비되어 있다. 상부 고주파 발생기(102)는 상부 유도코일(108)에 연결된다. 상부 고주파 발생기(102)의 주파수는 1.8∼2.0 MHz 정도이다. 측부 고주파 발생기(104)는 측부 유도코일(109)에 연결되어 있다. 측부 고주파 발생기(104)의 주파수는 2.0∼2.2 MHz 정도이다. 상기 상부 및 측부 유도코일들(108, 109)은 챔버(100)내에 전자기장을 유도한다. 바이어스 고주파 발생기(106)는 정전척(112)에 연결되어 있다. 챔버(100) 내로 도입된 웨이퍼(미도시)는 정전척(112) 상에 놓이게 된다. 또한, 고밀도 플라즈마 화학기상증착 장비에는 챔버(100) 내로 반응가스들을 주입하기 위한 가스 노즐(110)들이 구비되어 있다. 상기 가스 노즐(110)들을 통해 반응가스들인 실레인(SiH4), 산소(O2) 및 아르곤(Ar)과 같은 불활성 가스가 공급되게 된다. 공급된 반응가스들은 고주파 발생기들(102, 104, 106)에 의해 플라즈마화되고, 플라즈마화된 반응가스들은 웨이퍼 표면에서 반응하여 증착되게 된다. 또한, 챔버(100)의 하부에는 진공 및 배기를 위한 터보 펌프(114)가 구비되어 있다. 도 1에는 3개의 고주파 발생기(102, 104, 106)를 구비한AMT사의 고밀도 플라즈마 화학기상증착 장비를 도시하였으나, 본 실시예에 따른 고밀도 플라즈마 화학기상증착 장비는 상부 고주파 발생기 및 바이어스 고주파 발생기 2개만을 구비한 고밀도 플라즈마 화학기상증착 장비일 수도 있다. 도 1은 AMT사의 고밀도 플라즈마 화학기상증착 장비를 도시한 것이나, 노벨르스(Novellus)사, 주성엔지니어링사와 같은 화학기상증착 장비를 제조하는 장비제조회사들의 장비들도 도 1에 도시된 AMT사의 장비와 거의 동일한 원리 및 구조로 되어 있다. AMT사 및 노벨르스사의 고밀도 플라즈마 화학기상증착 장비는 바이어스 고주파 발생기의 주파수를 13.56 MHz로 설정하여 사용하였고, 주성엔지니어링사의 장비는 바이어스 고주파 발생기의 주파수를 2.0 MHz로 설정하여 사용하였다. 그러나, 반도체 소자가 고집적화되고 높은 종횡비가 요구됨에 따라, 산화막 증착시 오버행(overhang), 즉 입구매몰 현상이 자주 발생하여 산화막내에 보이드(void)가 생겨나는 문제점이 있다.Referring to FIG. 1, the high density plasma chemical vapor deposition apparatus illustrated in FIG. 1 is a high density plasma chemical vapor deposition apparatus of AMT (Applied Materials Technology), which includes an upper RF generator 102 and a side RF generator 104. And a bias high frequency generator 106. The upper high frequency generator 102 is connected to the upper induction coil 108. The frequency of the upper high frequency generator 102 is about 1.8 to 2.0 MHz. The side high frequency generator 104 is connected to the side induction coil 109. The frequency of the side high frequency generator 104 is about 2.0 to 2.2 MHz. The upper and side induction coils 108, 109 induce an electromagnetic field in the chamber 100. The bias high frequency generator 106 is connected to the electrostatic chuck 112. Wafers (not shown) introduced into the chamber 100 are placed on the electrostatic chuck 112. In addition, the high density plasma chemical vapor deposition equipment is provided with gas nozzles 110 for injecting reaction gases into the chamber 100. Inert gases such as silane (SiH 4 ), oxygen (O 2 ), and argon (Ar), which are reactive gases, are supplied through the gas nozzles 110. The supplied reactant gases are plasmalized by the high frequency generators 102, 104, and 106, and the plasmalized reactant gases are reacted and deposited on the wafer surface. In addition, the lower portion of the chamber 100 is provided with a turbo pump 114 for vacuum and exhaust. 1 shows a high density plasma chemical vapor deposition apparatus of AMT having three high frequency generators 102, 104, and 106, the high density plasma chemical vapor deposition apparatus according to the present embodiment includes two upper high frequency generators and two bias high frequency generators. It may be a high density plasma chemical vapor deposition apparatus having only bays. Figure 1 shows the high-density plasma chemical vapor deposition equipment of AMT, but equipment of equipment manufacturing companies that manufacture chemical vapor deposition equipment, such as Novellus (Novellus), Jusung Engineering Co. It is of almost the same principle and structure. The high-density plasma chemical vapor deposition equipment of AMT and Novellus was used to set the frequency of the bias high frequency generator to 13.56 MHz, and the equipment of Jusung Engineering used the frequency of the bias high frequency generator to 2.0 MHz. However, as semiconductor devices are highly integrated and high aspect ratios are required, there is a problem in that an overhang, that is, an entrance buried phenomenon, occurs frequently during deposition of an oxide film, thereby causing voids in the oxide film.
본 발명은 산화막의 갭필 특성을 향상시키기 위하여 바이어스 고주파 발생기의 주파수 대역을 종래의 2MHz 또는 13.56MHz보다는 더 높은 고주파 대역을 사용함으로써 갭필 특성이 우수한 고밀도 플라즈마 산화막을 형성할 수 있는 고밀도 플라즈마 화학기상증착 장비의 사용방법을 제시한다. 상기 종래의 주파수보다 높은 고주파 대역은 100 MHz 이하의 범위인 것이 바람직하다. 상기와 같이 바이어스 주파수를 종래의 주파수보다 높은 고주파 대역을 사용하여 고밀도 플라즈마 산화막을 증착할 경우, 트렌치(trench)의 측면에 증착되는 고밀도 플라즈마 산화막의 양이 적은 반면, 트렌치 바닥(bottom)에서 채워져 올라오는 양은 많으므로 산화막 증착시 오버행 현상이 현저하게 줄어들게 되고, 따라서 보이드 발생이 감소하여 우수한 갭필 특성을 갖는 고밀도 플라즈마 산화막을 형성할 수 있다.The present invention provides a high density plasma chemical vapor deposition apparatus capable of forming a high density plasma oxide film having excellent gap fill characteristics by using a high frequency band higher than that of a conventional 2 MHz or 13.56 MHz in order to improve the gap fill characteristics of an oxide film. It suggests how to use. The high frequency band higher than the conventional frequency is preferably in the range of 100 MHz or less. When the high-density plasma oxide film is deposited using a high frequency band having a bias frequency higher than the conventional frequency as described above, while the amount of the high-density plasma oxide film deposited on the side of the trench is small, it is filled up in the trench bottom. Since the amount is large, the overhang phenomenon during the deposition of the oxide film is significantly reduced, and thus, the generation of voids is reduced, thereby forming a high density plasma oxide film having excellent gap fill characteristics.
도 2a 내지 도 2c는 바이어스 주파수에 따른 고밀도 플라즈마 산화막의 갭필 특성을 나타내는 증착 프로파일(deposition profile)을 시뮬레이션하여 나타낸 도면이다. 도 2a는 바이어스 파워의 주파수가 2.0 MHz인 경우의 증착 프로파일이고, 도 2b는 바이어스 파워의 주파수가 13.56 MHz인 경우의 증착 프로파일이며, 도 2c는 바이어스 파워의 주파수가 27 MHz인 경우의 증착 프로파일이다. 여기서, 고밀도 플라즈마 화학기상증착 장비는 AMT사의 장비를 사용하였고, 상부 고주파 발생기의 주파수는 1.8∼2.0 MHz, 측부 고주파 발생기의 주파수는 2.0∼2.2 MHz로 설정하였고, 압력은 3∼4 mTorr로 설정하였다.2A to 2C are simulation diagrams showing deposition profiles showing gap fill characteristics of a high density plasma oxide film according to a bias frequency. FIG. 2A is a deposition profile when the frequency of the bias power is 2.0 MHz, FIG. 2B is a deposition profile when the frequency of the bias power is 13.56 MHz, and FIG. 2C is a deposition profile when the frequency of the bias power is 27 MHz. . Here, the high-density plasma chemical vapor deposition equipment used was AMT equipment, the frequency of the upper frequency generator was set to 1.8 ~ 2.0 MHz, the side frequency generator was set to 2.0 ~ 2.2 MHz, the pressure was set to 3 ~ 4 mTorr. .
도 2a 내지 도 2c에서 알 수 있는 바와 같이, 바이어스 고주파 발생기의 주파수가 증가함에 따라 트렌치의 측면에 증착되는 고밀도 플라즈마 산화막의 양이 적은 반면, 트렌치 바닥(bottom)에서 채워져 올라오는 양은 많다는 것을 알 수 있다. 이와 같이, 바이어스 고주파 발생기의 주파수를 증가시키게 되면, 산화막 증착시 오버행 현상이 현저하게 줄어들게 되고, 따라서 보이드 발생이 감소하여 우수한 갭필 특성을 갖는 고밀도 플라즈마 산화막을 얻을 수 있다.As can be seen in Figures 2a to 2c, it can be seen that as the frequency of the bias high-frequency generator increases, the amount of high density plasma oxide deposited on the side of the trench is small, while the amount of filling up from the trench bottom is large. have. As such, when the frequency of the bias high-frequency generator is increased, the overhang phenomenon during the deposition of the oxide film is significantly reduced, and thus, the generation of voids is reduced, thereby obtaining a high density plasma oxide film having excellent gap fill characteristics.
본 발명에 의한 고밀도 플라즈마 화학기상증착 장비의 사용방법에 의하면, 바이어스 고주파 발생기의 주파수를 종래에 사용하던 주파수인 13.56 MHz 보다는 높으면서 반응가스들을 안정하게 플라즈마화 할 수 있는 고주파 대역을 사용함으로써, 산화막 증착시 오버행 현상을 현저하게 줄일 수 있고, 따라서 보이드 발생이 감소하여 우수한 갭필 특성을 나타내는 고밀도 플라즈마 산화막을 얻을 수 있다.According to the method of using the high-density plasma chemical vapor deposition apparatus according to the present invention, oxide film deposition is achieved by using a high frequency band which can stably plasma the reaction gases while the frequency of the bias high-frequency generator is higher than the conventional frequency of 13.56 MHz. It is possible to remarkably reduce the time overhang phenomenon, thus reducing the occurrence of voids and to obtain a high density plasma oxide film exhibiting excellent gap fill characteristics.
이상, 본 발명의 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.As mentioned above, although the preferred embodiment of this invention was described in detail, this invention is not limited to the said embodiment, A various deformation | transformation by a person of ordinary skill in the art within the scope of the technical idea of this invention is carried out. This is possible.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010039763A KR20030003907A (en) | 2001-07-04 | 2001-07-04 | Method for using high density plasma chemical vapor deposition equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010039763A KR20030003907A (en) | 2001-07-04 | 2001-07-04 | Method for using high density plasma chemical vapor deposition equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20030003907A true KR20030003907A (en) | 2003-01-14 |
Family
ID=27713358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020010039763A KR20030003907A (en) | 2001-07-04 | 2001-07-04 | Method for using high density plasma chemical vapor deposition equipment |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20030003907A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112313362A (en) * | 2018-06-19 | 2021-02-02 | 应用材料公司 | High bias deposition of high quality gap fill |
-
2001
- 2001-07-04 KR KR1020010039763A patent/KR20030003907A/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112313362A (en) * | 2018-06-19 | 2021-02-02 | 应用材料公司 | High bias deposition of high quality gap fill |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7097886B2 (en) | Deposition process for high aspect ratio trenches | |
KR101491726B1 (en) | Method of gap filling in a semiconductor device | |
US7595088B2 (en) | Hydrogen assisted HDP-CVD deposition process for aggressive gap-fill technology | |
US6884318B2 (en) | Plasma processing system and surface processing method | |
US20110151676A1 (en) | Methods of thin film process | |
US20100041207A1 (en) | High density plasma gapfill deposition-etch-deposition process using fluorocarbon etchant | |
KR100420753B1 (en) | Method for filling gaps on a semiconductor wafer | |
KR20090060768A (en) | Method of forming sioc film using precursor for manufacturing sioc film | |
KR20090007773A (en) | Film forming method, film forming apparatus, storage medium and semiconductor device | |
KR102514465B1 (en) | Methods for Depositing Dielectric Materials | |
KR20010107765A (en) | Trench fill with hdp-cvd process | |
JP6709293B2 (en) | Film forming apparatus and film forming method | |
WO2021055918A1 (en) | Methods and apparatus for depositing dielectric material | |
CN100468687C (en) | Method for filling isolation plough groove | |
US6589854B2 (en) | Method of forming shallow trench isolation | |
JP7331236B2 (en) | Method and apparatus for curing dielectric material | |
CN101192559A (en) | Isolation groove filling method | |
KR20030003907A (en) | Method for using high density plasma chemical vapor deposition equipment | |
KR100769138B1 (en) | Apparatus and method for manufacturing of plasma oxide layer using the high density plasma chemical vapor deposition | |
Lisker et al. | Sub-atmospheric chemical vapor deposition of SiO2 for dielectric layers in high aspect ratio TSVs | |
KR100466684B1 (en) | Fluorocarbon film and method for forming the same | |
US11655537B2 (en) | HDP sacrificial carbon gapfill | |
CN116314004A (en) | Method for forming shallow trench isolation structure | |
KR20100077699A (en) | High density plasma deposition method | |
KR20080013269A (en) | Method for forming thin flim for use in fabricating semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Withdrawal due to no request for examination |