KR20020081902A - Method for silicon dioxide formation by using oxygen radical - Google Patents

Method for silicon dioxide formation by using oxygen radical Download PDF

Info

Publication number
KR20020081902A
KR20020081902A KR1020010021395A KR20010021395A KR20020081902A KR 20020081902 A KR20020081902 A KR 20020081902A KR 1020010021395 A KR1020010021395 A KR 1020010021395A KR 20010021395 A KR20010021395 A KR 20010021395A KR 20020081902 A KR20020081902 A KR 20020081902A
Authority
KR
South Korea
Prior art keywords
silicon oxide
oxide film
silicon
oxygen radicals
active oxygen
Prior art date
Application number
KR1020010021395A
Other languages
Korean (ko)
Inventor
허태훈
김서원
Original Assignee
아남반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아남반도체 주식회사 filed Critical 아남반도체 주식회사
Priority to KR1020010021395A priority Critical patent/KR20020081902A/en
Publication of KR20020081902A publication Critical patent/KR20020081902A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE: A method for manufacturing a silicon oxide using oxygen radical is provided to restrain defects of the silicon oxide and to improve coupling density by using an active oxygen radical having a high kinetic energy compared to O2 gas using a dry and a wet oxidations. CONSTITUTION: A silicon substrate is loaded in a reaction chamber for performing an oxidation processing(S10). Active oxygen radicals are supplied to the reaction chamber by a plasma generator using a microwave guide(S20). A silicon oxide(SiO2) is formed by oxidation reaction between silicon and active oxygen radicals(S30). Since the active oxygen radical has a relatively high kinetic energy compared to O2 gas used in the conventional oxidation, defects of the silicon oxide are repaired.

Description

산소 라디칼을 이용한 실리콘 산화막의 제조 방법{METHOD FOR SILICON DIOXIDE FORMATION BY USING OXYGEN RADICAL}Method for producing silicon oxide film using oxygen radicals {METHOD FOR SILICON DIOXIDE FORMATION BY USING OXYGEN RADICAL}

본 발명은 반도체 제조방법에 관한 것으로서, 특히 건식(dry) 또는 습식(wet)의 고온 산화 방식이 아닌 마이크로파(micro wave) 도파관 통과 또는 RF 전원에 의해 발생된 활성 산소 라디칼(O*: active oxygen radical)로 양질의 실리콘 산화막을 제조하는 기술에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor, and in particular, active oxygen radicals (O *) generated by microwave waveguides or RF power sources, which are not dry or wet high temperature oxidation methods. The present invention relates to a technique for producing a high quality silicon oxide film.

일반적으로 실리콘 산화막(SiO2)은 우수한 절연 파괴 특성과 계면 특성, 작은 누설 전류로 인하여 트랜지스터의 게이트 절연막 또는 스토리지 커패시터내 유전체막 등 반도체 소자내에서 절연 역할을 하는 물질로 자주 이용된다. 대개 실리콘의 산화방법은 반응 챔버내에 산소(O2)를 불어넣어 고온에서 실리콘 기판의 실리콘(Si)과 산소(O)를 반응시켜 실리콘 산화막(SiO2)을 형성하는 것으로, 산소(O2) 가스를 사용한 건식 산화(dry oxidation)와 수분(H2O)을 사용한 습식 산화(wet oxidation)로 구분된다.In general, silicon oxide (SiO 2 ) is frequently used as an insulating material in semiconductor devices such as a gate insulating film of a transistor or a dielectric film in a storage capacitor due to excellent dielectric breakdown characteristics, interfacial properties, and small leakage current. Usually the oxidation method of silicon by reacting silicon (Si) and oxygen (O) of the silicon substrate at a high temperature by blowing the oxygen (O 2) in the reaction chamber to form a silicon oxide film (SiO 2), oxygen (O 2) It is divided into dry oxidation using gas and wet oxidation using water (H 2 O).

도 1은 종래 기술의 건식 또는 습식 산화에 의해 형성된 실리콘 산화막을 나타낸 단면도로서, 이를 참조하면 종래 기술의 산화 방법은 퍼니스(furnace)의 온도를 약 800℃∼1200℃로 하여 고온의 열 산화(thermal oxidation) 반응에 의해 실리콘 기판(10)의 실리콘(Si)과 산소(O)를 반응시켜 실리콘 산화막(SiO2)(20)을 형성한다. 이러한 고온 열 산화 공정은 다른 산화 공정보다 실리콘 산화막(20)의 밀도를 높이는 것으로 알려져 있다. 도면에서 미설명된 부호 12는 실리콘 기판의 최초 표면을 나타낸 것이다.1 is a cross-sectional view showing a silicon oxide film formed by dry or wet oxidation of the prior art. Referring to this, the prior art oxidation method uses a high temperature thermal oxidation at a temperature of a furnace of about 800 ° C to 1200 ° C. A silicon oxide film (SiO 2 ) 20 is formed by reacting silicon (Si) and oxygen (O) of the silicon substrate 10 by an oxidation reaction. This high temperature thermal oxidation process is known to increase the density of the silicon oxide film 20 than other oxidation processes. Reference numeral 12, which is not described in the drawings, indicates the initial surface of the silicon substrate.

하지만, 현재 서브미크론(submicron)이하의 고집적 반도체 소자에 적용되는 실리콘 산화막(예컨대 게이트 절연막)의 두께는 불과 수십 Å이하로 줄어들고 있기 때문에 원하는 절연 특성을 얻기 위해서는 결합 밀도가 높아야만 한다. 결합 밀도가 높은 실리콘 산화막을 얻기 위해서는 막내에 잔존하는 결함을 최대한 제거해야만 한다. 그러나, 종래 기술은 고집적 반도체 소자에서 요구하는 절연특성을 맞추기 위하여 실리콘 산화막의 결함을 제거하기 위한 별다른 방안이 없었다.However, since the thickness of a silicon oxide film (for example, a gate insulating film) applied to a highly integrated semiconductor device of submicron or less is reduced to only a few tens of microwatts or less, a coupling density must be high to obtain desired insulating characteristics. In order to obtain a silicon oxide film having a high bonding density, it is necessary to remove defects remaining in the film as much as possible. However, in the prior art, there is no special method for eliminating defects in the silicon oxide film in order to meet the insulating properties required in the highly integrated semiconductor device.

또한, 종래 기술에 의한 습식 및 건식 산화는 900℃∼1200℃의 고온 열공정을 통해 실리콘 산화막을 형성하는데, 이러한 고온의 열 산화 공정으로는 실리콘 산화막의 두께를 고집적 반도체 소자에서 요구하는 수십 Å이하의 얇은 두께로 조절하는데 어려움이 있었다.In addition, the wet and dry oxidation according to the prior art forms a silicon oxide film through a high temperature thermal process of 900 ℃ to 1200 ℃, this high temperature thermal oxidation process, the thickness of the silicon oxide film is several tens of kPa or less required in the highly integrated semiconductor device Difficult to adjust to the thin thickness of the.

본 발명의 목적은 이와 같은 종래 기술의 문제점을 해결하기 위하여 RF 전원 또는 마이크로파(micro wave) 도파관을 통해 발생된 활성 산소 라디칼(O*: active oxygen radical)로 결합 밀도가 높고 원하는 두께로 얇게 실리콘 산화막을 형성할 수 있는 산소 라디칼을 이용한 실리콘 산화막의 제조 방법을 제공하고자 한다.In order to solve the problems of the prior art, an object of the present invention is an active oxygen radical (O * ) generated through an RF power source or a microwave waveguide, and a high silicon oxide film having a high bonding density and a desired thickness. It is to provide a method for producing a silicon oxide film using an oxygen radical capable of forming a.

이러한 목적을 달성하기 위하여 본 발명은 실리콘 산화막의 제조 방법에 있어서, 실리콘막을 포함한 기판을 반응 챔버에 이동하는 단계와, 반응 챔버내에 플라즈마 발생기를 통해 활성 산소 라디칼을 공급하는 단계와, 실리콘막과 활성 산소 라디칼의 산화반응에 의해 실리콘 산화막을 형성하는 단계를 포함한다.In order to achieve the above object, the present invention provides a method of manufacturing a silicon oxide film, comprising: moving a substrate including a silicon film to a reaction chamber, supplying active oxygen radicals through a plasma generator in the reaction chamber, and Forming a silicon oxide film by oxidation of oxygen radicals.

도 1은 종래 기술의 건식 또는 습식 산화에 의해 형성된 실리콘 산화막을 나타낸 단면도,1 is a cross-sectional view showing a silicon oxide film formed by dry or wet oxidation of the prior art,

도 2는 본 발명에 따른 산소 라디칼을 이용한 실리콘 산화막의 제조 방법을 설명하기 위한 공정 순서도,2 is a process flowchart for explaining a method for producing a silicon oxide film using an oxygen radical according to the present invention;

도 3은 본 발명에 따라 산소 라디칼과 실리콘과의 산화 반응을 나타낸 단면도.3 is a cross-sectional view showing the oxidation reaction of oxygen radicals and silicon in accordance with the present invention.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대해 설명하고자 한다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.

도 2는 본 발명에 따른 산소 라디칼을 이용한 실리콘 산화막의 제조 방법을 설명하기 위한 공정 순서도이다. 도 3은 본 발명에 따라 산소 라디칼과 실리콘과의 산화 반응을 나타낸 단면도이다.2 is a flowchart illustrating a method of manufacturing a silicon oxide film using oxygen radicals according to the present invention. 3 is a cross-sectional view showing the oxidation reaction of oxygen radicals and silicon in accordance with the present invention.

먼저, 본 발명의 제조 공정은 실리콘막을 포함한 기판(10)을 실리콘 산화 공정을 실시하는 반응 챔버로 이동시킨다. (S10)First, the manufacturing process of the present invention moves the substrate 10 including the silicon film to a reaction chamber which performs the silicon oxidation process. (S10)

단계 S10과 같이 반응 챔버내에 실리콘 기판(10)을 이동시킨 후에, 반응 챔버내에 플라즈마 발생기를 통해 활성 산소 라디칼(O*)을 공급한다. (S20)After moving the silicon substrate 10 in the reaction chamber as in step S10, active oxygen radicals (O * ) are supplied through the plasma generator into the reaction chamber. (S20)

이때, 플라즈마 발생기는 마이크로파 도파관을 통해서 활성 산소 라디칼(O*)을 발생하되, 마이크로파의 전원을 0.1KW∼3KW, 그 주파수를 1GHz∼10GHz로 설정한다. 또는 RF 전원(예컨대 13.56MHz)을 사용하여 활성 산소 라디칼(O*)을 발생한다.At this time, the plasma generator generates active oxygen radicals (O * ) through the microwave waveguide, but sets the power of the microwave to 0.1KW to 3KW and the frequency to 1GHz to 10GHz. Or generate an active oxygen radical (O * ) using an RF power source (eg, 13.56 MHz).

동시에, 실리콘 산화 공정이 실시되는 반응 챔버의 초기 압력(base pressure) 및 반응 압력(working pressrure)은 10Torr 이하의 고 진공으로 유지함이 바람직하다. 고 진공 상태로 하는 이유는 활성 산소 라디칼(O*)이 실리콘막(10) 위에 도달하는 동안 다른 원자들에 의한 산란을 최소화하기 위함이다. 또 반응 챔버의 산화 온도는 종래 습식 산화 및 건식 산화보다 온도가 낮은 400℃∼1200℃에서 진행된다. 또한 반응 챔버내에 불활성 가스, 예컨대 He, Ar, Kr, Xe, Rn를 추가 주입하여 활성 산소 라디칼(O*)의 캐리어로 사용한다.At the same time, it is desirable to maintain the base pressure and the working pressrure of the reaction chamber in which the silicon oxidation process is performed at a high vacuum of 10 Torr or less. The reason for the high vacuum is to minimize scattering by other atoms while the active oxygen radicals O * reach the silicon film 10. In addition, the oxidation temperature of the reaction chamber proceeds at 400 ° C to 1200 ° C, which is lower than the conventional wet oxidation and dry oxidation. In addition, an inert gas such as He, Ar, Kr, Xe, and Rn is further injected into the reaction chamber to be used as a carrier of active oxygen radicals (O * ).

그러면, 단계 S20에 의해 반응 챔버에 공급된 활성 산소 라디칼(O*)은 실리콘막(10)과 산화 반응을 일으켜 실리콘 산화막(SiO2)(20)을 형성한다. (S30)Then, the active oxygen radical (O * ) supplied to the reaction chamber in step S20 causes an oxidation reaction with the silicon film 10 to form a silicon oxide film (SiO 2 ) 20. (S30)

본 발명에 있어서, 라디칼이 된 활성 산소(O*)는 기체 상태의 산소보다 운동에너지가 크기 때문에 종래 습식 산화 또는 건식 산화의 온도(약 800℃이상)보다 낮은 400℃에서도 산화 반응을 유도할 수 있다. 게다가 활성 산소 라디칼(O*)은 기체상태의 산소(O2)보다 운동에너지가 크기 때문에 실리콘 산화막(20)의 결함을 최대한 보상(repair)하기 때문에 막의 결합 밀도를 크게 증가시킬 뿐만 아니라 실리콘 산화막(20)의 두께를 얇게 조절할 수 있다. 이때, 결함 보상은 스트레인드 Si-Si 본드(strained Si-Si bond), Si 댕글링 본드(Si dangling bond), 스트레인드 Si-O 본드(strained Si-O bond) 등을 보상한다.In the present invention, since the active oxygen (O * ) which becomes a radical has a larger kinetic energy than oxygen in the gas state, it can induce an oxidation reaction even at 400 ° C. lower than the temperature of conventional wet oxidation or dry oxidation (about 800 ° C. or more). have. In addition, since active oxygen radicals (O * ) have a larger kinetic energy than gaseous oxygen (O 2 ), the defects of the silicon oxide film 20 are repaired as much as possible, thereby significantly increasing the bond density of the film and also increasing the silicon oxide film ( The thickness of 20) can be adjusted thinly. In this case, the defect compensation compensates for the strained Si-Si bond, the Si dangling bond, the strained Si-O bond, and the like.

그러므로, 본 발명의 실리콘 산화 방법은 산소(O2) 가스 또는 수분(H2O)을 사용하는 것이 아니라 플라즈마 발생기에 의해 발생된 활성 산소 라디칼(O*)을 사용함으로써 종래 보다 결합 밀도가 높은 실리콘 산화막(SiO2)을 낮은 온도에서 형성할 수 있다.Therefore, the silicon oxidation method of the present invention does not use oxygen (O 2 ) gas or water (H 2 O), but rather uses a reactive oxygen radical (O * ) generated by a plasma generator, and thus has a higher bonding density than conventional silicon. The oxide film (SiO 2 ) can be formed at a low temperature.

이상 설명한 바와 같이, 본 발명은 플라즈마 발생기에 의해 발생된 활성 산소 라디칼(O*)을 이용하여 실리콘 산화막(SiO2)을 형성하는데, 활성 산소 라디칼(O*)은 종래 기술의 건식 또는 습식 산화에 사용된 산소 가스(O2)보다 운동에너지가 크기 때문에 낮은 온도에서 공정 진행이 가능하며 막내의 결함을 최대한 보상하여 결합 밀도를 높일 수 있을 뿐만 아니라 원하는 두께로 얇게 형성할 수 있다. 즉, 본 발명은 서브미크론 이하의 고집적 반도체 소자에 적용되는 실리콘 산화막(예컨대 게이트 절연막)의 두께가 수십 Å이하로 줄어들더라도 높은 결합 밀도를 갖는 얇은 실리콘 산화막에 의해 절연 특성 및 소자의 전기적 특성을 향상시킬 수 있다.As described above, the present invention is a dry or wet oxidation of the active oxygen radical (O *) for use in for forming the silicon oxide film (SiO 2), an active oxygen radical (O *) is the prior art produced by the plasma generator Since the kinetic energy is larger than that of the used oxygen gas (O 2 ), the process can be performed at a lower temperature. The defect density in the film can be compensated to the maximum to increase the bonding density, and can be thinly formed to a desired thickness. That is, the present invention improves the insulation characteristics and the electrical characteristics of the device by a thin silicon oxide film having a high bonding density even if the thickness of the silicon oxide film (eg, the gate insulating film) applied to the sub-micron highly integrated semiconductor device is reduced to tens of microwatts or less. You can.

한편, 본 발명은 상술한 실시예에 국한되는 것이 아니라 후술되는 청구범위에 기재된 본 발명의 기술적 사상과 범주내에서 당업자에 의해 여러 가지 변형이 가능하다.On the other hand, the present invention is not limited to the above-described embodiment, various modifications are possible by those skilled in the art within the spirit and scope of the present invention described in the claims to be described later.

Claims (6)

실리콘 산화막의 제조 방법에 있어서,In the method for producing a silicon oxide film, 실리콘막을 포함한 기판을 반응 챔버에 이동하는 단계;Moving the substrate including the silicon film to the reaction chamber; 상기 반응 챔버내에 플라즈마 발생기를 통해 활성 산소 라디칼을 공급하는 단계; 및Supplying active oxygen radicals through a plasma generator into the reaction chamber; And 상기 실리콘막과 상기 활성 산소 라디칼의 산화반응에 의해 실리콘 산화막을 형성하는 단계를 포함하는 것을 특징으로 하는 산소 라디칼을 이용한 실리콘 산화막의 제조 방법.Forming a silicon oxide film by the oxidation reaction of the silicon film and the active oxygen radicals, characterized in that it comprises a silicon oxide film using a oxygen radical. 제 1항에 있어서, 상기 플라즈마 발생기는 마이크로파 도파관을 통해서 상기 활성 산소 라디칼을 발생하되, 마이크로파의 전원을 0.1KW∼3KW, 그 주파수를 1GHz∼10GHz로 설정하는 것을 특징으로 하는 산소 라디칼을 이용한 실리콘 산화막의 제조 방법.The silicon oxide film using oxygen radicals according to claim 1, wherein the plasma generator generates the active oxygen radicals through a microwave waveguide, and sets the power of the microwave to 0.1 KW to 3 KW and sets the frequency to 1 GHz to 10 GHz. Method of preparation. 제 1항에 있어서, 상기 플라즈마 발생기는 RF 전원을 사용하여 상기 활성 산소 라디칼을 발생하는 것을 특징으로 하는 산소 라디칼을 이용한 실리콘 산화막의 제 조방법.The method of manufacturing a silicon oxide film using oxygen radicals according to claim 1, wherein the plasma generator generates the active oxygen radicals using an RF power source. 제 1항에 있어서, 상기 반응 챔버의 초기 압력 및 반응 압력은 10Torr 이하로 유지하는 것을 특징으로 하는 산소 라디칼을 이용한 실리콘 산화막의 제조 방법.The method of claim 1, wherein the initial pressure and the reaction pressure of the reaction chamber are maintained at 10 Torr or less. 제 1항에 있어서, 상기 반응 챔버의 산화 온도는 400℃∼1200℃로 하는 것을 특징으로 하는 산소 라디칼을 이용한 실리콘 산화막의 제조 방법.The method for producing a silicon oxide film using oxygen radicals according to claim 1, wherein the oxidation temperature of the reaction chamber is 400 ° C to 1200 ° C. 제 1항에 있어서, 상기 반응 챔버내에 불활성 가스를 추가 주입하는 것을 특징으로 하는 산소 라디칼을 이용한 실리콘 산화막의 제조 방법.The method of manufacturing a silicon oxide film using oxygen radicals according to claim 1, wherein an inert gas is further injected into said reaction chamber.
KR1020010021395A 2001-04-20 2001-04-20 Method for silicon dioxide formation by using oxygen radical KR20020081902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010021395A KR20020081902A (en) 2001-04-20 2001-04-20 Method for silicon dioxide formation by using oxygen radical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010021395A KR20020081902A (en) 2001-04-20 2001-04-20 Method for silicon dioxide formation by using oxygen radical

Publications (1)

Publication Number Publication Date
KR20020081902A true KR20020081902A (en) 2002-10-30

Family

ID=27701936

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010021395A KR20020081902A (en) 2001-04-20 2001-04-20 Method for silicon dioxide formation by using oxygen radical

Country Status (1)

Country Link
KR (1) KR20020081902A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930062B2 (en) 2003-06-04 2005-08-16 Samsung Electronics Co., Inc. Methods of forming an oxide layer in a transistor having a recessed gate
WO2011008456A3 (en) * 2009-06-29 2011-03-31 Applied Materials, Inc. Methods of forming oxide layers on substrates
WO2012018211A2 (en) * 2010-08-02 2012-02-09 주식회사 유진테크 Method for depositing cyclic thin film
WO2012018210A2 (en) * 2010-08-02 2012-02-09 주식회사 유진테크 Method for depositing cyclic thin film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930062B2 (en) 2003-06-04 2005-08-16 Samsung Electronics Co., Inc. Methods of forming an oxide layer in a transistor having a recessed gate
WO2011008456A3 (en) * 2009-06-29 2011-03-31 Applied Materials, Inc. Methods of forming oxide layers on substrates
US8492292B2 (en) 2009-06-29 2013-07-23 Applied Materials, Inc. Methods of forming oxide layers on substrates
WO2012018211A2 (en) * 2010-08-02 2012-02-09 주식회사 유진테크 Method for depositing cyclic thin film
WO2012018210A2 (en) * 2010-08-02 2012-02-09 주식회사 유진테크 Method for depositing cyclic thin film
WO2012018210A3 (en) * 2010-08-02 2012-05-03 주식회사 유진테크 Method for depositing cyclic thin film
WO2012018211A3 (en) * 2010-08-02 2012-05-03 주식회사 유진테크 Method for depositing cyclic thin film
CN103026471A (en) * 2010-08-02 2013-04-03 株式会社Eugene科技 Method for depositing cyclic thin film
US8828890B2 (en) 2010-08-02 2014-09-09 Eugene Technology Co., Ltd. Method for depositing cyclic thin film

Similar Documents

Publication Publication Date Title
EP1361606B1 (en) Method of producing electronic device material
KR101430093B1 (en) Plasma etching method, method for producing semiconductor device, and plasma etching device
KR101399765B1 (en) Pattern forming method and method for manufacturing semiconductor device
JP4950888B2 (en) Method for improving gate dielectric stacks with high dielectric constant layers using plasma treatment
US7662728B2 (en) Substrate processing method
KR100887330B1 (en) Method for modifying insulation film and method for manufacturing semiconductor device
KR100874517B1 (en) Plasma Treatment Method
KR101102690B1 (en) Method for forming silicon oxide film, plasma processing apparatus and storage medium
KR100921871B1 (en) Plasma processing apparatus and plasma processing method
KR101380094B1 (en) Process for manufacturing semiconductor device
JPH11162958A (en) Plasma treating device and plasma treating method
US20060154492A1 (en) Forming method of low dielectric constant insulating film of semiconductor device, semiconductor device, and low dielectric constant insulating film forming apparatus
KR20090058002A (en) Plasma oxidizing method, plasma oxidizing apparatus, and storage medium
KR20130000409A (en) Silicon oxide film forming method, and plasma oxidation apparatus
TW200913071A (en) Method for pretreating inner space of chamber in plasma nitridation, plasma processing method and plasma processing apparatus
CN102165568B (en) Method and apparatus for forming silicon oxide film
KR20110111487A (en) Method for forming silicon oxide film and method for manufacturing semiconductor device
KR100729989B1 (en) Method of forming insulation film on semiconductor substrate
KR20020081902A (en) Method for silicon dioxide formation by using oxygen radical
KR20080022137A (en) Microwave plasma processing apparatus
KR20040004836A (en) Method for fabricating gate dielectrics with lowered device leakage current
JP6671166B2 (en) Method for manufacturing insulating film laminate
JP2009021442A (en) Method of forming film for porous membrane and computer-readable recording medium
JP3258441B2 (en) Microwave plasma processing apparatus and microwave plasma processing method
US20120234491A1 (en) Plasma processing method and plasma processing apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application