KR20020080304A - Method for manufacturing composite deoxidizer of molten steel and the composite deoxidizer by using the mothod thereof - Google Patents

Method for manufacturing composite deoxidizer of molten steel and the composite deoxidizer by using the mothod thereof Download PDF

Info

Publication number
KR20020080304A
KR20020080304A KR1020020055274A KR20020055274A KR20020080304A KR 20020080304 A KR20020080304 A KR 20020080304A KR 1020020055274 A KR1020020055274 A KR 1020020055274A KR 20020055274 A KR20020055274 A KR 20020055274A KR 20020080304 A KR20020080304 A KR 20020080304A
Authority
KR
South Korea
Prior art keywords
deoxidizer
slag
aluminum
molten metal
composite
Prior art date
Application number
KR1020020055274A
Other languages
Korean (ko)
Other versions
KR100411649B1 (en
Inventor
남철우
Original Assignee
남철우
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 남철우 filed Critical 남철우
Priority to KR10-2002-0055274A priority Critical patent/KR100411649B1/en
Publication of KR20020080304A publication Critical patent/KR20020080304A/en
Application granted granted Critical
Publication of KR100411649B1 publication Critical patent/KR100411649B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • F27D3/0026Introducing additives into the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: A composite deoxidizer is provided which has high density by adding a reinforcing element to aluminum matrix, and a method is provided which deoxidizes and alloys molten steel and slag using the composite deoxidizer is provided. CONSTITUTION: In a deoxidizer injected into molten metal during manufacturing of steel and iron, the composite deoxidizer is characterized in that the deoxidizer increases relative specific gravity for molten metal by solidifying aluminum in an iron pipe. The method for treating molten steel using a composite deoxidizer comprises the steps of injecting the composite deoxidizer into molten metal, specific gravity of the composite deoxidizer has an initial density of 0.4 or more compared with density of molten steel by adding a metal reinforcing element to aluminum matrix; and melting the composite deoxidizer into molten metal as continuously increasing relative density of the composite deoxidizer to 1.00 to 1.05. The method for deoxidizing slag using a slag deoxidizer is characterized in that the slag deoxidizer is manufactured by adding 20 to 50 wt.% of additive CaO and 10 to 30 wt.% of reinforcing element iron piece to molten metal of 15 wt.% of Mg and 85 wt.% of Al. The method for deoxidizing slag using a slag deoxidizer is characterized in that slag is deoxidized above the slag deoxidizer by injecting the manufactured slag deoxidizer into slag after manufacturing the slag deoxidizer by adding 20 to 50 wt.% of additive CaO and 10 to 30 wt.% of reinforcing element iron piece to molten metal of 15 wt.% of Mg and 85 wt.% of Al.

Description

복합탈산제 및 이를 이용한 용강 및 슬래그의 처리방법{ Method for manufacturing composite deoxidizer of molten steel and the composite deoxidizer by using the mothod thereof }Composite deoxidizer and method for treating molten steel and slag using the same {Method for manufacturing composite deoxidizer of molten steel and the composite deoxidizer by using the mothod

본 발명은 복합탈산제의 제조방법 및 상기 방법에의해 제조된 복합탈산제 및상기 복합탈산제를 이용한 용강 및 슬래그의 처리방법에 관한 것으로, 더욱 구체적으로 설명하면, 알루미늄기지내에 강화요소가 첨가되어 밀도가 높아진 복합탈산제 및 상기 탈산제를 이용하여 용강 및 슬래그를 탈산 및 합금하는 방법에 관한 것이다.The present invention relates to a method for producing a composite deoxidizer and a method for treating molten steel and slag using the composite deoxidizer prepared by the above method and the composite deoxidizer, and more specifically, a reinforcing element is added to an aluminum base to increase its density. It relates to a method of deoxidizing and alloying molten steel and slag using a composite deoxidizer and the deoxidizer.

일반적으로, 제강과정에서 C, Si, P기타의 불순원소를 제거할 목적으로 용강중에 산소를 취입하여 산화정련을 한다. 정련이 진행함에 따라 용강중에 산소량은 점차 증가하여 제강말기에는 상당량의 산소가 용강중에 남게된다.Generally, oxygen refining is performed by injecting oxygen into molten steel for the purpose of removing C, Si, P and other impurities in the steelmaking process. As refining progresses, the oxygen content gradually increases in the molten steel, and at the end of steelmaking, a considerable amount of oxygen remains in the molten steel.

이러한 산소는 조괴(Ingot)시에 C와 반응하여 기포를 생성하여 불완전한 강괴의 원인이 되거나 산화물등의 개재물등을 형성하여 강질을 나쁘게 한다. 탈산은 이러한 산소를 용강에서 제거하는 것이며, 산소함량을 저하시켜 개재물을 감소시킬 뿐 아니라 개재물의 형태나 분포를 조정하여 청정강을 만든다.Such oxygen reacts with C at the time of ingot to form bubbles, causing incomplete ingots, or forming inclusions such as oxides, thereby deteriorating the quality of steel. Deoxidation removes this oxygen from molten steel and reduces oxygen content to reduce inclusions, as well as to adjust the shape and distribution of inclusions to create clean steel.

따라서 기존사용되는 탈산제는 주로 Al을 괴, 선(wire)등으로 제조하여 제강과정에서 첨가하게 되어 있다. 그러나, 도2b도에서 볼 수 있듯이, 공지의 방법에 따르면, 용강을 순수알루미늄으로 처리할 경우, 현재 제강 및 제철공정에서 사용하는 알루미늄이 저융점 및 저밀도를을 갖고 소모량이 많고 회수율이 적어 문제점으로 지적되어 왔다.Therefore, the existing deoxidizer is mainly made of Al, ingot, wire (wire), etc. to be added in the steelmaking process. However, as can be seen in Figure 2b, according to the known method, when the molten steel is treated with pure aluminum, the aluminum currently used in the steelmaking and steelmaking process has a low melting point and low density, consumption is high and recovery rate is low It has been pointed out.

따라서 순수 Al은 저밀도를 갖으므로 용강의 밀도(Density, 6.9g/c㎥)인데 비하여 순수 Al의 밀도는 2.4g/c㎥ 이므로 약 0.35배정도 밀도가 적다. 이 때문에 Al을 용탕속에 투입하면 비중이 낮아 용탕에서 혼입되지 않고 투입 즉시 녹으면서 물방울로 되며 슬래그로 유입된다. 시험결과에 의하면 약 54% 이상이 순수 Al이 헛되이 손실된다. 일부 제강공장에서 슬래그탈산시에도 탈산중 비중이 낮아 제강공정중에 공장전체가 연기 및 가스분출로 제강작업시 문제를 일으키나, 이때에도 Al에 강화원소로 비중을 높여 슬래그탈산을 할 경우 슬래그 바로 밑에서 슬래그탈산을 시키므로서 대단한 효과가 있는 것으로 시험결과 나타났다.Therefore, pure Al has a low density, so the density of molten steel (Density, 6.9g / c㎥) is about 0.35 times less because the density of pure Al is 2.4g / c㎥. For this reason, when Al is added to the molten metal, its specific gravity is low, so it is not mixed in the molten metal, but immediately melts into water droplets and flows into slag. According to the test results, about 54% or more of pure Al is lost in vain. In some steel mills, the proportion of deoxidation is low even during slag calcination, causing the entire plant to experience problems during steelmaking due to smoke and gas release during the steelmaking process. Test results show that deoxidation has a great effect.

그러나, 지금까지 방법은 Al에 비중을 높이기 위해서 Fe의 용탕에 Al을 첨가하는 방법을 시도하여 특허에 공표되었으나 Fe-Al이 금속간 화합물을 만들어 이것이 용융되는 온도가 1400 ~ 1500℃ 로 높아 탈산에 문제가 되고 특히 제조원가가 비싸다. 여기서, 장시간 제강을 하여야 하므로 신속조업이 추세인 현재 제강 및 제철공정에 역행되는 결과를 초래한다.However, until now, the method has been published in the patent by attempting to add Al to Fe molten metal in order to increase the specific gravity to Al, but Fe-Al makes an intermetallic compound and the melting temperature is 1400 ~ 1500 ℃, so This is a problem and especially expensive to manufacture. In this case, steelmaking must be performed for a long time, which results in a process against the current steelmaking and steelmaking processes in which rapid operation is a trend.

본 발명의 목적은 상기 결점들은 제거하면서도 고밀도와, 순수알루미늄의 저융점 및 저렴성은 유지하는 것이 가능한 복합탈산제의 제조방법을 제공하는 것이다.It is an object of the present invention to provide a method for producing a composite deoxidizer which is capable of maintaining the high density, low melting point and low cost of pure aluminum while eliminating the above defects.

본 발명의 다른 목적은 상기 결점들은 제거하면서도 고밀도와, 순수알루미늄의 저융점 및 저렴성은 유지하면서 용강을 처리하는 것이 가능한 복합탈산제를 제공하는 것이다.Another object of the present invention is to provide a complex deoxidizer capable of treating molten steel while eliminating the defects while maintaining high density, low melting point and low cost of pure aluminum.

본 발명의 또 다른 목적은 상기 결점들은 제거하면서도 고밀도와, 순수알루미늄의 저융점 및 저렴성은 유지하면서 용강을 처리하는 것이 가능한 용강을 처리하는 방법을 제공하는 것이다.It is still another object of the present invention to provide a method for treating molten steel which is capable of treating molten steel while eliminating the above defects while maintaining high density and low melting point and low cost of pure aluminum.

본 발명의 이러한 목적은 거대불균질 복합주조합금(MHCCA: Macro Heterogeneous Composite Casting Alloy)로 명명된 새로운 주조방법에 의해서 연구개발된 탈산제로서 Al의 용해용탕에 강화요소를 넣어서 탈산제를 제조한 복합탈산제(MHCCA)로서, 이 복합탈산제는 종전의 순수알루미늄탈산제와는 달리 용강중에서 투입시 용탕에서 밀도를 높여 용탕의 바닥깊숙한 데까지 투입되어 알루미늄이 용해되고 Fe가 떨어지면서 용해되어 알루미늄의 탈산효과를 십분발휘하여 원가절감 및강의 품질향상에 획기적인 향상을 이룩하게 되었다.This object of the present invention is a composite deoxidizer prepared by adding a reinforcing element to a molten melt of Al as a deoxidizer researched and developed by a new casting method named Macro Heterogeneous Composite Casting Alloy (MHCCA). MHCCA), unlike the previous pure aluminum deoxidizer, this complex deoxidizer increases the density in the molten metal when it is added in molten steel to the bottom of the molten metal, and the aluminum dissolves and the Fe falls and dissolves. Significant improvements have been made in cost reduction and steel quality improvement.

본 발명에 따른 복합탈산제 및 이를 이용한 용강 및 슬래그의 처리방법은 첨부된 도면을 참고로 하여 이하에 상세히 기술되는 실시예에의하여 그 특징 및 장점들을 명백하게 이해할 수 있을 것이다.Complex deoxidizer according to the present invention and a method of treating molten steel and slag using the same will be clearly understood by the embodiments described in detail below with reference to the accompanying drawings.

도1은 복합탈산제 제조후의 종단면도Figure 1 is a longitudinal cross-sectional view after the composite deoxidizer production

도2a는 본 발명에 따른 복합탈산제가 용탕내에서 순환되면서 용융되는 상태를 도시한 용해공정도Figure 2a is a melting process diagram showing a state in which the composite deoxidizer is melted while circulating in the molten metal according to the present invention

도2b는 종래의 알루미늄 탈산제의 용탕내에서의 용해공정도Figure 2b is a dissolution process diagram in the molten metal of the conventional aluminum deoxidizer

본 발명에 따른 복합탈산제는 로내에 고순도의 순수알루미늄을 용해하고, 높은 용해점을 갖는 강화요소인 금속편을 알루미늄용탕내에 서서히 투입하고 혼합시키는등의 다수의 공정을 거쳐서 제조된다. 상기 금속강화 요소는 알루미늄보다 비중이 높기때문에 하부로 가라안게 되므로 균일하게 분산되도록 잘 혼합시키면서 반응고상태로 유지시키면 금속강화요소의 침하가 방지된다.The composite deoxidizer according to the present invention is prepared through a number of processes, such as dissolving pure aluminum of high purity in a furnace and slowly adding and mixing a metal piece, which is a reinforcing element having a high melting point, into an aluminum molten metal. Since the metal-reinforced element has a higher specific gravity than aluminum, the metal-reinforced element is sunk in the lower part, and thus, if it is mixed well so as to be uniformly dispersed, it is prevented from sinking.

일반적으로, 합금은 고융점을 갖는 용탕내에 저융점을 갖는 금속이 투여되어 제조되지만, 본 발명의 복합탈산제는 저융점을 갖는 금속용탕내에 고융점을 갖는 금속(금속강화요소)이 투여되는 방식으로 진전된 것으로 획기적인 방법이라 할 것이다. 본 발명에서, 용융금속내에 투여되는 금속강화요소들로는 희토류금속, Fe, Ca, Si, Mg, 및 Ti중의 하나 또는 2개이상이 사용될 수 있으며, 다른 구성으로는 알루미늄에 이중합금인 Fe-Mn, Fe-Si, Fe-Al, Fe-Ti, Fe-Ce가 사용될 수 있으며, 알루미늄에 3중합금인 Fe-Si-Ca, Al-Si-Ca등이 사용될 수 있으며, 더욱 복잡한 구성의 합금이 사용될 수 있음은 물론이다. 복합산화물의 개략적인 형상은 도1에 도시되어 있다. 백색부는 알루미늄기지부분을 나타내며, 흑색부는 Fe, Ca, Si, Mg, Ti 또는 희토류금속중의 하나 또는 2개이상 또는 3개이상으로 구성된 금속강화요소를 나타낸다. 또한 금소강화요소로는 철재 파이프가 사용되거나, 강편, 철선편등을 크기는 0.1mm-50mm 이고, 무게는 0.1g-50g 정도의 작은 파편으로서 알루미늄기지내에 비중을 증가시키려고 첨가되는것을 포함한다.In general, the alloy is prepared by administering a metal having a low melting point in a molten metal having a high melting point, but the complex deoxidizer of the present invention is administered in a manner in which a metal (metal-reinforced element) having a high melting point is administered in a metal melt having a low melting point. It will be called a breakthrough. In the present invention, as the metal reinforcing elements to be administered in the molten metal, one or two or more of rare earth metals, Fe, Ca, Si, Mg, and Ti may be used, and in another configuration, Fe-Mn, which is a double alloy of aluminum, Fe-Si, Fe-Al, Fe-Ti, Fe-Ce may be used, and tri-alloy Fe-Si-Ca, Al-Si-Ca, etc. may be used for aluminum, and alloys of more complicated composition may be used. Of course it can. The schematic shape of the composite oxide is shown in FIG. The white part represents an aluminum base part, and the black part represents a metal reinforcing element composed of one or two or three or more of Fe, Ca, Si, Mg, Ti or rare earth metals. In addition, steel reinforcing elements are used as steel pipes, steel pieces, iron wire pieces, etc., the size of 0.1mm-50mm, the weight of 0.1g-50g small pieces, including added to increase the specific gravity in the aluminum base.

본 발명의 일실시예에 따른 복합탈산제는 저융점의 알루미늄의 용탕내에 고융점의 강구를 넣어 제조한 것으로서, 탈산제의 용도에 맞는 크기로 만들어 제강시 탈산제로 사용하였다.The composite deoxidizer according to an embodiment of the present invention was prepared by putting a high melting point steel ball in a molten aluminum having a low melting point, and was used as a deoxidizer during steelmaking by making a size suitable for the use of the deoxidizer.

본 발명의 다른 실시예로서는 알루미늄의 비중을 높이는 방법으로서 간단하게 알루미늄에 강봉을 묶어서 알루미늄의 비중을 높여서 사용하는 것도 가능하며, 또는 알루미늄상에 스틸블록이나 환봉을 넣어 비중을 높여서 사용하는 방법도 가능하고 철용기에 알루미늄을 붇고 응고시키는 방법도 가능하다할 것이며 이 또한 본 발명의 범위에 포함된다 할 것이다.In another embodiment of the present invention, as a method of increasing the specific gravity of aluminum, it is also possible to simply bind steel bars to aluminum to increase the specific gravity of aluminum, or to increase the specific gravity of steel blocks or round rods on aluminum. It is also possible to squeeze and solidify aluminum in the iron container, which will also be included in the scope of the invention.

또한, 본 발명에 따르면, 알루미늄을 철기지합금과 함께 용융물 속에 넣음에 있어서, 용강밀도(6.9g/㎤)와 비교하여4.0g/㎤의 밀도를 가지므로 0.5이상의 초기비중을 가지며, 다음과 같은 성분범위(중량%)의 Al, C, Si, Mn, Fe를 함유하는 복합탈산제형태로 용융물 속에 알루미늄 및 철기지합금을 넣는데,In addition, according to the present invention, when the aluminum is put into the melt together with the iron base alloy, it has a density of 4.0 g / cm 3 compared to the molten steel density (6.9 g / cm 3), and thus has an initial specific gravity of 0.5 or more. In the form of a composite deoxidizer containing Al, C, Si, Mn, Fe in the component range (% by weight), aluminum and iron base alloys are added to the melt.

Al25∼50Al25-50

C0.05∼0.90C0.05 to 0.90

Si0.05∼1.50Si0.05 to 1.50

Mn0.15∼1.25Mn 0.15 to 1.25

Fe잔량Fe balance

이 복합탈산제는 매트릭스성분으로서 알루미늄과 강화성분으로서 철기지합금의 형태로 그 외의 성분을 함유하며, 용강 내에서의 알루미늄의 용해는 복합탈산제의 용강에 대한 상대비중을 1.00∼1.05까지 연속적으로 증가시킴으로서 이루어지는, 복합탈산제에의하여 용강을 처리하는 방법이 제공된다.The composite deoxidizer contains other components in the form of aluminum base and iron base alloy as reinforcement components. The dissolution of aluminum in molten steel continuously increases the relative specific gravity of the composite deoxidizer to molten steel from 1.00 to 1.05. A method for treating molten steel by a composite deoxidizer is provided.

본 발명에 따르면, 본 방법은 용강 내에서 알루미늄이 용해하는 알맞은 조건을 보장한다. 매트릭스성분으로서 알루미늄이 포함되고 초기의 저융점이 유지되는, 복합탈산제에 의한 용강의 처리는 용융물 속에서 급속하게 용해하게 한다. 철기지합금이 강화성분이 되는, 복합탈산제에 의한 용강의 처리는 필요에 따라서 무겁게 한다. 즉 용강의 밀도와 비교하여 복합탈산제의 밀도를 비교하면 그 상대적인 비중이 0.55∼0.70까지 증가시킨다. 이런 정도의 밀도에서 복합탈산제는 슬래그 속으로 부상하지 않고 용이하게 순환용융류 속으로 들어가서 용강 속에서 탈산과 화학반응을 한다.According to the invention, the method ensures suitable conditions for the dissolution of aluminum in the molten steel. Treatment of molten steel with a composite deoxidizer, in which aluminum is included as a matrix component and the initial low melting point is maintained, causes rapid dissolution in the melt. The treatment of molten steel with a composite deoxidizer, in which the iron base alloy is a reinforcing component, is made heavy as necessary. In other words, when comparing the density of the composite deoxidizer compared to the density of molten steel, the relative specific gravity increases to 0.55 ~ 0.70. At this density, complex deoxidizers do not float into slag and easily enter the circulating melt to undergo deoxidation and chemical reactions in molten steel.

용강을 Al-Fe합금복합탈산제로 처리하는 동안에 제일 먼저 알루미늄만이 용융되고 그 다음에는 철볼이 분리되어 용해되고 다시 Al이 용해되는 과정을 거친다. 알루미늄이 완전히 용해할 때까지는 철기지합금으로부터 강화성분이 용융되지 않는다. 이 것은 용강의 밀도보다 무거운 강화성분알루미늄이 존속하기 때문에 용해 중에 복합탈산제의 밀도가 연속적으로 증가하고 알루미늄전체가 용해한 순간에는 용강의 밀도와 비교하여 용강과의 상대적인 비중이 1.00∼1.05의 값을 갖는 이유가 된다.During the treatment of molten steel with Al-Fe alloy deoxidizer, only aluminum is melted first, then the iron balls are separated and dissolved and Al is dissolved again. The reinforcement component does not melt from the iron base alloy until the aluminum is completely dissolved. This is because the reinforcement component aluminum, which is heavier than the density of molten steel, persists, the density of the composite deoxidizer continuously increases during melting, and at the moment when the entire aluminum is dissolved, the relative specific gravity with molten steel has a value of 1.00 to 1.05 as compared with the density of molten steel. It is a reason.

알루미늄이 용해한 후 철기지합금으로부터 강화성분이 용융한다. 그 조성은용강의 조성과 유사하다. 따라서 복합탈산제의 강화부는 용강과 쉽게 혼합되어 완전히 융화한다.After aluminum is dissolved, the reinforcing component is melted from the iron base alloy. Its composition is similar to that of molten steel. Therefore, the reinforcing part of the composite deoxidizer is easily mixed with the molten steel and completely melted.

Al-Fe기지합금으로 용강을 처리하는 동안에 대류의 영향 때문에 복합탈산제조각이 파편으로 분해된다. 서서히 이들 파편이 더 작은 파편으로 분해된다.During the treatment of molten steel with Al-Fe base alloys, the composite deoxidizer fragments decompose into debris due to the effect of convection. Gradually these fragments break down into smaller fragments.

복합탈산제의 파편의 크기의 감소와 파편의 밀도의 증가의 조합으로 알루미늄이 보다 빠르게 용강 속으로 용해하여 용융물 중에 보다 균일하게 분포된다. 따라서 알루미늄손실이 감소되고 알루미늄에 의한 탈산 및 합금의 안정성이 보장된다.The combination of reduced fragment size and increased fragment density of the composite deoxidizer dissolves aluminum more rapidly into molten steel and distributes it more uniformly in the melt. Therefore, aluminum loss is reduced and deoxidation by aluminum and stability of the alloy are ensured.

복합탈산제 중의 알루미늄무게비로 25∼50%의 범위 내에 있다면, 용강의 처리에 대한 가장 바람직한 조건이 제공된다. 복합탈산제 중의 알루미늄함량부가 낮다면 강화성분부의 증가와 복합탈산제소모량의 증가의 필요성 때문에 용융물에서의 복합탈산제의 냉각효과가 강해진다. 복합탈산제 내의 알루미늄함량부가 커질수록 그 밀도가 낮아지고 용융물 속으로의 혼합성이 나빠지며 알루미늄손실이 커진다.If it is in the range of 25 to 50% by weight of aluminum in the composite deoxidizer, the most preferable conditions for the treatment of molten steel are provided. If the aluminum content in the composite deoxidizer is low, the cooling effect of the composite deoxidizer in the melt becomes stronger because of the necessity of increasing the reinforcing component portion and increasing the amount of the composite deoxidizer. The larger the aluminum content in the composite deoxidizer, the lower the density, the poorer the mixing into the melt, and the greater the aluminum loss.

상기 제시한 범위 내에서 복합탈산제 내의 C, Si, Mn, Fe의 함량을 조절하는 것은 처리된 강의 함량에 대한 상기 원소함량과 유사한 것을 얻는 강화성분의 필요성에 따른다. 그런데 Al-Fe기지합금복합탈산제로 용강을 처리하면 그 화학적조성이 변화지 않는다.Controlling the content of C, Si, Mn, Fe in the composite deoxidizer within the ranges given above depends on the need for reinforcing components to obtain something similar to the element content for the content of the treated steel. However, the treatment of molten steel with Al-Fe base alloy composite deoxidizer does not change its chemical composition.

실시예Example

함량이 0.25% C, 0.70% Mn, 0.25% Si, 0.02% S, 0.03% P인 강을 전기로에서 용융시키고 최후에 전기로의 외부의 용융물의 산출시에 래들 내에서 알루미늄으로탈산시켰다. 래들의 용적을 1/6로부터 1/3까지에 용융강에서 Al를 함유하는 복합탈산제를 취하였다. 강을 주입하기 전에 산소 및 알루미늄함량을 시험하기 위해 래들로부터 몇 개의 샘플을 선택하였다. 탄소강과 액체알루미늄을 혼합함으로써 알루미늄을 함유하는 복합탈산제를 예비적으로 얻었다. 비교를 위해 상기 방법으로, 즉 순수알루미늄조각을 강 중량추에 의해 용융물 속으로 장입하여 강을 탈산시켰다. 순수알루미늄의 양과 강의 중량은 알루미늄과 강화성분의 소모량에 대하여 적당하였다.Steels having a content of 0.25% C, 0.70% Mn, 0.25% Si, 0.02% S, 0.03% P were melted in an electric furnace and finally deoxidized to aluminum in the ladle upon yield of the melt outside of the electric furnace. A composite deoxidizer containing Al in the molten steel was taken from 1/6 to 1/3 of the volume of the ladle. Several samples were selected from the ladle to test oxygen and aluminum content prior to steel injection. The composite deoxidizer containing aluminum was preliminarily obtained by mixing carbon steel and liquid aluminum. For comparison, the steel was deoxidized by the above method, i.e. pure aluminum pieces were charged into the melt by means of a steel weight. The amount of pure aluminum and the weight of steel were appropriate for the consumption of aluminum and reinforcing components.

알루미늄소모량의 비와 알루미늄손실의 비를 이용하여 강의 처리방법의 효율을 평가하였다.The efficiency of the steel treatment was evaluated using the ratio of aluminum consumption and the ratio of aluminum loss.

알루미늄소모량의 비 Kusing은 다음의 식으로 계산된다.Non-K using the aluminum consumption is calculated by the following expression.

Kusing= (Alrest+ Alo)*100/AlΣo(1)K using = (Al rest + Al o ) * 100 / Al Σo (1)

여기서, Alrest는 강 중의 알루미늄의 잔류량, %,Where Al rest is the residual amount of aluminum in the steel,%,

Alo는 반응에서 용존산소의 결합시의 알루미늄소모량Al o is the aluminum consumption of dissolved oxygen in the reaction

2[Al] + 3[O] = Al2O3 2 [Al] + 3 [O] = Al 2 O 3

Alo= ([O]initial- [O]eventual)*(2*27/3*16)(2)Al o = ([O] initial- [O] eventual ) * (2 * 27/3 * 16) (2)

[O]initial및 [O]eventual은 알루미늄으로 강을 탈산하기 전과 후의 강 내의 용존산소의 함량[O] initial and [O] eventual content of dissolved oxygen in steel before and after deoxidizing steel with aluminum

AlΣ는 강의 탈산시의 알루미늄소모량, %Al Σ is the aluminum consumption in deoxidation of steel,%

용존산소함량은 다음과 같이 계산된다.The dissolved oxygen content is calculated as follows.

lg[%O] - eo o[%O] = lg ao+ Σeo R[%R](3)lg [% O]-e o o [% O] = lg a o + Σe o R [% R] (3)

eo o과 eo R은 산소와 산소 및 강(R)의 성분과의 상호작용의 변수이다.e o o and e o R are variables of the interaction of oxygen with oxygen and the components of steel (R).

ao은 액체강 내의 산소의 활성, %a o is the activity of oxygen in the liquid steel,%

lg ao의 값은 액체강 속에 전기화학적 센서를 장입함으로써 실험적으로 결정하였다. 측정을 위해 대조전극 MO+ MOO2을 갖는 ZrO2+ 17%Y2O3의 센서를 사용하였다. 이 경우,a value of lg o was determined experimentally by charging the electrochemical sensors in the liquid steel. A sensor of ZrO 2 + 17% Y 2 O 3 with control electrode M O + M O O 2 was used for the measurement. in this case,

lg ao= 2,685 -(10,087*E+5660)/T(4)lg a o = 2,685-(10,087 * E + 5660) / T (4)

여기서, E는 기전력센서의 측정치, mVWhere E is the measured value of the electromotive force sensor, mV

T는 온도, °KT temperature, ° K

알루미늄손실비는 다음의 식으로 계산된다.The aluminum loss ratio is calculated by the following equation.

Kloses= 100 - Kusing(5)K loses = 100-k using (5)

강의 처리방법은 표 1 및 표 2에 도시하였다.Steel treatment methods are shown in Tables 1 and 2.

위의 <표 1><표 2>에서 알수 있듯이, <표 1>의 No.1 성분의 복합탈산제는 <표 2>의 No.1에서 알 수 있듯이 최초상태의 밀도가 4000g/㎤ 으로서 용강과의 상대적인 비중이 0.58이었으며 Al용해 개시점의 비중은 0.53 Al 용해최종점의 비중은 1.05이고 잔류 Al량은 0.028이고 사용된 Al비는 66%이며, 소모된 Al비는 34%이다. 이에 비하여 순수 알루미늄을 사용한 <표 1>의 No.5의 알루미늄은 <표 2>의 No.5에서 보듯이, 최초상태의 밀도가 2700g/㎤ 으로 용강과의 상대적인 비중이 0.39이었으며 Al의 최종용해점 비중이 0.35로서 비중의 변화가 거의 없으며 잔류 Al량은 0.012%이고 사용된 Al비는 46%, 소모된 Al비는 54% 로나타났다.As shown in <Table 1> and <Table 2>, the composite deoxidizer of No. 1 component of <Table 1> has the initial density of 4000g / cm 3 as shown in No. 1 of <Table 2>. The relative specific gravity of was 0.58, the specific gravity of the Al melting point was 0.53 Al, the specific gravity of the final melting point was 1.05, the residual Al content was 0.028, the used Al ratio was 66%, and the consumed Al ratio was 34%. On the other hand, the aluminum of No. 5 in Table 1 using pure aluminum, as shown in No. 5 in Table 2, had a density of initial state of 2700g / cm3 and a relative specificity with molten steel of 0.39. The point specific gravity was 0.35 and there was almost no change in specific gravity. The residual Al content was 0.012%, the used Al ratio was 46%, and the consumed Al ratio was 54%.

상기 <표 2>의 실시예들에서 알 수 있듯이, 본 발명의 복합탈산제는 용탕에 대한 상대적인 비중이 0.4 이상으로서, 이는 슬래그의 용탕에 대한 비중이 0.3으로서 용탕내로 복합탈산제가 슬래그를 통과하기위한 최소의 비중치이며, 본 발명의 복합탈산제는 측정결과 용탕에 대한 비중이 1.05를 초과하지 않았다.As can be seen in the embodiments of Table 2, the composite deoxidizer of the present invention has a relative specific gravity of 0.4 or more, which is 0.3 for the slag of the molten metal, so that the composite deoxidizer passes through the slag into the molten metal. It is the minimum specific gravity value, and the composite deoxidizer of the present invention did not exceed 1.05 in the specific gravity of the molten metal as a result of the measurement.

강처리에 필요한 알루미늄소모량이 동일하다면(0.1%), 복합탈산제 내의 알루미늄함량이 낮기 때문에 Al-Fe기지합금복합탈산제의 탈산요과는 순수알루미늄보다 2∼4배 높다.(복합탈산제는 알루미늄양이 37~50이고,순수알루미늄은 100%이기 때문이다)If the aluminum consumption required for steel treatment is the same (0.1%), the aluminum content in the composite deoxidizer is low, so the deoxidation requirement of the Al-Fe base alloy composite deoxidizer is 2 to 4 times higher than that of pure aluminum. 50, and pure aluminum is 100%)

Al-Fe기지합금복합탈산제의 초기밀도는 순수한 알루미늄보다 1.47∼1.92배 높다. 용해과정 중에 밀도의 차이가 증가한다. 즉 용해초기의 값은 1.52∼2.04이고, 최후에는 3까지 도달할 수 있다.The initial density of the Al-Fe base alloy composite deoxidizer is 1.47 to 1.92 times higher than that of pure aluminum. The difference in density increases during the dissolution process. That is, the initial value of melt | dissolution is 1.52-2.04, and can reach to 3 at the end.

그런데 알루미늄소모량의 비는 0.46에서 0.64∼0.77까지 증가하는데, 이는39∼67% 증가하였다는 것을 의미한다. 따라서, 알루미늄손실이 54%에서 23∼36%까지 감소한다.However, the ratio of aluminum consumption increased from 0.46 to 0.64 to 0.77, which means that it increased by 39 to 67%. Therefore, aluminum loss is reduced from 54% to 23 to 36%.

본 발명에 의하면 알루미늄으로 제강공정에서 탈산처리를 효과적으로 함으로서 강의 품질의 개선에 의해 그 효율을 보장한다. 이 품질은 용탕에서 비중을 높여 더 깊게 탈산하고 보다 안정하게 알루미늄을 융화시키며, 균일하게 알루미늄을 분포시켜 종전의 순수알루미늄을 투입하는 것보다 손실을 감소시킴으로써 개선된다.According to the present invention, the efficiency of the steel is ensured by improving the quality of the steel by effectively deoxidizing the steelmaking process. This quality is improved by increasing the specific gravity in the molten metal to deoxidize deeper and fuse the aluminum more stably, and evenly distribute the aluminum to reduce losses than injecting pure aluminum.

특히 위에서 언급했듯이 이 복합탈산제를 사용하면 강의 내부가 깨끗한 청정강을 제조하는 것이 가능하여 강의 품질이 크게 향상될 수 있다. 이유는 탈산시 알루미늄탈산제를 용탕깊이 넣어 용해시킬 수 있으므로 알루미늄의 손실을 감소시킬 수 있는 동시에 알루미늄을 안정하게 용해시킬 수 있으므로 제강시 탈산효과를 증대시킬 수 있는 획기적인 발명이다.In particular, as mentioned above, the use of this composite deoxidizer makes it possible to produce clean steel with a clean interior of the steel, which can greatly improve the quality of the steel. The reason is that the aluminum deoxidizer can be dissolved in the depth of molten metal during the deoxidation, so that the loss of aluminum can be reduced and the aluminum can be dissolved in a stable manner, thereby increasing the deoxidation effect during steelmaking.

이밖에 여기서 언급하지 않은 탈산제 Ca, 희토류금속도 이 방법을 이용하여 사용한 결과 탈산제 적게 사용하고 강중에 산소로 인한 결함이 대폭 감소하는 결과를 나타냈다.In addition, the deoxidizer Ca and rare earth metal, which are not mentioned here, were also used by this method, which resulted in the use of less deoxidizer and a significant reduction in oxygen defects in the steel.

또한, 슬래그탈산제로 사용시 15% Mg + 85% Al 용탕에 첨가요소 CaO 20 ~ 50wt% 첨가하고 강화원소인 철편을 10 ~ 30wt% 를 첨가하여 제조된 슬래그탈산제를 슬래그내에 첨가시키면 슬래그탈산제의 비중이 높으므로 슬래그의 바로 밑에서 슬래그탈산을 시키므로 연기의 발생이 최소로 됨과 아울러 가스의 분출이 방지되면서도 슬래그탈산에 대단한 효과가 있게 되는 것이다.In addition, when used as a slag oxidizer, the specific gravity of the slag phthalate is increased by adding 20 to 50 wt% of urea CaO to 15% Mg + 85% Al molten metal and adding 10 to 30 wt% of iron flakes as a reinforcing element. Since it is high, slagtal acid is placed directly under the slag, so that the generation of smoke is minimized and the gas is prevented, but the slagtal acid has a great effect.

이상과 같이 본 발명에 따른 제강 및 제철시에 용탕내에 투입되는 탈산제는, 알루미늄기지내에 알루미늄보다 비중이 무겁고 융점이 높은 강화원소인 금속편이 고용되어 종전의 순수알루미늄탈산제와는 달리 용탕안의 밀도보다 높아 용탕의 바닥 깊숙한 하부까지 투입되므로 알루미늄이 용해되고 Fe가 나중에 용해되면서 알루미늄의 탈산효과를 십분발휘하여 원가의 절감 및 강의 품질에 획기적인 향상을 가져오는 효과가 있으며, 특히 레들내 Al을 첨가시 분진 및 가스가 발생하는데 이 발명품을 제강공정시 투입하면 용탕에 바로 들어가서 반응하기 때문에 분진 및 가스의 발생이 감소되므로 환경친화적이라는 우수한 효과를 갖는다.As described above, the deoxidizer introduced into the molten metal during the steelmaking and the steelmaking according to the present invention has a higher specific gravity than the aluminum in the aluminum base, and a metal piece, which is a reinforcing element having a higher melting point, is employed and is higher than the density in the molten metal, unlike conventional pure aluminum deoxidizer. As the aluminum is dissolved and Fe is later dissolved, it decomposes the deoxidation effect of aluminum as it is added to the lower part of the bottom of the molten metal, thereby reducing the cost and dramatically improving the quality of the steel. Particularly, when Al is added to the ladle, When gas is produced, this invention is introduced into the molten steel process, and it reacts directly to the molten metal, thereby reducing the generation of dust and gas, and thus has an excellent effect of being environmentally friendly.

Claims (5)

제강 및 제철시 용탕내에 투입되는 탈산제에 있어서, 상기 탈산제는 철재파이프내에 알루미늄을 응고시켜 용탕에 대한 상대적인 비중을 높힌 것을 특징으로 하는 복합탈산제.In the deoxidizer introduced into the molten metal during steelmaking and steelmaking, the deoxidizing agent solidifies aluminum in the steel pipe to increase the relative specific gravity of the molten metal. 알루미늄기지에 강화성분인 금속강화요소가 첨가되어 비중이 용강밀도와 비교하여 0.4이상의 초기밀도를 갖는 복합탈산제를 용탕내에서 투하시키는 단계와,Dropping a complex deoxidizer in the molten metal having an initial density of 0.4 or more compared to molten steel by adding a metal reinforcing element as a reinforcing component to the aluminum base; 상기 복합탈산제가 용탕내에서 용해되면서 복합탈산제의 상대밀도를 1.00 ~ 1.05까지 연속적으로 증가시키면서 용해되는 단계를 포함하는 것을 특징으로 하는 복합탈산제를 이용한 용강의 처리방법.And dissolving the composite deoxidizer while dissolving in the molten metal while continuously increasing the relative density of the composite deoxidizer to 1.00 to 1.05. 슬래그탈산제로 사용시 15% Mg + 85% Al 용탕에 첨가요소 CaO 20 ~ 50wt% 첨가하고 강화원소인 철편을 10 ~ 30wt% 를 첨가하여 제조된 것을 특징으로 하는 슬래그탈산제를 사용하여 슬래그를 탈산시키는 슬래그탈산방법.Slag which deoxidizes slag by using slag deoxidizer, which is manufactured by adding 20 ~ 50wt% of additive element CaO to 15% Mg + 85% Al molten metal and adding 10 ~ 30wt% of reinforcing element iron slag Deoxidation method. 슬래그탈산제로 사용시 15% Mg + 85% Al 용탕에 첨가요소 CaO 20 ~ 50wt% 첨가하고 강화원소인 철편을 10 ~ 30wt% 를 첨가하여 제조된 것을 특징으로 하는 슬래그탈산제.When used as a slag slate, slag talsate is prepared by adding 20 ~ 50wt% of urea CaO to 15% Mg + 85% Al molten metal and 10 ~ 30wt% of the iron element as a reinforcing element. 슬래그탈산제로 사용시 15% Mg + 85% Al 용탕에 첨가요소 CaO 20 ~ 50wt% 첨가하고 강화원소인 철편을 10 ~ 30wt% 를 첨가하여 제조된 슬래그탈산제를 슬래그내에 투입하여 슬래그의 바로 밑에서 탈산시키는 것을 특징으로 하는 슬래그탈산제를 이용한 슬래그탈산방법.When used as slag oxidizer, 20% to 50wt% of urea CaO is added to 15% Mg + 85% Al molten metal, and 10 ~ 30wt% of iron flakes as reinforcing element is added to the slag to deoxidize directly under slag. Slagtal acid method using a slagtal acid agent characterized in that.
KR10-2002-0055274A 2002-09-12 2002-09-12 Method for manufacturing composite deoxidizer of molten steel and the composite deoxidizer by using the mothod thereof KR100411649B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0055274A KR100411649B1 (en) 2002-09-12 2002-09-12 Method for manufacturing composite deoxidizer of molten steel and the composite deoxidizer by using the mothod thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0055274A KR100411649B1 (en) 2002-09-12 2002-09-12 Method for manufacturing composite deoxidizer of molten steel and the composite deoxidizer by using the mothod thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020010001407A Division KR100356743B1 (en) 2000-01-13 2001-01-10 Method for manufacturing composite deoxidizer of molten steel and the composite deoxidizer by using the mothod thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0023799A Division KR100426415B1 (en) 2003-04-15 2003-04-15 Method for manufacturing composite deoxidizer of molten steel and the composite deoxidizer by using the mothod thereof

Publications (2)

Publication Number Publication Date
KR20020080304A true KR20020080304A (en) 2002-10-23
KR100411649B1 KR100411649B1 (en) 2003-12-18

Family

ID=27728270

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0055274A KR100411649B1 (en) 2002-09-12 2002-09-12 Method for manufacturing composite deoxidizer of molten steel and the composite deoxidizer by using the mothod thereof

Country Status (1)

Country Link
KR (1) KR100411649B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100491335B1 (en) * 2003-03-03 2005-05-25 (주)디엠 Deoxidizer and desulfurizer for refining molten steel, with improved efficiency of deoxidation and desulfurization
WO2007008181A2 (en) * 2005-04-04 2007-01-18 Deo Metal Sanayi Ve Ticaret Limited Sirketi Manufacturing method for complex steel deoxidizer
KR101593882B1 (en) * 2015-06-26 2016-02-12 윤수운 Aluminum deoxidizer and method and apparatus for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100491335B1 (en) * 2003-03-03 2005-05-25 (주)디엠 Deoxidizer and desulfurizer for refining molten steel, with improved efficiency of deoxidation and desulfurization
WO2007008181A2 (en) * 2005-04-04 2007-01-18 Deo Metal Sanayi Ve Ticaret Limited Sirketi Manufacturing method for complex steel deoxidizer
WO2007008181A3 (en) * 2005-04-04 2007-12-13 Deo Metal Sanayi Ve Ticaret Lt Manufacturing method for complex steel deoxidizer
KR101593882B1 (en) * 2015-06-26 2016-02-12 윤수운 Aluminum deoxidizer and method and apparatus for manufacturing the same

Also Published As

Publication number Publication date
KR100411649B1 (en) 2003-12-18

Similar Documents

Publication Publication Date Title
JP7471520B2 (en) Manufacturing method for low carbon nitrogen containing austenitic stainless steel rod
DE1583260C2 (en)
KR100356743B1 (en) Method for manufacturing composite deoxidizer of molten steel and the composite deoxidizer by using the mothod thereof
KR100411649B1 (en) Method for manufacturing composite deoxidizer of molten steel and the composite deoxidizer by using the mothod thereof
Vdovin et al. Production of high-manganese steel in arc furnaces. Part 1
KR100426415B1 (en) Method for manufacturing composite deoxidizer of molten steel and the composite deoxidizer by using the mothod thereof
DE2602536A1 (en) METHOD OF MANUFACTURING LOW SULFUR PALE STEEL
RU2302471C1 (en) Method of making steel in electric arc steel melting furnace
JP2004211153A (en) Composite deoxidizer and method for treating molten steel and slag using this
RU2398889C1 (en) Procedure for melting rail steel
US3997332A (en) Steelmaking by the electroslag process using prereduced iron or pellets
SU1013493A1 (en) Method for smelting niobium-containing steel in reduction electric furnace
RU2254380C1 (en) Method of production of rail steel
RU2312901C1 (en) Rail steel melting method
US20240141462A1 (en) Method for smelting low-phosphorus high-manganese steel based on reduction dephosphorization of ferromanganese
RU2347820C2 (en) Method of steel melting
RU2201458C1 (en) Method of modification of steel
RU2223332C1 (en) Method of micro-alloying and modification of steel
RU2164245C2 (en) Method of carbon steel making
RU2333258C2 (en) Steel-making method in arc-furnace
RU2282668C1 (en) Method of production of tungsten-containing steel and its alloys
RU2400541C1 (en) Procedure for rail steel melting
RU2409682C1 (en) Procedure for steel melting
SU1086019A1 (en) Method of smelting manganese austenitic steel
RU2197538C2 (en) Method of making bearing steel

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121205

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131205

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141205

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20151204

Year of fee payment: 13