KR20020079703A - Heat resistant adhesive and adhesive tape for semiconductors - Google Patents

Heat resistant adhesive and adhesive tape for semiconductors Download PDF

Info

Publication number
KR20020079703A
KR20020079703A KR1020020058450A KR20020058450A KR20020079703A KR 20020079703 A KR20020079703 A KR 20020079703A KR 1020020058450 A KR1020020058450 A KR 1020020058450A KR 20020058450 A KR20020058450 A KR 20020058450A KR 20020079703 A KR20020079703 A KR 20020079703A
Authority
KR
South Korea
Prior art keywords
adhesive
weight
residual solvent
heat
temperature
Prior art date
Application number
KR1020020058450A
Other languages
Korean (ko)
Inventor
이경록
권정민
Original Assignee
(주)새한마이크로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)새한마이크로닉스 filed Critical (주)새한마이크로닉스
Priority to KR1020020058450A priority Critical patent/KR20020079703A/en
Publication of KR20020079703A publication Critical patent/KR20020079703A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/4826Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PURPOSE: A heat-resistant adhesive and adhesive tape for semiconductor are provided to improve adhesive strength and reduce a thermal stress between a semiconductor chip and a lead frame by controlling glass-transition temperature and the amount of the remaining solvent in a low temperature process by an adhesive. CONSTITUTION: A semiconductor chip(2) is adhered to a lead frame(3) by using an adhering member(1). An LOC(Lead-On-Chip) type semiconductor package by sealing an adhering portions of the semiconductor chip(2) and the lead frame(3) with a sealant(5). A compound adhesive sheet used for the adhering member(1) includes a resin having an imide radical. A heat-resistant adhesive conductive layer is formed on one or more sides of a heat-resistant base film. The heat-resistant adhesive conductive layer has an adhering starting temperature of 230 to 330 degrees centigrade, and the amount of the remaining solvent of 3.0 weight percent and below. The glass-transition temperature of the heat-resistant adhesive is 150 to 200 degrees centigrade.

Description

반도체용 내열성 접착제 및 접착 테이프{Heat resistant adhesive and adhesive tape for semiconductors}Heat resistant adhesive and adhesive tape for semiconductors

본 발명은 반도체 패키지, 특히 LOC(Lead on chip) 구조 패키지에 있어서, 접착부재의 유리전이온도(Tg)와 잔류용매 함량을 적절하게 조절함으로써 반도체 패키지의 열적 공정 온도를 낮추고 열적 공정 시간을 단축하여 열적 스트레스(thermal stress)에 의한 패키지의 신뢰성 저하를 방지하고 저흡습, 저잔류용매 특성으로 패키지 내크랙성에 유효한 내열성 접착제 및 접착제를 사용한 접착 부재에 관한 것이다. 다시말해서 최근 반도체가 과거 4~16M DRAM에서 64M~1G DARM의 고용량화 추세에 따라, 반도체 칩의 제조에 있어서 칩과 리드프레임의 접착시 접착 시간의 단축화 및 접착 공정 온도의 저온화가 필수적이다. 이런 상황에서 반도체와 리드프레임을 접착시키는 접착부재를 잔류용매량의 조절과 유리전이온도이 조절함으로써 달성할 수 있었다.The present invention is to reduce the thermal process temperature and shorten the thermal process time of the semiconductor package by appropriately adjusting the glass transition temperature (Tg) and the residual solvent content of the adhesive member in the semiconductor package, especially the lead on chip (LOC) structure package The present invention relates to an adhesive member using a heat-resistant adhesive and an adhesive which prevents degradation of a package due to thermal stress and is effective for package crack resistance with low moisture absorption and low residual solvent properties. In other words, with the recent trend of higher capacities of 64M ~ 1G DARM in 4 ~ 16M DRAM in the past, it is essential to shorten the adhesion time and lower the temperature of the adhesion process in the bonding of the chip and the lead frame. In this situation, the adhesive member for bonding the semiconductor and the lead frame can be achieved by controlling the residual solvent amount and controlling the glass transition temperature.

반도체 집적도가 증가함에 따라, 반도체 칩 회로의 미세화, 제반 패키지의 소형, 박형화가 요구되며, 이에 따른 패키지의 주요 공정 조건들도 변하게 된다. 그리고 변화된 주요 공정 조건 및 패키지 신뢰성에 부합하는 관련 재료의 요구 물성들도 새로운 물성이 요구되게 된다.As semiconductor integration increases, miniaturization of semiconductor chip circuits, miniaturization and thinning of packages are required, and thus, main process conditions of the package change. In addition, the required properties of the relevant materials to meet the changed key process conditions and package reliability will require new properties.

LOC는 메모리용 반도체 패키지의 대표적 실장 방식인 'Lead on chip' 의 약자로 말 그대로 표현하면 칩(chip) 위에 리드(lead)가 위치한다는 표현으로 기존의 실장 방식에 비해 반도체 패키지의 실장 면적을 획기적으로 줄인 장점이 있으며, 현재는 메모리용 패키지의 대표적 실장 방식으로 사용되고 있다.LOC stands for 'lead on chip' which is a typical method of mounting a semiconductor package for memory, and when it is literally expressed as a lead on a chip, it significantly reduces the mounting area of the semiconductor package compared to the conventional mounting method. It has the advantage of being reduced to, and is currently used as a typical implementation of the package for memory.

제 1도는 LOC 패키지의 대표적인 단면을 보여주는 것으로, 리드프레임과 칩에 LOC 테이프의 각 단면이 각각 접착되어 리드프레임과 칩을 기계적으로 서로 부착시키는 매개체 역할을 하며, 리드프레임과 칩을 전기적으로는 절연시키는 역할을 한다.FIG. 1 shows a representative cross section of a LOC package. Each cross section of the LOC tape is bonded to the lead frame and the chip, and serves as a medium for mechanically attaching the lead frame and the chip to each other. It plays a role.

칩과 리드프레임은 와이어에 의해 전기적으로 연결되며, 리드프레임은 반도체 칩 패키지 전체를 PCB(printed circuit board)와 같은 외부 회로에 전기적, 기계적으로 연결 시키는 매개체 역할을 한다.The chip and leadframe are electrically connected by wires, and the leadframe serves as a medium for electrically and mechanically connecting the entire semiconductor chip package to an external circuit such as a printed circuit board (PCB).

상기 LOC 패키지의 제작 과정은 다음과 같다.The manufacturing process of the LOC package is as follows.

① 리드프레임 테이핑 (lead frame taping) 공정① Lead frame taping process

우선 리드프레임 업체에서는 LOC 테이프를 테이핑 공정을 통해 리드프레임 위에 LOC 테이프를 부착시킨다.First, the leadframe company attaches the LOC tape on the leadframe through the taping process.

② 다이 부착 (die attach) 공정② die attach process

테이핑 공정을 통해 리드프레임에 부착된 LOC 테이프의 반대쪽 면에 칩을 부착시킨다.The taping process attaches the chip to the opposite side of the LOC tape attached to the leadframe.

③ 와이어 본딩 (wire bonding) 공정③ wire bonding process

칩과 리드프레임을 와이어들로 연결시킨다.Connect the chip and leadframe with wires.

④ EMC(epoxy molding compound) 공정④ EMC (epoxy molding compound) process

EMC로 칩, LOC 테이프, 와이어, 인너 리드(inner lead) 등의 대부분 부품(outer lead를 제외한)들을 몰딩하여 쌓아버림으로써 패키지 부품들을 수분 등의 외부 환경으로부터 보호한다.EMC protects package components from external conditions such as moisture by molding and stacking most components (except the outer lead) such as chips, LOC tapes, wires, and inner leads.

⑤ 위의 최종 EMC까지 마친 반도체 패키지 칩은 검사, 마킹 과정을 거쳐 출하된다.⑤ The semiconductor package chip, which has completed the final EMC above, is shipped after inspection and marking.

본 발명은 반도체 칩을 리드 프레임에 접착 시키는데 특히 접합한 내열성 접착제 및 복합 접착 시트에 관한 것이다.The present invention relates to a heat-resistant adhesive and a composite adhesive sheet, in particular bonded to the semiconductor chip to the lead frame.

특히, 본 발명은 반도체 팩키지, 특히 LOC(lead on chip)구조 팩키지에 있어서, 흡습후의 납땜 시 팩키지 균열을 방지하고, 반도체 칩의 신뢰성 확보에 유효한 내열성 접착제 및 복합 접착 시트에 관한 것이다.In particular, the present invention relates to a heat-resistant adhesive and a composite adhesive sheet which are effective in preventing package cracks during soldering after moisture absorption in semiconductor packages, particularly in lead on chip (LOC) structure packages.

종래의 일반적인 팩키지 구조는 제3도와 동일한 구조를 갖는 리드 프레임의 다이 패드(die pad) 상에 칩을 탑재시킨 구조로서 리드 프레임과 칩의 접속에는 Au-Si 공융법, 땜납 또는 에폭시계 열경화성 접착제(다이본드재)가 사용되고 있다.The conventional general package structure is a structure in which a chip is mounted on a die pad of a lead frame having the same structure as that of FIG. 3, and the lead frame and the chip are connected with an Au-Si eutectic method, solder or epoxy thermosetting adhesive ( Die bond material).

집적도가 증가하고, 칩이 커짐에 따라 팩키지 중에서 반도체 칩이 차지하는 비율이 높아졌다. 이 때문에 리드 프레임의 다이 패드 상에 칩을 탑재한 구조로는 칩을 수용할 수 없기 때문에, 제 1 및 2도에 도시한 것과 동일한 형태의 다이 패드가 없는 구조의 팩키지가 개발되었다(미합중국 특허 제5,140,404호, 일본국 특허 공개 제(소)61-218199호, 동 제(소)61-241950호, 미합중국 특허 제4,862246호, 일본국 특허 공개 제(평)1-76732효, 동 제(평)2-36542호, 동 제(평)4-318962호 참조). 제1 및 2도와 동일한 형태의 팩키지 구조는 각각 LOC(lead on chip), COL(chip on lead)로 불리고 있고, 리드 프레임과 칩의 접속에는 열경화성 접착제나 내열성 열용융형 첩착제가 사용되고 있다.As the degree of integration increases and the chip grows, the percentage of semiconductor chips in the package increases. For this reason, since a chip mounted on the die pad of the lead frame cannot accommodate the chip, a package having a die padless structure of the same type as shown in Figs. 1 and 2 has been developed. 5,140,404, Japanese Patent Laid-Open No. 61-218199, Copper No. 61-241950, US Patent No. 4,862246, Japanese Patent Laid-Open No. 1-76732, 2-36542, copper 4-318962). Package structures having the same shape as those of FIGS. 1 and 2 are called lead on chip (LOC) and chip on lead (COL), respectively, and a thermosetting adhesive or a heat resistant hot melt adhesive is used to connect the lead frame and the chip.

최근 반도체 칩의 고집적화에 따른 미세 회로화 및 리드프레임의 미세 다핀화 및 고전기전도 특성의 요구에 따라, 패키지 공정중에 발생하는 열적 스트레스를 억제하여 신뢰성이 높은 반도체 패키지 공정 조건 개선이 진행 중이다. 고집접화, 고전기전도 특성 측면에서 리드프레임의 소재도 기존의 니켈 알로이에서 구리 소재로의 교체도 이루어지고 있으며, 박형화, 미세화되고 있다.Recently, in accordance with the demand for fine circuitry due to high integration of semiconductor chips, fine multi-pinning of the lead frame, and high electroconductive properties, thermal stress generated during the packaging process is suppressed to improve semiconductor package process conditions with high reliability. In terms of high integration and high electroconductivity, the lead frame material is also replaced with a nickel alloy from a copper alloy, and has been made thinner and smaller.

특히 반도체 칩과 리드프레임을 각 단면에 접착 시키는 LOC 테이프의 경우, 기존의 고온 공정(400℃부근)에서 접착함으로써 고집적 패키지 신뢰성이 열적 스트레스로 저하되는 문제점을 보이고 있다.In particular, in the case of the LOC tape that bonds the semiconductor chip and the lead frame to each end face, the high integration package reliability is degraded by thermal stress by bonding in the existing high temperature process (near 400 ° C).

팩키지의 소형, 박형화 또는 팩키지 중에서 반도체 칩이 차지하는 비율이 커짐에 따라 밀봉재의 두께가 얇아지고, 접착제나 밀봉재가 흡습한 경우 납땜 접속(땜납리플로우)시의 열에 의해 흡습된 수분이 기화, 팽창하고, 그 결과 팩키지에 균열이 생기는 현상이 많이 발생하게 되었다.As the proportion of semiconductor chips in the package becomes smaller, thinner, or larger, the thickness of the sealing material becomes thinner. If the adhesive or the sealing material absorbs moisture, the moisture absorbed by heat during solder connection (solder reflow) vaporizes and expands. As a result, a lot of cracks occurred in the package.

이 현상을 방지하기 위해 밀봉재 및 접착제의 2가지 면에 대한 검토가 행해져서, 밀봉재에 관해서는 저흡습화나 기계적 강도의 향상(일본국 특허 공개 제(평)5-67708호)이 검토되고 있다. 한편, 접착제에 관해서는 저흡습화나 접착부재를 복수개의 작은 단편으로 분리함으로써 리플로우시의 수증기를 달아나게 하여 균열을 방지하는 것(일본국 특허 공개 제(평)3-109757호 참조)에 대하여 기술하였다.In order to prevent this phenomenon, examination of the two surfaces of a sealing material and an adhesive agent is performed, and about a sealing material, the low moisture absorption and the improvement of mechanical strength (Japanese Patent Laid-Open No. 5-67708) are examined. On the other hand, as for the adhesive, a technique for reducing moisture absorption or separating the adhesive member into a plurality of small pieces to remove water vapor during reflow and to prevent cracking (see Japanese Patent Laid-Open No. 3-109757) It was.

또한 접착온도 저하의 관점에서 의도적으로 용매를 잔류 시키고, 수지를 유연하게 하거나(일본국 톡허 공개 제(평)3-64386효 참조), 용매를 잔존 시키는 등의 방법에 따라 유동성을 향상 시키고, 접착을 충분하게 함으로써 이너 리드 사이의 리크 전류를 감소 시키는 것(일본국 특허 공개 제(평)2-36542호 참조)에 관하여 기술하였으나, 잔류 용매는 고온 공정에서 증발하여 패키지에 균열을 야기하는 등의 문제점을 일으킬 수 있다.In addition, from the standpoint of lowering the adhesion temperature, the solvent is intentionally retained, the resin is softened (see Japanese Patent Publication No. 3-64386), or the solvent is left to improve the fluidity and adhesion. It has been described with respect to reducing the leakage current between the inner leads by making enough (see Japanese Patent Application Laid-open No. Hei 2-36542), but the residual solvent evaporates in a high temperature process causing cracks in the package. It may cause problems.

최근에 환경 친화적인 솔더재의 요구에 따라 납 성분을 배제한 솔더 공정으로 기존 땜납 공정에 비해 고온 솔더 리플로우시에도 견딜수 있는 저흡습, 저 잔류용매 특성이 패키지 재료에 요구된다.In recent years, the packaging process requires low hygroscopic and low residual solvent properties that can withstand high temperature solder reflow compared to the conventional solder process.

종래에 패키지의 균열을 방지하기 위하여 (대한민국 특허 제 0243731) LOC 테이프의 수분율과 밀려나온 길이를 한정하였으나, 상기 특허에 한정된 밀려나온 길이 조건의 LOC 테이프 접착제는 유리전이온도가 높고 고온 공정(400℃부근)에서 접착함으로써 반도체 칩 및 리드프레임에 열적 스트레스를 야기시켜 패키지 신뢰성을 저하 시키며, 열적 스트레스를 감소 시키기 위해 저온 공정(350℃미만)에서 접착 시에는 접착제의 젖음성과 흐름성이 너무 낮아 접착력이 너무 약하게 되어 신뢰성 평가 시 힐크랙(heel crack)이 발생하는 문제점이 있다.Conventionally, in order to prevent cracking of the package (Korean Patent No. 0243731), the moisture content of the LOC tape and the length of the extruded limit were limited, but the LOC tape adhesive of the extruded length condition defined in the patent has a high glass transition temperature and a high temperature process (400 ° C.). Adhesion in the low-temperature process (below 350 ℃) to reduce thermal stress, resulting in thermal stress on the semiconductor chip and leadframe. Too weak, there is a problem that a heel crack occurs when the reliability evaluation.

본 발명은 상기 발명들의 문제점들을 해결하기 위하여 저온 공정(350℃미만)에서도 접착제가 유리전이온도(Tg) 및 잔류용매량을 조절함으로써 리드프레임과 칩에 접착력이 우수한 특성을 확보하여 칩과 리드프레임과 접착 고온 공정의 열적 스트레스를 완화하여 패키지 신뢰성 및 생산수율을 증대시킬 수 있었다. 또한 저흡습, 저잔류용매 특성을 가지는 LOC 테이프를 제조함으로써 솔더 고온 공정 중에 수분 및 잔류용매의 급격한 증발로 인한 반도체 패키지 균열을 억제하여 반도체 패키지 내크랙성을 개선하였다.In order to solve the problems of the present invention, the adhesive controls the glass transition temperature (Tg) and the residual solvent amount even in a low temperature process (less than 350 ° C.), thereby securing excellent adhesion to the lead frame and the chip, thereby improving the chip and the lead frame. The thermal stress of the hot and hot process can be alleviated to increase the package reliability and production yield. In addition, the LOC tape having low hygroscopicity and low residual solvent characteristics was improved to prevent cracking of the semiconductor package due to rapid evaporation of moisture and residual solvent during the high temperature solder process, thereby improving semiconductor package crack resistance.

기존의 LOC 테이프를 이용하는 경우, 리드프레임과 반도체 칩을 400℃ 부근에서 고온접착을 시키며, 이는 반도체 칩이 열적 스트레스를 받아 패키지 신뢰성 저하의 원인이 된다. 따라서 본 발명은 350℃미만의 저온에서 접착시간 1.0초이하의 시간에서 접착가능한 LOC 테이프로서 적합한 접착테이프를 발명하게 되었다.In the case of using the existing LOC tape, the lead frame and the semiconductor chip are adhered at a high temperature around 400 ° C., which causes thermal stress on the semiconductor chip and causes package reliability degradation. Accordingly, the present invention has invented an adhesive tape suitable as a LOC tape that can be adhered at a time of adhesion time of less than 1.0 second at a low temperature of less than 350 ℃.

본 발명의 LOC 테이프는 우선 리드프레임과 300℃ 정도의 낮은 공정 조건에서 1초 이하의 짧은 시간에 압착하는 경우 순간적으로 흐름성을 갖는 형태가 되어 접착되며, 접착제의 흐름성이 너무 낮은 경우에는 리드프레임과이 젖음성이 저하되어 접착력이 낮아지는 문제가 생기며, 접착제의 흐름성이 너무 큰 경우에는 리드에 의해 눌려나오는 접착제의 양(필렛: fillet)이 과도하여 리드가 틸팅(tilting)되어 후공정인 와이어 본딩시 불량을 야기함으로써 접착 공정시 적절한 흐름성 및 필렛양을 갖는 것이 바람직하다. 기존의 400℃ 부근의 고온 영역에서 접착 시키는 LOC 테이프의 경우 이를 350℃미만에서 접착 시키는 경우에는 접착제의 흐름성이 부족하여 접착력이 약한 문제점이 생기게 된다. LOC 테이프를 칩과 350℃미만에서 압착하는 경우에도 접착제의 흐름성이 너무 낮은 경우에는 칩과의 젖음성에 의한 부착 특성이 저하되게 된다.LOC tape of the present invention is first bonded in a form having a flow instantaneously when pressed in a short time of less than 1 second at a low frame condition of the lead frame and 300 ℃, if the flow of adhesive is too low lead When the wetting property of the frame and the wettability is lowered, there is a problem that the adhesive strength is lowered.If the flowability of the adhesive is too large, the amount of adhesive (fillet) pushed by the lead is excessive and the lead is tilted, resulting in a post process wire. It is desirable to have adequate flowability and fillet amount in the bonding process by causing defects in bonding. In the case of the conventional LOC tape to be bonded at a high temperature region of 400 ℃ when the adhesive is bonded at less than 350 ℃ due to the lack of flow of the adhesive has a weak adhesive strength problem. Even when the LOC tape is pressed at a temperature below 350 ° C. with the chip, when the flowability of the adhesive is too low, adhesion characteristics due to wettability with the chip are degraded.

일반적으로 LOC 패키지용 테이프의 경우 주로 이미드계의 접착제를 사용하고 있으며, 고온에서 접착제가 순간적으로 용융되어 흐름성을 갖는 상태가 되어 반도체 칩과 같은 접착 기재에 밀착된 후 다시 상온에서 접착제가 굳어져서 기재에 부착이 되는 형태로 접착이 이루어진다.In general, the tape for the LOC package mainly uses an imide-based adhesive, and the adhesive melts instantly at a high temperature to have a flowability, adheres to an adhesive substrate such as a semiconductor chip, and then hardens the adhesive again at room temperature. The adhesion is made in the form of being attached to the substrate.

따라서 접착제의 고온 흐름 특성이 접착제의 젖음성 및 기재 부착 특성에 매우 중요한 역할을 하게 되며, 접착제의 눌림길이의 범위를 결정함으로써 350℃미만의 접착 공정에서 접착제가 적절한 흐름성 및 접착 특성을 가짐으로써 기존 400℃ 부근 접착 공정에 비해 접착 공정시의 열적 스트레스를 완화할 수 있었으며, 동시에 저 잔류용제량과 적정 잔류용매 물성을 확보하여 반도체 패키지의 내크랙성의 신뢰도를 확보할 수 있었고 반도체의 신뢰성의 향상과 생산수율을 높일 수 있었다.Therefore, the high temperature flow characteristics of the adhesive play a very important role in the wettability of the adhesive and the adhesion property of the substrate, and by determining the range of the pressed length of the adhesive, the adhesive has the proper flow and adhesion characteristics in the bonding process below 350 ° C. Compared to the adhesion process near 400 ℃, thermal stress during the adhesion process can be alleviated, and at the same time, the low residual solvent amount and proper residual solvent properties can be ensured to ensure the reliability of crack resistance of the semiconductor package. Production yields could be increased.

즉, 본 발명은That is, the present invention

① 반도체 칩을 리드프레임에 350℃미만의 접착 공정으로 접착 부재로 접착하고, 적어도 반도체 칩과 리드프레임의 접착부를 밀봉재로 밀봉해서 반도체 팩키지를 제조하기 위한 접착 부재에 사용되는 내열성 접착제 및 내열성 접착제로 제조한 복합시트로서 접착개시온도 230~330℃범위, 잔류용매량 0.03~1.00중량%범위, 잔류용제량 3.0중량%이하인 내열성 복합시트를 제공한다.① As a heat-resistant adhesive and a heat-resistant adhesive used for an adhesive member for manufacturing a semiconductor package by bonding a semiconductor chip to the lead frame by an adhesive process of less than 350 ° C. and sealing at least the adhesive portion of the semiconductor chip and the lead frame with a sealing material. Provided is a composite sheet prepared heat-resistant composite sheet in the range of adhesion start temperature 230 ~ 330 ℃, residual solvent amount 0.03 ~ 1.00% by weight, residual solvent amount 3.0% by weight or less.

② 접착부를 밀봉재로 밀봉해서 반도체 팩키지를 제조하기 위한 접착 부재에 사용되는 내열성 접착제로서, 접착개시온도 230~330℃범위, 잔류용매량 0.03~1.00중량%범위, 밀려나온 길이 2.0~5.0mm범위, 잔류용제량 3중량%이하, 유리전이온도 150 ~ 2OO℃범위인 내열성 접착제를 제공한다.② A heat-resistant adhesive used in the adhesive member for manufacturing a semiconductor package by sealing the adhesive part with a sealing material, the adhesive starting temperature range 230 ~ 330 ℃, residual solvent amount 0.03 ~ 1.00% by weight, the length of the extruded 2.0 ~ 5.0mm, It provides a heat-resistant adhesive having a residual solvent content of 3% by weight or less and a glass transition temperature of 150 to 200 ° C.

③ 상기 접착 부재는 내열성 기재필름의 한쪽 또는 양쪽에 상기 내열성 접착제 도막을 설치하여 이루어진 복합 접착 시트이거나 내열성 접착제만으로 이루어진 것을 특징으로 한다.(3) The adhesive member is a composite adhesive sheet formed by installing the heat resistant adhesive coating film on one or both sides of the heat resistant base film, or a heat resistant adhesive.

제 1도는 본 발명의 내열성 접착부재를 사용한 수지 봉지형 반도체 장치의 1예의 단면도이다.1 is a cross-sectional view of an example of a resin-encapsulated semiconductor device using the heat resistant adhesive member of the present invention.

제 2도는 본 발명이 내열성 접착부재를 사용한 수지 봉지형 반도체 장치의 다른 1예의 단면도이다.2 is a cross-sectional view of another example of the resin-encapsulated semiconductor device in which the present invention uses a heat resistant adhesive member.

제 3도는 본 발명의 내열성 접착부재를 사용한 수지 봉지형 반도체 장치의 또 다른 1예의 단면도이다.3 is a cross-sectional view of still another example of the resin encapsulated semiconductor device using the heat resistant adhesive member of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1 : 접착부재 2 : 반도체 칩1 bonding member 2 semiconductor chip

3 : 리드 프레임 4 : 와이어3: lead frame 4: wire

5 : 밀봉재5: sealing material

본 발명에 사용되는 특정의 내열성 접착제는 내열성 열가소성 수지 또는 열경화성 수지로 제조 가능하고, 열가소성과 열경화성의 블랜딩 수지로 제조하는 것도 가능하며, 접착개시온도 230~330℃범위, 잔류용매량 0.03~1.00중량%범위, 잔류용제량 3중량%이하, 밀려나온 길이 2.0~5.0mm범위인 것으로서, 그 밖의 특별한 제한은 없으나, 바람직하기로는 유리전이온도 150~2OO℃범위를 갖는 내열성 접착제이고, 폴리이미드 접착제 및 폴리이미드와 다른 고분자가 함께 블랜딩된 접착제가 바람직하다.The specific heat resistant adhesive used in the present invention may be made of a heat resistant thermoplastic resin or a thermosetting resin, may be made of a thermoplastic and thermosetting blending resin, and has a bonding start temperature of 230 to 330 ° C. and a residual solvent amount of 0.03 to 1.00 weight. It is in the range of%, residual solvent content of 3% by weight or less, and the length of 2.0 to 5.0mm extruded, and there is no particular limitation, but it is preferably a heat resistant adhesive having a glass transition temperature of 150 to 20 ° C., a polyimide adhesive and Preference is given to adhesives in which polyimide and other polymers are blended together.

여기서 폴리이미드란 폴리아미드이미드, 폴리에스테르이미드, 폴리 에테르이미드, 폴리이미드 등의 이미드기를 갖는 수지를 포함한다. 함께 블랜딩하기에 적합한 고분자로는 에폭시, 비스말레이미드 등이 포함된다.Here, polyimide includes resin having imide groups such as polyamideimide, polyesterimide, polyetherimide and polyimide. Suitable polymers for blending together include epoxy, bismaleimide and the like.

본 발명의 내열성 접착제는 접착개시온도 230~330℃, 잔류용매량은 0.03~1.00중량%범위이고, 보다 바람직하기로는 0.1~0.5중량%범위이다. 반도체의 내크랙성에 영향을 주는 잔류용제량은 3.0중량%이하, 바람직하기로는 2.5중량%이하, 보다 바람직하기로는 2.O중량%이하이고, 밀려나온 길이는 2.0~5.0mm범위, 바람직하기로는 2.5~3.5mm범위이다. 특히, 본 발명의 내열성 접착제로서는 상기 특성 외에 유리 전이 온도가 150~2OO℃범위, 보다 바람직하기로는 150~180℃범위인 것이 요망된다. 특히 흡수율과 잔류용매량이 반도체 패키지의 내크랙성과 밀접한관계가 있음을 언급하였는데, 반도체 패키지의 내크랙성은 흡수율과 잔류용매량의 합과 관련이 있음을 규명하였으며 잔류용매량과 잔류용제량의 합을 '잔류용제량' 이라고 하였다.In the heat-resistant adhesive of the present invention, the adhesion start temperature is 230 to 330 ° C., and the residual solvent amount is in the range of 0.03 to 1.00% by weight, more preferably in the range of 0.1 to 0.5% by weight. The amount of residual solvent affecting the crack resistance of the semiconductor is 3.0% by weight or less, preferably 2.5% by weight or less, more preferably 2.O% by weight or less, and the protruded length is in the range of 2.0 to 5.0 mm, preferably It is in the range of 2.5 to 3.5 mm. In particular, as the heat resistant adhesive of the present invention, it is desired that the glass transition temperature is in the range of 150 to 200 ° C, more preferably in the range of 150 to 180 ° C, in addition to the above characteristics. In particular, it was mentioned that the absorption rate and the residual solvent amount were closely related to the crack resistance of the semiconductor package. The crack resistance of the semiconductor package was related to the sum of the absorption rate and the residual solvent amount, and the sum of the residual solvent amount and the residual solvent amount was determined. It was called 'residual solvent amount'.

여기서, '접착개시온도' 란 내열접착제 및 내열접착제로 제조된 내열복합시트와 반도체 칩과의 3.0MPa, 0.5초의 조건으로 접착시 접착력이 0.5kN/m이상이 되는 접착온도를 말한다.Here, the "adhesion start temperature" refers to the adhesive temperature that the adhesive force is 0.5kN / m or more when the adhesion between the heat-resistant composite sheet and the semiconductor chip made of the heat-resistant adhesive and the heat-resistant adhesive and the semiconductor chip under the conditions of 3.0MPa, 0.5 seconds.

그리고, '밀려나온 길이' 란 19 x 50mm, 두께 25um의 접착제 필름을 350℃,3.0MPa, 1분의 조건에서 압착시켰을 때에 밀려나온 접착제의 길이를 장 변 방향의 중앙부에서 측정한 것을 밀려나온 길이로 한다. 상기 필름의 제조는 폴리이미드 바니스를 유리판에 흐려 퍼지도록 하고, 100℃에서 10분간 건조시킨 후에 박리하고 철로된 틀에 넣어 250℃에서 1시간 건조시켜 필름을 얻었다. 좀더 상세히 말하자면 건조시킨 필름을 350℃로 가열된 핫프레스(Hot press)의 하단 플레이트(lower plate)에 테프론(PTFE) 함침 유리직물(두께 150㎛)을 올려 놓고 유리직물 위에 건조시킨 필름을 올려놓고 30초 경과후 테프론 함침 유리직물을 필름 위에 놓고 3.0MPa, 1분 조건으로 압착하여서 밀려나온 길이를 평가하였다.In addition, the term "extended length" means that the length of the adhesive that was pushed out when the adhesive film having a thickness of 19 x 50 mm and a thickness of 25 μm was pressed at 350 ° C, 3.0 MPa for 1 minute was measured at the center of the long side direction. Shall be. In the preparation of the film, the polyimide varnish was spread out on a glass plate, dried at 100 ° C. for 10 minutes, then peeled and placed in an iron mold and dried at 250 ° C. for 1 hour to obtain a film. More specifically, the dried film was placed on a glass plate (PTFE) impregnated glass fabric (thickness 150 μm) on a lower plate of a hot press heated to 350 ° C., and then the dried film was placed on the glass fabric. After 30 seconds, the Teflon-impregnated glass fabric was placed on the film and pressed at 3.0 MPa for 1 minute.

그리고, '흡수율'은 내열성 접착제로 만든 필름이나 내열성 접착제를 내열성 기재필름에 도포하여 제조된 복합내열 시트를 120℃에서 1시간 건조한 후에 무게(W)를 칭량한 후 증류수에 24시간 침지시켰을 때의 무게증가량(w)을 건조한 무게(W)로 나눈 백분율(중량%)를 말한다.In addition, the 'absorption rate' is obtained by applying a film made of a heat-resistant adhesive or a heat-resistant adhesive to a heat-resistant base film and drying the composite heat-resistant sheet at 120 ° C. for 1 hour, after weighing the weight (W), and immersing in distilled water for 24 hours. Weight increase (w) divided by dry weight (W) is the percentage (% by weight).

한편, '잔류용매량'은 내열접착제나 내열복합시트를 표준상태에서 24시간 방치한 후에 무게(W1)을 칭량한 후 300℃, 1시간 조건으로 잔류용매 및 수분을 제거하고 무게(W2)를 칭량한 후 다시 표준상태에서 24시간 방치한 후에 무게(W3)를 칭량한 후, W1에서 W3을 뺀 값을 W1으로 나눈 값의 백분율을 잔류용매량(중량%)으로 한다. 여기서 W1 내열접착제의 무게이거나 혹은 내열복합시트인 경우에도 내열복합시트의 접착제부분의 무게이다. 잔류용매 함량이 0.03중량% 이하인 경우에는 접착력이 감소되어 칩 및 리드프레임과의 접착 공정온도가 올라가고 공정온도가 낮더라도 1초이하의 짧은 시간동안 신뢰성을 확보할수 있는 접착력을 얻을수 없는 문제가있었다. 즉 접착제가 어는 정도의 용제를 함유하는 경우에 1초이상의 짧은 시간에 저온에서 칩과의 접착력을 얻을 수 있었다. 1.00중량%이상인 경우에는 리드프레임과 칩에 내열접착제 및 내열복합시트를 접착 시 기포가 발생하여 접착불량이 발생한다. 보통 접착제를 리드프레임과 칩에 접착 시 150~180℃범위, 20~50초범위에서 수분을 제거한 후에 건조를 실시하므로 수분은 제거되지만 잔류용매량은 제거되지 않기 때문에 칩 및 리드프레임과 고온 접착시 잔류용매량은 조절하는 것이 상당히 중요하다. 다시 말해서 최근 반도체의 과거 4~16M DRAM에서 64M~1G DARM의 고용량에서는 반도체 칩의 제조에 있어서 칩과 리드프레임의 접착시 접착시간의 단축화 및 접착 공정 온도의 저온화가 필수적이다. 이런 상황에서 잔류용매량의 조절과 유리전이온도이 조정으로 이를 달성할 수 있었다.On the other hand, 'residual solvent amount' is to leave the heat-resistant adhesive or heat-resistant composite sheet in a standard state for 24 hours, then weigh the weight (W1) and then remove the residual solvent and moisture at 300 ℃, 1 hour conditions and weigh (W2) After weighing, the sample is left for 24 hours in a standard state, and then weighed (W3), and the percentage of the value obtained by subtracting W1 from W1 divided by W1 is the residual solvent amount (% by weight). Here, the weight of the W1 heat-resistant adhesive or even the heat-resistant composite sheet is the weight of the adhesive portion of the heat-resistant composite sheet. If the residual solvent content is less than 0.03% by weight, the adhesive strength is reduced, the adhesion process temperature with the chip and lead frame is increased, even if the process temperature is low, there is a problem that can not obtain the adhesive strength to secure the reliability for a short time of less than 1 second. In other words, in the case where the adhesive contains a solvent having a freezing degree, the adhesive strength with the chip can be obtained at a low temperature in a short time of 1 second or more. If it is more than 1.00% by weight, bubbles are generated when the heat-resistant adhesive and the heat-resistant composite sheet are adhered to the lead frame and the chip, resulting in poor adhesion. Usually, when adhesive is adhered to lead frame and chip, it is dried after removing water in 150 ~ 180 ℃ range and 20 ~ 50 seconds, so moisture is removed but residual solvent amount is not removed. It is very important to control the amount of residual solvent. In other words, at the high capacity of 64M ~ 1G DARM in the past 4 ~ 16M DRAM of semiconductors, it is essential to shorten the adhesion time and lower the temperature of the adhesion process when bonding the chip and the lead frame in the manufacture of semiconductor chips. In this situation, this could be achieved by adjusting the residual solvent volume and adjusting the glass transition temperature.

잔류용제량은 상기 흡수율과 잔류용매량을 더한 값이다. 잔류용제량은 실제 저온 공정 접착제에서 아주 중요한 항목으로 반도체 패키지의 내크랙성에 영향을 미치는 인자이다. 결론적으로 흡수율과 잔류용매량의 합인 잔류용제량이 3중량%이하일 경우에 반도체의 팩키지의 내크랙성을 확보할 수 있었다. 지금까지 흡수율이 반도체 패키지의 내크랙성이 중요한 인자이었지만 본 발명에서는 최근 칩의 접착 공정온도의 저온화 추세에 따라 흡수율과 잔류용매량의 합인 잔류용제량이 반도체의 내 크랙성에 중요한 인자임을 규명하였다.The residual solvent amount is a value obtained by adding the absorption rate and the residual solvent amount. The amount of residual solvent is a very important item in actual low temperature process adhesives and is a factor that affects the crack resistance of a semiconductor package. In conclusion, the crack resistance of the package of the semiconductor was secured when the residual solvent amount, which is the sum of the absorption rate and the residual solvent amount, was 3 wt% or less. Until now, the absorption rate has been an important factor in crack resistance of the semiconductor package, but according to the present invention, the amount of residual solvent, which is the sum of the absorption rate and the residual solvent amount, is an important factor for the crack resistance of the semiconductor according to the recent trend of lowering the temperature of the chip bonding process.

본 발명의 접착제는 칩 또는 리드 프레임과의 접착 개시 온도가 230℃미만의 경우에는 와이어 본딩성이 급격히 악화되는데, 특히 최근에 기술이 발달로 와이어 본딩 온도를 계속 낮추어 200℃이하에서 실시하고 있는 상황이지만, 접착 개시 온도가 230℃미만인 경우는 와이어 본딩성이 급격히 악화되는 경향이 있다. 이러한 경우 밀려나온 길이 및 와이어본딩 측면에서 에폭시 성분을 함유하여 접착제의 경도를 높이는 것이 바람직하다.In the adhesive of the present invention, when the bonding start temperature with the chip or lead frame is lower than 230 ° C, the wire bonding property is rapidly deteriorated. In particular, in recent years, due to the development of technology, the wire bonding temperature is continuously lowered to be carried out at 200 ° C or lower. However, when bonding start temperature is less than 230 degreeC, there exists a tendency for wire bonding property to deteriorate rapidly. In this case, it is desirable to increase the hardness of the adhesive by containing an epoxy component in terms of the length and wire bonding extruded.

본 발명의 내열성 접착제는, 기본적으로 디아민(A) 또는 디이소시 아네이트(A')와, 산 무수물(B) 및(또는) 디카르복실산 또는 그의 아미드 변성 유도체(C)로부터 합성되며, 상기한 소정의 특성, 즉 접착개시온도 230~330℃범위, 잔류용매량 0.03~1.00중량%범위, 잔류용제량 3중량%이하, 밀려나온 길이 2.0~5.0mm범위, 유리전이온도 150~200℃범위를 갖도록 상기 반응성분을 조합하고, 그의 반응비, 반응 조건, 분자량, 첨가제 유무와 그 종류, 에폭시 수지 등의 첨가 수지 등을 다양하게 조정함으로써 용이하게 제조할 수 있다.The heat resistant adhesive of the present invention is basically synthesized from diamine (A) or diisocyanate (A '), acid anhydride (B) and / or dicarboxylic acid or an amide modified derivative thereof (C), The above-mentioned predetermined characteristics, namely the adhesion start temperature range 230 ~ 330 ℃, residual solvent amount 0.03 ~ 1.00% by weight, residual solvent content 3% by weight or less, the length of the length 2.0 ~ 5.0mm extruded, glass transition temperature 150 ~ 200 ℃ It can be manufactured easily by combining the said reactive component so that it may have a range, and adjusting the reaction ratio, reaction conditions, molecular weight, presence or absence of an additive, its kind, additive resin, such as an epoxy resin, etc. in various ways.

본 발명에 사용되는 디아민(A)로서는 예를 들면, 헥사메틸렌디아민, 옥타메틸렌디아민, 도데카메틸렌디아민 등의 알킬렌디아민, 파라페닐렌디아민, 메타페닐렌다아민, 2,4-디아미노톨루엔 등의 아릴렌디아민, 4,4'-디아미노디페닐에테르(DDE), 4,4'-디아미노페닐메탄, 4,4'-디아미노디페닐술폰, 3,3'-디아미노디페닐술폰, 4,4'-디아미노벤조페논, 3,3'-디아미노벤조페논, 4,4'-디아미노벤즈아닐리드 등의 디아미노디페닐 유도체, 1,4-비스[1-(4-아미노페닐)-1-메틸에틸]벤젠(BAP), 1,3-비스[1-(4-아미노페닐)-1-메틸에틸] 벤젠, 1,3-비스(3-아미노페녹시)벤젠, 1,4-비스(3-아미노페녹시)벤젠, 1,4-비스(4-아미노페녹시)벤젠, 2,2'-비스[4-(4-아미노페녹시)페닐]프로판(BAPP), 2,2'-비스[4(3-아미노페녹시)페닐]프로판, 비스[4-(3-아미노페녹시)페닐]술폰(m-APPS), 비스[4-(4-아미노페녹시)페닐]술폰, 2,2'-비스[4-(4-아미노페녹시)페닐]헥사플루오로프로판, 및 하기 일반식(1)의 디아민 및 하기 일반식(2)의 실록산디아민 등을 들 수 있다.As diamine (A) used for this invention, alkylenediamine, such as hexamethylenediamine, octamethylenediamine, dodecamethylenediamine, paraphenylenediamine, metaphenylenedaamine, 2, 4- diaminotoluene, etc., for example Arylenediamine, 4,4'-diaminodiphenylether (DDE), 4,4'-diaminophenylmethane, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone , Diaminodiphenyl derivatives such as 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzanilide, 1,4-bis [1- (4-amino Phenyl) -1-methylethyl] benzene (BAP), 1,3-bis [1- (4-aminophenyl) -1-methylethyl] benzene, 1,3-bis (3-aminophenoxy) benzene, 1 , 4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), 2,2'-bis [4 (3-aminophenoxy) phenyl] propane, bis [4- (3-aminophenoxy) phenyl] sulfone (m-APPS), bis [4- (4-aminophenoxy) Phenyl] And the like phone, 2,2'-bis [4- (4-aminophenoxy) phenyl] siloxane diamine of the diamine and the following hexafluoropropane, and the following general formula (1) Formula (2).

(1) (One)

상기 식 중, Y는 아미노기 이고, R11, R12, R13및 R14는 각각 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기 또는 알콕시기이고, 이들 중 적어도 2개 이상은 알킬기 또는 알콜시기이고, X는 -CH2-. -C(CH3)2-, -O-, -SO2-, -C0- 또는 -NHCO-기 이다.In the above formula, Y is an amino group, R 11 , R 12 , R 13 and R 14 are each independently hydrogen or an alkyl or alkoxy group having 1 to 4 carbon atoms, at least two or more of which are alkyl or alcohol groups, X is -CH 2- . -C (CH 3 ) 2- , -O-, -SO 2- , -C0- or -NHCO- group.

일반식 (1)의 화합물로서는 예를 들면, 4.4'-디아미노-3,3',5,5'-테트라메틸디페닐메탄, 4,4'-디아미노-3,3',5,5'-테트라에틸디페닐메탄, 4,4'-디아미노-3,3',5,5'-테트라(n-프로필)디페닐메탄, 4,4'-디아미노-3,3',5,5'-테트라이소프로필디페닐메탄,As the compound of the general formula (1), for example, 4.4'-diamino-3,3 ', 5,5'-tetramethyldiphenylmethane, 4,4'-diamino-3,3', 5,5 '-Tetraethyldiphenylmethane, 4,4'-diamino-3,3', 5,5'-tetra (n-propyl) diphenylmethane, 4,4'-diamino-3,3 ', 5 , 5'- tetraisopropyldiphenylmethane,

4,4'-디아미노-3,3',5,5'-테트라부틸디페닐메탄, 4,4'-디아미노-3,3'-디메틸-5,5'-디에틸디페닐메탄, 4,4'-디아미노-3,3'-디메틸-5,5'-디이소프로필디페닐메탄, 4,4'-디아미노-3,3'-디에틸-5,5'-디이소프로필디페닐메탄, 4,4'-디아미노-3,5-디메틸-3',5'-디에틸디페닐메탄, 4,4'-디아미노-3,5-디메틸-3',5'-디이소프로필디페닐메탄, 4,4'-디아미노-3,5-디에틸-3',5'-디이소프로필디페닐메탄, 4,4'-디아미노-3,5-디에틸-3',5'-디부틸디페닐메탄, 4,4'-디아미노-3,5-디이소프로필-3',5'-디부틸디페닐 메탄, 4,4'-디아미노-3,3'-디이소프로필-5,5'-디부틸디페닐 메탄, 4,4'-디아미노-3,3'-디메틸-5,5'-디부틸디페닐메탄, 4,4'-디아미노-3,3'-디에틸-5,5'-디부틸디페닐메탄, 4,4'-디아미노-3,3'-디메틸디페닐메탄, 4,4'-디아미노-3,3'-디에틸디페닐메탄, 4,4'-디아미노-3,3'-디(n-프로필)디페닐메탄, 4,4'-디아미노-3,3'-디이소프로필디페닐메탄, 4,4'-디아미노-3,3'-디부틸디페닐메탄, 4,4'-디아미노-3,3',5-트리메틸디페닐메탄, 4,4'-디아미노-3,3',5-트리에틸디페닐메탄, 4,4'-디아미노-3,3',5-트리(n-프로필)디페닐메탄, 4,4'-디아미노-3,3',5-트리이소프로필디페닐메탄, 4,4'-디아미노-3,3',5-트리부틸디페닐메탄, 4,4'-디아미노-3-메틸-3'-에틸디페닐메탄, 4,4'-디아미노-3-메틸-3'-이소프로필디페닐메탄, 4,4'-디아미노-3-에틸-3'-이소프로필디페닐메탄, 4,4'-디아미노-3-에틸-3'-부틸디페닐메탄, 4,4'-디아미노-3-0|소프로필-3'-부틸디페닐메탄, 2,2'-비스(4-아미노-3,5-디메틸페닐)프로판, 2,2'-비스(4-아미노-3,5-디에틸페닐)프로판, 2,2'-비스[4-아미노-3,5-디(n-프로필)페닐]프로판, 2,2'-비스(4-아미노-3,5-디이소프로필페닐)프로판, 2,2'-비스(4-아미노-3,5-디부틸페닐)프로판, 4,4'-디아미노-3,3',5,5'-테트라메틸디페닐에테르, 4,4'-디아미노-3,3',5,5'-테트라에틸디페닐에테르, 4,4'-디아미노-3,3',5,5'-테트라(n-프로필)디페닐에테르, 4,4'-디아미노-3,3',5,5'-테트라이소프로필디페닐에테르, 4,4'-디아미노-3,3',5,5'-테트라부틸디페닐에테르, 4,4'-디아미노-3.3',5,5'-테트라메틸디페닐술폰, 4.4'-디아미노-3,3',5,5'-테트리에틸디페닐술폰 , 4,4'-디아미노-3,3',5,5'-테트라(n-프로필)디페닐술폰, 4,4'-디아미노-3,3',5,5'-테트라이소프로필디페닐술폰, 4,4'-디아미노-3,3',5,5'-테트라부틸디페닐술폰, 4,4'-디아미노-3,3',5,5'-테트라메틸디페닐케톤, 4,4'-디아미노-3,3',5,5'-테트라에틸디페닐케톤, 4,4'-디아미노-3,3',5,5'-테트라(n-프로필)디페닐케톤, 4,4'-디아미노-3,3',5,5'-테트라이소프로필디페닐케톤, 4,4'-디아미노-3,3',5,5'-테트라부틸디페닐케톤, 4,4'-디아미노-3,3',5,5'-테트라메틸벤즈아닐리드, 4,4'-디아미노-3,3',5,5'-테트라메틸벤즈아닐리드, 4,4'-디아미노-3,3',5,5'-테트라(n-프로필)벤즈아닐리드, 4,4'-디아미노-3,3',5,5'-테트라이소프로필벤즈아닐리드, 4,4'-디아미노-3,3',5,5'-테트라부틸벤즈아닐리드 등을 들수있다.4,4'-diamino-3,3 ', 5,5'-tetrabutyldiphenylmethane, 4,4'-diamino-3,3'-dimethyl-5,5'-diethyldiphenylmethane, 4,4'-diamino-3,3'-dimethyl-5,5'-diisopropyldiphenylmethane, 4,4'-diamino-3,3'-diethyl-5,5'-diiso Propyldiphenylmethane, 4,4'-diamino-3,5-dimethyl-3 ', 5'-diethyldiphenylmethane, 4,4'-diamino-3,5-dimethyl-3', 5 ' -Diisopropyldiphenylmethane, 4,4'-diamino-3,5-diethyl-3 ', 5'-diisopropyldiphenylmethane, 4,4'-diamino-3,5-diethyl -3 ', 5'-dibutyldiphenylmethane, 4,4'-diamino-3,5-diisopropyl-3', 5'-dibutyldiphenyl methane, 4,4'-diamino-3 , 3'-diisopropyl-5,5'-dibutyldiphenyl methane, 4,4'-diamino-3,3'-dimethyl-5,5'-dibutyldiphenylmethane, 4,4'- Diamino-3,3'-diethyl-5,5'-dibutyldiphenylmethane, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 4,4'-diamino-3, 3'-diethyldiphenylmethane, 4,4'-diamino-3,3'-di (n-propyl) diphenylmethane, 4,4'-diamino-3,3'- Isopropyldiphenylmethane, 4,4'-diamino-3,3'-dibutyldiphenylmethane, 4,4'-diamino-3,3 ', 5-trimethyldiphenylmethane, 4,4'- Diamino-3,3 ', 5-triethyldiphenylmethane, 4,4'-diamino-3,3', 5-tri (n-propyl) diphenylmethane, 4,4'-diamino-3 , 3 ', 5-triisopropyldiphenylmethane, 4,4'-diamino-3,3', 5-tributyldiphenylmethane, 4,4'-diamino-3-methyl-3'-ethyl Diphenylmethane, 4,4'-diamino-3-methyl-3'-isopropyldiphenylmethane, 4,4'-diamino-3-ethyl-3'-isopropyldiphenylmethane, 4,4 ' -Diamino-3-ethyl-3'-butyldiphenylmethane, 4,4'-diamino-3-0 | sopropyl-3'-butyldiphenylmethane, 2,2'-bis (4-amino- 3,5-dimethylphenyl) propane, 2,2'-bis (4-amino-3,5-diethylphenyl) propane, 2,2'-bis [4-amino-3,5-di (n-propyl ) Phenyl] propane, 2,2'-bis (4-amino-3,5-diisopropylphenyl) propane, 2,2'-bis (4-amino-3,5-dibutylphenyl) propane, 4, 4'-diamino-3,3 ', 5,5'-tetramethyldipe Ether, 4,4'-diamino-3,3 ', 5,5'-tetraethyldiphenylether, 4,4'-diamino-3,3', 5,5'-tetra (n-propyl) Diphenyl ether, 4,4'-diamino-3,3 ', 5,5'-tetraisopropyldiphenyl ether, 4,4'-diamino-3,3', 5,5'-tetrabutyldi Phenylether, 4,4'-diamino-3.3 ', 5,5'-tetramethyldiphenylsulfone, 4.4'-diamino-3,3', 5,5'-tetriethyldiphenylsulfone, 4, 4'-diamino-3,3 ', 5,5'-tetra (n-propyl) diphenylsulfone, 4,4'-diamino-3,3', 5,5'-tetraisopropyldiphenylsulfone , 4,4'-diamino-3,3 ', 5,5'-tetrabutyldiphenylsulfone, 4,4'-diamino-3,3', 5,5'-tetramethyldiphenylketone, 4 , 4'-diamino-3,3 ', 5,5'-tetraethyldiphenylketone, 4,4'-diamino-3,3', 5,5'-tetra (n-propyl) diphenylketone , 4,4'-diamino-3,3 ', 5,5'-tetraisopropyldiphenylketone, 4,4'-diamino-3,3', 5,5'-tetrabutyldiphenylketone, 4,4'-diamino-3,3 ', 5,5'-tetramethylbenzanilide, 4,4'-diamino-3,3' , 5,5'-tetramethylbenzanilide, 4,4'-diamino-3,3 ', 5,5'-tetra (n-propyl) benzanilide, 4,4'-diamino-3,3' , 5,5'-tetraisopropylbenzanilide, 4,4'-diamino-3,3 ', 5,5'-tetrabutylbenzanilide, and the like.

(2) (2)

상기 식 중, R15및 R18은 2가의 유기기이고, R16및 R17은 1가의 유기기이고, m은 1 내지 1OO의 정수이다.In said formula, R <15> and R <18> is a divalent organic group, R <16> and R <17> is a monovalent organic group, m is an integer of 1-100000.

상기 일반식 (2)중의 R15및 R18로서는, 각각 독립적으로 트리메틸렌기-(CH2)3-, 테트라메틸렌기 -(CH2)4-, 톨루일렌기 및 페닐렌기 등을 들 수 있고, R16및 R17으로서는, 각 독립적으로 메틸기, 에틸기, 페닐기 등을 들 수 있고, 복수개의 R16및 복수개의 R17은, 각각 독립적으로 동일하거나 또는 상이할 수 있다.Examples of the general formula (2) R 15 and R 18 in each independently represents a trimethylene group - (CH 2) 3 -, a tetramethylene group - (CH 2) 4 -, toluyl include a group and a phenylene group, etc., and , as the R 16 and R 17, there may be mentioned a methyl group, an ethyl group, a phenyl group, each independently, of R 16 and a plurality of R 17 are a plurality, each may be independently same or different.

일반식 (2)의 실록산디아민에서 R15및 R18중 어느 하나가 트리메틸렌기이고, R16및 R17중 어느 하나가 메틸기인 경우에, m이 1인 것, 평균 1O 전후인 것, 평균 2O 전후인 것, 평균 30 전후인 것, 평균 50 전후인 것 및 평균 1OO 전후인 것이 신에츠(일본국 도쿄) 및 다우코팅도레이실리콘(일본국 도쿄)사에서 분자량별로 판매되고 있다.In the siloxanediamine of general formula (2), when any one of R <15> and R <18> is a trimethylene group and any one of R <16> and R <17> is a methyl group, m is 1, the average is about 10O, and the average It is sold by Shin-Etsu (Tokyo, Japan) and Dow Coated Toray Silicone (Tokyo, Japan) by molecular weight.

본 발명에 사용되는 디이소시아네이트(A')로서는, 상기 예시한 디아민에서 아미노기를 이소시아네이트기로 대체시킨 것을 예로서 들 수 있다.As diisocyanate (A ') used for this invention, what substituted the amino group by the isocyanate group in the diamine illustrated above is mentioned as an example.

본 발명에 사용되는 산무수물(B)로서는, 무수트리멜리트산, 피로멜리트산이무수물(PMDA), 3,3',4,4'-벤조페논테트라카르복실산이무수물(BTDA), 3,3',4,4'-비페닐테트라카르복실산이무수물, 2,2'-비스(3,4-디카르복시페닐)헥사플루오로프로판이무수물, 비스(3,4-디카르복시페닐)에테르이무수물, 비스(3,4-디카르복시페닐)술폰이무수물, 4,4'-비스(3,4-디카르복시페녹시)디페닐술폰이무수물, 2,2-비스[4(3,4-디카르복시페녹시)페닐]프로판이무수물, 에틸렌글리콜비스트리텔리테이트이무수물(EBTA), 데카메틸렌글리콜비스트리멜리테이트이무수물(DBTA), 비스페놀A비스트리멜리테이트이무수물(BABT),2,2-비스[4-(3,4-디카르복시벤조일옥시)페닐]헥사플루오로프로판이무수물, 1,4-비스[1-메틸-1-[4-(3,4(디카르복시벤조일옥시)페닐]에틸]벤젠이무수물, 무수말레산, 무수메틸말레산, 무수나드산, 무수알릴나드산, 무수메틸나드산, 테트라히드로 무수프탈산, 메틸테트라히드로무수프탈산 등을 들수있다.As the acid anhydride (B) used in the present invention, trimellitic anhydride, pyromellitic dianhydride (PMDA), 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride (BTDA), 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2'-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, Bis (3,4-dicarboxyphenyl) sulfone dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy) diphenylsulfon dianhydride, 2,2-bis [4 (3,4-dicarboxy Phenoxy) phenyl] propane dianhydride, ethylene glycol bistritellate dianhydride (EBTA), decamethylene glycol bistrimellitate dianhydride (DBTA), bisphenol A bistrimellitate dianhydride (BABT), 2,2-bis [4 -(3,4-dicarboxybenzoyloxy) phenyl] hexafluoropropane dianhydride, 1,4-bis [1-methyl-1- [4- (3,4 (dicarboxybenzoyloxy) phenyl] ethyl] benzene Dianhydride, maleic anhydride, methylmaleic anhydride Sunnamic acid, allyl anhydride, methylnamic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, etc. are mentioned.

또한, 디아민(A), 디카르복실산(C)의 일부를 아미노벤조산 등의 아미노카르복실산으로 치환시킬 수 있다.In addition, a part of diamine (A) and dicarboxylic acid (C) can be substituted by aminocarboxylic acid, such as aminobenzoic acid.

바람직하게는, 본 발명의 내열성 접착제는, (A) 디아민으로서는 알킬렌디아민, 메타페닐렌디아민, 2,4-디아미노톨루엔, 4,4'-디아미노디페닐에테르(DDE), 4,4'-디아미노디페닐메탄, 4,4'-디아미노디페닐술폰, 3,3'-디아미노디페닐술폰, 3,3'-디아미노벤조페논,1,4-비스(4-아미노페닐이소프로필)벤젠(BisAP), 1,3-비스(4-아미노페닐이소프로필)벤젠(BisAM), 1,3-비스(3-아미노페녹시)벤젠, 1,3-비스(4-아미노페녹시)벤젠, 1,4-비스(3-아미노페녹시)벤젠, 1,4-비스(4-아미노페녹시)벤젠, 2,2'-비스[4-(4-아미노페녹시)페닐]프로판(BAPP), 비스[4-(3-아미노페녹시)페닐]술폰(m-APPS or BAPSM), 비스[4-(4-아미노페녹시)페닐]술폰(BAPS), 2,2'-비스[4-(4-아미노페녹시)페닐]헥사플루오로프로판, 4,4'-디아미노-3,3',5,5'-테트라메틸디페닐메탄, 4,4'-디아미노-3,3' 5,5'-테트라에틸디페닐메탄, 4,4'-디아미노-3,3',5,5'-테트라이소프로필디페닐메탄, 4,4'-디아미노-3,3'-디메틸-5,5'-디에틸디페닐메탄, 4,4'-디아미노-3,3'-디메틸-5,5'-디이소프로필디페닐메탄, 4,4'-디아미노-3,3'-디에틸-5 ,5'-디이소프로필디페닐메탄, 4,4'-디아미노-3,3'-디메틸디페닐메탄, 4,4'-디아미노-3,3'-디에틸디페닐메탄, 4,4'-디아미노-3,3'-디이소프로필디페닐메탄, 또한 일반식 (2)의 실록산 디아민에서 비스(γ-아미노프로필)테트라메틸디실록산(GAPD), 비스(γ-아미노프로필)폴리디메틸디실록산(PSX 480(중량평균분자량=480), PSX750(중량평균분자량=750)등이 바람직하게 사용할수 있다.Preferably, the heat resistant adhesive of the present invention is (A) diamine as alkylenediamine, metaphenylenediamine, 2,4-diaminotoluene, 4,4'-diaminodiphenylether (DDE), 4,4 '-Diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 1,4-bis (4-aminophenyl Isopropyl) benzene (BisAP), 1,3-bis (4-aminophenylisopropyl) benzene (BisAM), 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy Benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl] Propane (BAPP), bis [4- (3-aminophenoxy) phenyl] sulfone (m-APPS or BAPSM), bis [4- (4-aminophenoxy) phenyl] sulfone (BAPS), 2,2'- Bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 4,4'-diamino-3,3 ', 5,5'-tetramethyldiphenylmethane, 4,4'-diamino- 3,3 '5,5'-tetraethyldiphenylmethane, 4,4'-diamino-3,3', 5 , 5'- tetraisopropyldiphenylmethane, 4,4'-diamino-3,3'-dimethyl-5,5'-diethyldiphenylmethane, 4,4'-diamino-3,3'- Dimethyl-5,5'-diisopropyldiphenylmethane, 4,4'-diamino-3,3'-diethyl-5,5'-diisopropyldiphenylmethane, 4,4'-diamino- 3,3'-dimethyldiphenylmethane, 4,4'-diamino-3,3'-diethyldiphenylmethane, 4,4'-diamino-3,3'-diisopropyldiphenylmethane, also Bis (γ-aminopropyl) tetramethyldisiloxane (GAPD), bis (γ-aminopropyl) polydimethyldisiloxane (PSX 480 (weight average molecular weight = 480), PSX750 (weight average) in the siloxane diamine of general formula (2) Molecular weight = 750) and the like can be preferably used.

또한, 바람직하게는 (B) 산무수물로서는, 무수트리멜리트산, 3,3',4,4'-벤조페논테트라카르복실산이무수몰(BTDA), 2,2'-비스(3,4-디카르복시페닐)헥사플루오로프로판이무수물, 비스(3,4-디카르복시페닐)에테르이무수물, 비스(3,4-디카르복시페닐)술폰이무수물, 4,4'-비스(3,4-디카르복시페녹시)디페닐술폰이무수물, 2,2'-비스[4-(3,4-디카르복시페녹시)페닐]프로판이무수물, 에틸렌글리콜비스트리멀리테이트이무수물(EBTA), 데카메틸렌글리콜비스트리멜리테이트이무수물(DBTA), 비스페놀A비스트리멜리테이트이무수물(BABT), 1, 4-비스[1-메틸-1-[4-(3,4-디카르복시벤조일옥시)페닐]에틸]벤젠이무수룰, 무수말레산,무수나드산, 무수알릴나드산을 바람직하게 사용할수있다.Preferably, as the (B) acid anhydride, trimellitic anhydride, 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride (BTDA), 2,2'-bis (3,4- Dicarboxyphenyl) hexafluoropropane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfon dianhydride, 4,4'-bis (3,4-di Carboxyphenoxy) diphenylsulfone dianhydride, 2,2'-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, ethylene glycol bistrimulitate dianhydride (EBTA), decamethylene glycol bis Trimellitate dianhydride (DBTA), bisphenol A bistrimellitate dianhydride (BABT), 1, 4-bis [1-methyl-1- [4- (3,4-dicarboxybenzoyloxy) phenyl] ethyl] benzene Ruled anhydride, maleic anhydride, anhydride anhydride and allyl dianhydride can be preferably used.

본 발명에서는 이들 디아민(A), 산 무수물(B), 디카르복실산(C)을 적절하게 조합해서 제조되는 수지의 유리전이온도를 150~200℃범위가 되도록 단량체를 적절하게 선택하는 것이 좋다.In this invention, it is good to select a monomer suitably so that the glass transition temperature of resin manufactured by combining these diamine (A), acid anhydride (B), and dicarboxylic acid (C) suitably may be in the range of 150-200 degreeC. .

본 발명의 특정의 특성을 내열성 접착제를 제조하기 위해 폴리이미드와 폴리아미드를 혼합하는 경우에는, 혼합 후의 접착제의 유리전이온도가 바람직하기로는 150~2OO℃범위가 되도록 하는 것이 좋다.When the polyimide and the polyamide are mixed in order to produce a heat resistant adhesive according to the specific characteristics of the present invention, the glass transition temperature of the adhesive after mixing is preferably in the range of 150 to 200 ° C.

본 발명의 접착제가 사용되는 접착부재는 밀봉형 반도체 팩키지의 구조에서 반도체 칩을 리드 프레임에 접착 시키기에 적합한 형상 및 성질을 갖고 있고, 특히LOC 구조의 반도체 팩키지의 제조에 적합하다. 즉, 본 발명의 접착제가 사용되는 접착부재는 반도체 칩과 리드 프레임을 접속시키는 와이어 본딩이 반도체 칩 상에 있는 탑(본딩 패드)이 없는 구조의 밀봉헝 반도체 팩키지의 반도체 칩을 리드 프레임과 접착시키는데 사용하기에 특히 적합한 형상 및 성질을 갖는다.The adhesive member in which the adhesive of the present invention is used has a shape and properties suitable for bonding a semiconductor chip to a lead frame in the structure of a sealed semiconductor package, and is particularly suitable for the manufacture of a semiconductor package having a LOC structure. That is, the adhesive member in which the adhesive of the present invention is used is used to bond a semiconductor chip of a sealed semiconductor package of a structure without a top (bonding pad) on which the wire bonding connecting the semiconductor chip and the lead frame is on the semiconductor chip. It has a shape and properties that are particularly suitable for use.

본 발명의 내열성 접착제로서는, 상기한 폴리이미드, 폴리아미드에 한정되지 않고, 폴리말레이미드, 폴리알릴나디이미드도 동일하게 사용할 수있다. 폴리이미드는 폴리아미드산의 열폐환 또는 화학 폐환에 의해서 얻어진다. 본 발명에 사용되는 폴리아미드는 반시 100% 이미드화되지 않아도 좋으나, 완전히 이미드화되어 있는 것이 바람직하다.As a heat resistant adhesive agent of this invention, it is not limited to said polyimide and polyamide, Polymaleimide and polyallyl naimide can also be used similarly. Polyimide is obtained by the heat ring or chemical ring of polyamic acid. Although the polyamide used for this invention does not need to be imidated 100% in half, it is preferable that it is fully imidized.

본 발명의 내열성 접착제는 폴리이미드 또는 폴리아미드 단독일 수 있으며, 폴리이미드와 폴리아미드와의 혼합물, 또는 추가로 에폭시 수지나 경화제, 폴리아민 화합물, 경화 촉진제 등을 첨가해서 사용할 수도 있다.The heat resistant adhesive of the present invention may be polyimide or polyamide alone, or may be used by adding a mixture of polyimide and polyamide, or further adding an epoxy resin, a curing agent, a polyamine compound, a curing accelerator, or the like.

이 경우, 에폭시 수지 등과 첨가용 수지 등과 폴리아민 등이나 커플링제 등의 하기 첨가제를 적절하게 혼합함으로써, 사용하는 내열성 접착제의 유리전이온도가 150℃이하이더라도 잔류용제량, 밀려나온 길이를 본 발명의 범위 내에 속하도록 조정할 수 있음을 발견하였다.In this case, by appropriately mixing the following additives, such as epoxy resins, additive resins, polyamines, coupling agents, and the like, the residual solvent amount and the length to be extruded even if the glass transition temperature of the heat-resistant adhesive to be used is 150 ° C or less. It was found that it could be adjusted to fall within.

본 발명의 특정 폴리이미드계 내열성 접착제에 혼합할 수 있는 에폭시 수지는 1분자당 평균 2개 이상의 에폭시기를 갖고 있는 것으로서 그 밖의 특별한 제한은 없으나, 예를 들면 비스페놀 A의 디글리시딜에테르, 비스페놀 F의 디글리시딜에테르, 페놀 노볼락형 에폭시 수지, 다가 알코올의 폴리글리시딜에스테르 다염기산의 폴리글리시딜에스테르, 지환식 에폭시 수지, 히단토인계 에폭시 수지 등을 들 수 있다.The epoxy resin that can be mixed with the specific polyimide heat-resistant adhesive of the present invention has an average of two or more epoxy groups per molecule, and there is no particular limitation, but for example, diglycidyl ether of bisphenol A, bisphenol F Diglycidyl ether, phenol novolak type epoxy resin, polyglycidyl ester of polyglycidyl ester polybasic acid of polyhydric acid, alicyclic epoxy resin, hydantoin type epoxy resin, etc. are mentioned.

또한, 세라믹 분말, 유리 분말, 은 분말, 구리 분말 등의 충전제나 커플링제를 본 발명의 내열성 접착제에 첨가할 수 있다. 또한, 본 발명의 내열성 접착제, 유리 직물, 아라미드 직물, 탄소 섬유 직물 등의 기재 시트에 함칩시켜 사용할 수도 있다.Moreover, fillers and coupling agents, such as ceramic powder, glass powder, silver powder, and copper powder, can be added to the heat resistant adhesive agent of this invention. Moreover, it can also be used by making it into the base sheet, such as a heat resistant adhesive agent, a glass fabric, an aramid fabric, a carbon fiber fabric, of this invention.

상기 폴리아미노 화합물은 다관능 폴리아미노류로서는, 구체적으로 다음의 것을 들수 있다. 3,3',4,4'-테트라아미노디페닐 이서, 3,3',4,4'-테트라아미노디페닐, 3,3',4,4'-테트라아미노디페닐메탄, 3,3',4,4'-테트라아미노벤조페논, 3,3',4,4'-테트라아미노디페닐 설폰, 3,3',4,4'-테트라아미노바이페닐, 1,2,4,5-테트라아미노벤젠, 3,3',4-티리아미노디페닐, 3,3',4-트리아미노디페닐메탄, 3,3',4-트리아미노벤조페논, 3,3',4-트리아미노디페닐설폰, 3,3',4-트리아미노디바이페닐, 1,2,4-트리아미노벤젠 등과 위 화합물들의 모노-, 디-, 트리- 또는 테트라-산 솔트(salt)인 3,3',4,4'-테트라아미노디페닐 이서 테트라하이드로클로라이드, 3,3',4,4'-테트라아미노디페닐메탄 테트라하이드로클로라이드, 3,3',4,4'-테트라아미노벤조페논 테트라하이드로클로라이드, 3,3',4,4'-테트라아미노디페닐 설폰 테트라하이드로클로라이드, 3,3',4,4'-테트라아미노바이페닐 테트라하이드로클로라이드, 1,2,4,5-테트라아미노벤젠 테트라하이드로클로라이드, 3,3',4-티리아미노디페닐 트리하이드로클로라이드, 3,3',4-트리아미노디페닐메탄 트리하이드로클로라이드, 3,3',4-트리아미노벤조페논 트리하이드로클로라이드, 3,3',4-트리아미노디페닐설폰 트리하이드로클로라이드, 3,3',4-트리아미노디바이페닐 트리하이드로클로라이드, 1,2,4-트리아미노벤젠 디하이드로클로라이드 등이다. 위의 다관능 폴리아미노 화합물들은 1종 또는 2종 이상 혼합하여 사용할 수 있다. 다관능 폴리아미노 화합물은 소량 첨가됨으로 가교역할을 함으로써 저온접착성 및 와이어 본딩 안정성의 두가지 부분을 동시에 해결할 수 있는 중요한 첨가제이다. 본 발명에서는 상기 폴리아미노 화합물을 0.01~ 5중량%범위로 첨가함으로써 저온접착성과 와이어 본딩성을 확보하였다. 0.01중량%이하인 경우에는 와이어본딩성이 악화되었고 5중량% 이상인 경우에는 접착 공정 온도가 높아지는 단점이 있었다.As said polyamino compound, the following are mentioned specifically as polyfunctional polyamino. 3,3 ', 4,4'-tetraaminodiphenyl iscer, 3,3', 4,4'-tetraaminodiphenyl, 3,3 ', 4,4'-tetraaminodiphenylmethane, 3,3 ', 4,4'-tetraaminobenzophenone, 3,3', 4,4'-tetraaminodiphenyl sulfone, 3,3 ', 4,4'-tetraaminobiphenyl, 1,2,4,5 -Tetraaminobenzene, 3,3 ', 4-thyriaminodiphenyl, 3,3', 4-triaminodiphenylmethane, 3,3 ', 4-triaminobenzophenone, 3,3', 4-tri 3,3 which is a mono-, di-, tri- or tetra-acid salt of aminodiphenylsulfone, 3,3 ', 4-triaminodibiphenyl, 1,2,4-triaminobenzene and the like ', 4,4'-tetraaminodiphenyl iscer tetrahydrochloride, 3,3', 4,4'-tetraaminodiphenylmethane tetrahydrochloride, 3,3 ', 4,4'-tetraaminobenzophenone tetra Hydrochloride, 3,3 ', 4,4'-tetraaminodiphenyl sulfone tetrahydrochloride, 3,3', 4,4'-tetraaminobiphenyl tetrahydrochloride , 1,2,4,5-tetraaminobenzene tetrahydrochloride, 3,3 ', 4-thyriaminodiphenyl trihydrochloride, 3,3', 4-triaminodiphenylmethane trihydrochloride, 3,3 ', 4-triaminobenzophenone trihydrochloride, 3,3', 4-triaminodiphenylsulfone trihydrochloride, 3,3 ', 4-triaminodibiphenyl trihydrochloride, 1,2,4-tri Aminobenzene dihydrochloride and the like. The above polyfunctional polyamino compounds can be used 1 type or in mixture of 2 or more types. The polyfunctional polyamino compound is an important additive that can solve both parts of low temperature adhesiveness and wire bonding stability by adding a small amount and crosslinking. In the present invention, by adding the polyamino compound in the range of 0.01 to 5% by weight, low temperature adhesiveness and wire bonding properties were secured. In case of 0.01 wt% or less, the wire bonding property was deteriorated, and in the case of 5 wt% or more, the adhesion process temperature was high.

상기 커플링제로서는 비닐트리메톡시실란, 비닐트리메톡시실란, γ-메타크릴록시프로필트리메톡시실란 등의 비닐 실란, γ-글리시독시프로필트리메톡시실란, γ-글리시독시프로필메틸디에톡시실란, β-(3,4-메톡시시클로헥실)에틸트리메톡시실란 둥의 에폭시실란; v-아미노프로필트리에톡시실란, γ-아미노프로필트리메톡시실란, N-페닐-γ-아미노프로필트리메톡시실란 등의 아미노실란, γ-머르캅토프로필트리메톡시실란 등의 메르캅토실란; 티타네이트, 알루미킬레이트, 지르코알루미네이트 등의 커플링제를 사용할 수 있으나, 실란커플링제를 사용하는 것이 바람직하고, 에폭시실란계커플링제가 특히 바람직하다.Examples of the coupling agent include vinyl silanes such as vinyltrimethoxysilane, vinyltrimethoxysilane and γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, and γ-glycidoxypropylmethyldiene. Ethoxysilane of the oxysilane, (beta)-(3, 4- methoxy cyclohexyl) ethyl trimethoxysilane; mercaptosilanes, such as aminosilanes, such as v-aminopropyl triethoxysilane, (gamma) -aminopropyl trimethoxysilane, and N-phenyl- (gamma) -aminopropyl trimethoxysilane, and (gamma)-mercaptopropyl trimethoxysilane; Although coupling agents, such as titanate, aluminate, and zirco aluminate, can be used, it is preferable to use a silane coupling agent, and an epoxy silane coupling agent is especially preferable.

본 발명에 사용되는 용매로서 N-메틸-2-피롤리돈(NMP), N.N-디메틸 포름아미드(DMF), N.N-디메틸아세트아미드(DMAc), 디메틸술폭시드(DMSO), 술포란, 헥사메틸인산트리아미드, 1,3-디메틸-2-이미다졸리돈 등의 비프로톤성 극성용매, 페놀, 크레졸, 크실페놀, p-클로로페놀 등의 페놀계 용매등을 들수 있다. 또 필요에 따라서는 디에티렌글리콜, 디메틸에테르와 같은 에테르계 용매, 벤젠, 톨루엔, 크실렌등의 방향족용매 등을 사용하며, 그외에도 메틸에틸케톤, 아세톤, 테트라히드로푸란, 디옥산, 모노글라임, 디글라임, 메틸셀로솔브, 셀로솔브아세테이트, 메탄올, 에탄올, 이소프로판올, 염화메틸렌, 클로로포름, 트리클로로에틸렌, 니트로벤젠 등의 용매와 피리딘과 같은 3차 아민등도 함께 사용할수 있다. 또한 위의 용매들중 한가지 이상을 동시에 사용할 수도 있다. LOC 테이프에 사용되는 상기 용매는 0.01~1.0중량%범위가 바람직하고 보다 바람직하기로는 0.1~0.5중량범위이다.As the solvent used in the present invention, N-methyl-2-pyrrolidone (NMP), NN-dimethyl formamide (DMF), NN-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), sulfolane, hexamethyl Aprotic polar solvents, such as a phosphate triamide and 1, 3- dimethyl- 2-imidazolidone, phenol type solvents, such as a phenol, cresol, xylphenol, and p-chlorophenol, etc. are mentioned. If necessary, ether solvents such as diethylene glycol and dimethyl ether, aromatic solvents such as benzene, toluene, and xylene are used. In addition, methyl ethyl ketone, acetone, tetrahydrofuran, dioxane, monoglyme, Solvents such as diglyme, methylcellosolve, cellosolve acetate, methanol, ethanol, isopropanol, methylene chloride, chloroform, trichloroethylene, nitrobenzene and tertiary amines such as pyridine can also be used. It is also possible to use one or more of the above solvents simultaneously. The solvent used for the LOC tape is preferably in the range of 0.01 to 1.0% by weight, more preferably in the range of 0.1 to 0.5% by weight.

본 발명의 접착부재에 사용되는 내열성 접착제는 단독으로 사용할 수 있고, 기재 필름 또는 시트상에 도포 또는 함칩시켜 시용할 수도 있다. 또한, 내열성 접착제를 단독으로 사용하는 경우에는 반도체 칩과 리드 프레임 등의 피착체에 직접 도포하여 사용할 수 있으며, 미리 시트 상으로 피착체에 적용하여 열압착시켜 사용할 수도 있다.The heat resistant adhesive used for the adhesive member of the present invention may be used alone, or may be applied by coating or impregnating onto a base film or sheet. In addition, when using a heat resistant adhesive agent alone, it can apply | coat directly to a to-be-adhered body, such as a semiconductor chip and a lead frame, and can also be used, previously applied to a to-be-adhered body on a sheet, and thermocompression-bonding.

본 발명의 내열성 접착제를 기재 필름(또는 시트) 상에 도포하여 복합 접착 시트로서 사용할 경우에 복합 접착 시트는 내열 기재필름, 바람직하게는 표면 처리한 내열 기재필름의 한쪽 또는 양쪽에 접착개시온도 230~330℃범위, 잔류용매량 0.03~1.00중량%이하, 잔류용제량 3.0중량%이하, 밀려나온 길이 2.0~5.0mm범위, 바람직하게는 유리 전이 온도가 150~200℃인 내열성접착제 또는 그의 바니스를 도포한 후, 가열함으로써 얻어진다.When the heat-resistant adhesive of the present invention is applied on a base film (or sheet) and used as a composite adhesive sheet, the composite adhesive sheet may be bonded to one or both sides of a heat-resistant base film, preferably a surface-treated heat-resistant base film 230 to Apply a heat-resistant adhesive or varnish thereof in a range of 330 ° C., a residual solvent amount of 0.03 to 1.00% by weight or less, a residual solvent amount of 3.0% by weight or less, an extended length of 2.0 to 5.0 mm, and preferably a glass transition temperature of 150 to 200 ° C. After that, it is obtained by heating.

본 발명에서 기재 필름으로 사용되는 내열성 기재필름으로서는 폴리이미드, 폴리아마드, 폴리설폰, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리아릴레이트 등의 엔지니어링 플라스틱 등의 필름을 들 수 있다.As a heat resistant base film used as a base film in this invention, films, such as engineering plastics, such as a polyimide, a polyamide, a polysulfone, a polyphenylene sulfide, a polyether ether ketone, and a polyarylate, are mentioned.

내열성 기재필름의 유리 전이 온도(유리전이온도)는 본 발명의 내열성 접착제의 유리전이온도보다 높은 것이 사용되고, 바람직하게는 2OO℃이상, 보다 바람직하게는 250℃이상의 것이 사용된다. 내열성 기재필름의 흡수율은 3.0중량%이하, 바람직하게는 2.5중량%이하의 것이 사용된다.The glass transition temperature (glass transition temperature) of a heat resistant base film is higher than the glass transition temperature of the heat resistant adhesive agent of this invention, Preferably it is 20 degreeC or more, More preferably, 250 degreeC or more is used. The water absorption of the heat resistant base film is 3.0% by weight or less, preferably 2.5% by weight or less.

따라서, 본 발명에 사용되는 내열성 기재필름으로서는, 유리전이온도, 흡수율, 열팽창계수의 면에서 폴리이미드 필름이 바람직하다. 유리전이온도가 200℃이상, 흡수율이 3.0중량% 이하, 열팽창 계수가 30ppm/℃ 이하의 물성을 갖춘 필름이 특히 바람직하다.Therefore, as a heat resistant base film used for this invention, a polyimide film is preferable from a glass transition temperature, a water absorption rate, and a thermal expansion coefficient. Particularly preferred are films having physical properties of glass transition temperature of 200 ° C. or higher, water absorption of 3.0% by weight or less, and thermal expansion coefficient of 30 ppm / ° C. or lower.

내열성 기재필름은 접착제와의 접착력을 증가 시키기 위해 표면 처리를 하는 것이 바람직하다. 표면처리 방법으로서는, 알칼리 처리, 실란커플링 처리 등의 화학 처리, 샌드블라스트 등의 물리적 처리, 플라즈마 처리, 코로나 처리 등을 사용할 수 있지만, 접착제의 종류에 따라 가장 적합한 처리를 사용하는 것이 좋다. 본 발명의 내열성 접착제를 적용할 때에 내열 기재필름에 시행하는 표면 처리로서는 화학처리 또는 플라즈마 처리가 특히 적합하다.Heat-resistant base film is preferably subjected to a surface treatment to increase the adhesion with the adhesive. As the surface treatment method, chemical treatment such as alkali treatment, silane coupling treatment, physical treatment such as sand blast, plasma treatment, corona treatment, and the like can be used, but it is preferable to use a treatment most suitable according to the type of adhesive. When the heat resistant adhesive of the present invention is applied, chemical treatment or plasma treatment is particularly suitable as the surface treatment to be applied to the heat resistant base film.

기재필름 상에 접착제 층을 형성하는 방법은 특별히 제한되는 것은 아니며, 적당한 방법의 예로는 기재필름에 접착제 바니스(varnish)를 도포하고 용매를 건조제거하는 방법을 포함한다. 기재필름에 접착제 바니스를 도포하는 방법은 특별히 제한되지는 않으며, 콤마(comma) 형태, 리버스(reverse) 형태, 다이(die) 형태의 코터(coater)가 사용될수 있다. 이중에서 다이 형태의 코터가 가장 선호되낟. 도포는 또한 접착제 바니스에 기재필름을 침지하여 수행될 수 있지만, 접착제 층의 두께를 조절하는 것은 어려울 수 있다.The method of forming the adhesive layer on the base film is not particularly limited, and examples of suitable methods include a method of applying an adhesive varnish to the base film and drying and removing the solvent. The method of applying the adhesive varnish to the base film is not particularly limited, and a coater of comma form, reverse form, and die form may be used. Of these, die-type coaters are the most preferred. Application can also be performed by immersing the base film in an adhesive varnish, but it can be difficult to control the thickness of the adhesive layer.

폴리아미드산 바니스의 경우에는, 이미드화 시키기 위해 유리전이온도 이상의 온도가 필요하지만, 폴리이미드 바니스의 경우에는 용제를 제거할 수 있는 온도면 된다. 접착제와 내열 기재필름의 접착력을 향상 시키기 위해서는 250℃이상의 온도에서 열처리하는 것이 바람직하다.In the case of the polyamic acid varnish, a temperature higher than the glass transition temperature is required for imidization, but in the case of the polyimide varnish, any temperature can be used to remove the solvent. In order to improve the adhesive strength of the adhesive and the heat-resistant base film, it is preferable to heat-treat at a temperature of 250 ℃ or more.

또한, 본발명에서 내열성 기재필름의 바깥쪽 및 안쪽 양면에 내열성 접착제 도막을 설치하는 이루어진 복합 접착 내열 시트인 경우에 바깥쪽 및 안쪽의 접착제가 동일하여도 되고 상이하여도 좋다.In the present invention, in the case of the composite adhesive heat-resistant sheet provided with a heat-resistant adhesive coating film on both the outer and inner surfaces of the heat-resistant base film, the outer and inner adhesives may be the same or different.

본 발명의 내열성 접착제롤 사용한 접찹부재는 제 1도에 도시한 LOC 구조의 반도체 팩키지에 있어서의 리드 프레임과 반도체 칩과의 접착에 특히 유호하다.The adhesive member using the heat resistant adhesive roll of the present invention is particularly favorable for adhesion between the lead frame and the semiconductor chip in the semiconductor package having the LOC structure shown in FIG.

제1도의 LOC(lead on chip) 구조 팩키지는 제 2도의 COL(chip on lead) 구조 팩키지 및 제 3도의 팩키지와 비교해서 팩키지 전체에서 차지하는 반도체 칩의 비율이 크다는 점이 다르다.제1도의 팩키지는 탑이 없는 구조이기 때문이며, 제 2도의 팩키지에서는 반도체 칩의 횡으로 와이어 본딩을 하고 있고, 이에 대해 제 1도의 팩키지는 반도체 칩 상에서 와이어 본딩하고 있어, 제 1도의 팩키지는 와이어 본딩하는 공간울 반도체 칩과는 달리 필수로 하고 있지 않기 때문이다.The lead on chip (LOC) structure package of FIG. 1 differs from the chip on lead (COL) package of FIG. 2 and the ratio of semiconductor chips in the entire package as compared to the package of FIG. 3. The package of FIG. In the package of FIG. 2, wire bonding is performed laterally of the semiconductor chip, whereas the package of FIG. 1 is wire bonded on the semiconductor chip, and the package of FIG. Is not required otherwise.

그 때문에 제 1도의 팩키지에서는 팩키지 전체에서 차지하는 반도체 칩의 비율을 크게 할 수 있기 때문에, 필연적으로 팩키지 전체에서 차지하는 밀봉재가 얇아지고, 팩키지 균열 발생 및 반도체의 신뢰성에 대한 접착제의 영향이 커지게 된다.Therefore, in the package of FIG. 1, since the ratio of the semiconductor chip which occupies for the whole package can be enlarged, the sealing material which occupies the whole package inevitably becomes thin, and the influence of the adhesive agent on the package crack generation and the reliability of a semiconductor becomes large.

제 1도의 팩키지에서는 팩키지 균열의 발생이 제 2도 팩키지와 비교해서 급격하게 커져서 그 대책이 요망되고 있다. 본 발명의 접착제는 제 1도의 팩키지에서의 팩키지 균열 발생 방지에 특히 유효하다.In the package of FIG. 1, the occurrence of a package crack increases rapidly compared with the package of FIG. 2, and a countermeasure is desired. The adhesive of the present invention is particularly effective for preventing the occurrence of package cracking in the package of FIG.

본 발명의 접착제를 반도체 칩과 리드 프레임과의 접속에 이용하는 경우에는, 그 방법에 특별한 제한은 없고 각각의 팩키지에 가장 적합한 방법으로 접속할 수 있다.When using the adhesive agent of this invention for connection of a semiconductor chip and a lead frame, there is no restriction | limiting in particular in the method, It can connect by the method most suitable for each package.

예컨대, ① 본 발명의 내열성 접착제를 양면 도포한 복합 접착 시트를 우선 리드 프레임에 열압착한 후, 반도체 칩을 반대의 본 발명의 내열성 접착제 면에 열압착한다.For example, (1) First, the composite adhesive sheet coated with both sides of the heat resistant adhesive of the present invention is thermocompression-bonded to a lead frame, and then the semiconductor chip is thermocompression-bonded to the surface of the heat-resistant adhesive of the opposite invention.

② 본발명의 내열성 접착제를 한쪽면에 도포한 시트를 우선 리드 프레임에 열압착한 후, 반대쪽에 동일한 또는 상이한 본 발명의 접착제 페이스트를 도포하여 반도체 칩을 압착한다.(2) A sheet coated with the heat-resistant adhesive of the present invention on one side is first thermally pressed on a lead frame, and then the same or different adhesive paste of the present invention is applied on the opposite side to press the semiconductor chip.

③ 본 발명의 내열성 접착제 단독 필름을 반도체 칩과 리드 프레임과의 사이에 끼워서 열압착한다.(3) The heat-resistant adhesive single film of the present invention is sandwiched between the semiconductor chip and the lead frame and thermocompressed.

④ 본 발명의 내열성 접착제를 반도체 칩 또는 리드 프레임에 도포하고, 리드 프레임 또는 반도체 칩과 열압착하는 등 각종 방법을 사용할 수 있다.(4) Various methods can be used, such as applying the heat resistant adhesive of the present invention to a semiconductor chip or lead frame, and thermocompression bonding with the lead frame or semiconductor chip.

본 발명의 내열성 접착제를 사용한 접착부재를 이용해서 반도체 칩을 리드 프레임에 접착하는 구체적 인 방법은 제 1도 내지 2도에 의해 설명된다. 제 1도 내지 2도는 본 발명의 내열성 접착제를 사용한 접착 부재에 의해 반도체 칩을 리드프레임에 접착 시키고, 반도체 칩, 반도체 칩과 리드 프레임과의 접착부를 밀봉재로서, 밀봉시켜 제조한 반도체 팩키지에 있어서, 리드 프레임 형상 및 리드 프레임과 접착되는 반도체 칩의 위치가 다른 경우의 접착 상태를 도시한 도면이다.A specific method of adhering a semiconductor chip to a lead frame using the adhesive member using the heat resistant adhesive of the present invention is illustrated by FIGS. 1 to 2 is a semiconductor package manufactured by bonding a semiconductor chip to a lead frame by means of an adhesive member using the heat resistant adhesive of the present invention, and sealing the adhesive portion between the semiconductor chip, the semiconductor chip and the lead frame as a sealing material. It is a figure which shows the adhesion state in the case where the lead frame shape and the position of the semiconductor chip adhere | attached with a lead frame differ.

본 발명의 내열성 접착제를 사용한 접착부재는 반도체 칩과 리드 프레임과의 접속에 유효하지만, 이에 제한되지 않고, 세라믹판, 금속판, 금속호일, 플라스틱 필름, 플라스틱 판, 적층판 등의 피착제에도 효과적으로 적용할 수 있다.The adhesive member using the heat resistant adhesive of the present invention is effective for connecting the semiconductor chip and the lead frame, but is not limited thereto, and can be effectively applied to adherends such as ceramic plates, metal plates, metal foils, plastic films, plastic plates, and laminates. Can be.

이 경우에, 상기 피착체 상에 도포하거나 시트상의 경우에는 피착제 사이에 끼워 접착제의 연화 온도 이상의 온도로 가열, 가압함으로써 피착제를 다른 물건에 접착할 수 있다.In this case, the adherend can be adhered to another object by applying it on the adherend or in the case of a sheet, by sandwiching between the adherend and heating and pressing at a temperature equal to or higher than the softening temperature of the adhesive.

[실시예]EXAMPLE

이하 실시예에 의해 본 발명을 상세하게 실명하지만, 본 발명이 이들 범위에 한정되는 것은 아니다.Although an Example demonstrates this invention in detail below, this invention is not limited to these range.

[실시예 1]Example 1

교반기, 온도계, 질소가스도입관, 염회칼슘관을 갖춘 4구 플라스크에 1,3-비스(3-아미노페녹시)벤젠 2.63g(9 밀리몰) 및 GAPD 0.25g(1 밀리몰) N,N-디메틸포름아미드(DMF) 28.3g을 넣어 용해시켰다. 이어서 5℃를 넘지 않도록 냉각 시키면서 3,3'4,4'-옥시디프탈산이무수물(ODPA) 3.10g(1O 밀리몰)을 조금씩 가한 후에 5℃를 넘지 않도록 냉각 시키면서 1시간, 이어서 실온에서 6시간 반응시켜서 폴리아미드산을 합성하였다. 얻어진 폴리아미드산을 함유하는 반응액에 무수아세트산 2.55g 및 피리딘 1.98g을 가하여 실온에서 3시간 반응시켜서 폴리이미드 합성하였다.4.63 g (9 mmol) 1,3-bis (3-aminophenoxy) benzene and 0.25 g (1 mmol) GAPD N, N-dimethyl in a four-necked flask equipped with a stirrer, thermometer, nitrogen gas introduction tube and salt calcium tube 28.3 g of formamide (DMF) was added to dissolve it. Then, 3,3'4,4'- oxydiphthalic anhydride (ODPA) 3.10 g (10 mmol) was added little by little while cooling not to exceed 5 ° C, followed by cooling for 1 hour while cooling not to exceed 5 ° C, followed by 6 hours at room temperature. By reacting, polyamic acid was synthesized. 2.55 g of acetic anhydride and 1.98 g of pyridine were added to the reaction solution containing the obtained polyamic acid, followed by reaction at room temperature for 3 hours to synthesize polyimide.

얻어진 폴리이미드롤 함유하는 반응액을 물에 부어서 얻어지는 침전을 분리, 분쇄, 건조시켜서 폴리 이미드 분말을 얻었다.The obtained polyimide roll-containing reaction solution was poured into water, and the precipitate obtained was separated, pulverized and dried to obtain a polyimide powder.

이 폴리이미드 분말을 DMF에 0.1g/dl의 농도로 용해시켜, 30℃에서 측정했을 때의 환원점도는 0.71dl/g이었다.또한. 이 폴리이미드 분말을 여러가지의 유기용제에 5 중량% 농도가 되도록 첨가하여 실온에서 용해상태를 관찰하여 용해성을 시험하였다. 그 결과 이 폴리이미드 분말은 DMF, N-메틸피롤리돈(NMP), DMAc에 용해되었다.The polyimide powder was dissolved in DMF at a concentration of 0.1 g / dl, and the reduced viscosity when measured at 30 ° C. was 0.71 dl / g. The polyimide powder was added to various organic solvents so as to have a concentration of 5% by weight, and the solubility was observed at room temperature to test the solubility. As a result, this polyimide powder was dissolved in DMF, N-methylpyrrolidone (NMP) and DMAc.

그리고, 이 폴리이미드 분말을 NMP에 용해시켜 얻은 바니스를 유리판 위에 흘려 퍼지도록 하였다. 1OO℃에서 10분 건조시킨 후에 박리하고 철로된 틀에 넣어 250℃에서 1시간 건조시켜 필름을 얻었다.And the varnish obtained by dissolving this polyimide powder in NMP was made to flow on the glass plate. After drying for 10 minutes at 10O &lt; 0 &gt; C, it was peeled off and placed in an iron mold and dried at 250C for 1 hour to obtain a film.

이와 같이 해서 얻어진 필름을 시차열량분석계로 승온 속도 10℃/분의 조건에서 폴리이미드의 유리전이온도를 측정하였더니 182℃이었다. 열분해 온도는 405℃이었다.Thus, the glass transition temperature of the polyimide was 182 degreeC in the film obtained by measuring the temperature increase rate of 10 degree-C / min with the differential calorimeter. Pyrolysis temperature was 405 degreeC.

폴리이미드의 NMP 바니스를 플라즈마 처리한 폴리이미드 필름(상품명 : UPILEX-SGA, 우베 산업사 (Ube Industries, Ltd)에서 제조 ) 위에 도포한 후에 1OO℃에서 10분, 그리고 270℃에서 1O분 건조시켜 복합 접착 시트를 얻었다. 이 복합 접착 시트의 잔류용매량이 0.13 중량%이고 잔류용제량이 1.7중량%이고 칩(PIX3400 코팅)과의 접착개시온도는 300℃ 였다.NMP varnishes of polyimide were applied on a plasma-treated polyimide film (trade name: UPILEX-SGA, manufactured by Ube Industries, Ltd.), followed by drying at 10OOOC and 10O0 at 270 ° C for composite adhesion. A sheet was obtained. The residual solvent amount of this composite adhesive sheet was 0.13 wt%, the residual solvent amount was 1.7 wt%, and the adhesion start temperature with the chip (PIX3400 coating) was 300 ° C.

복합 접착 시트가 부착된 리드프레임과 반도체 칩과 접착조건을 3MPa, 0.5초, 접착개시온도 보다 10℃ 높은 온도에서 접착하여, 제 1도와 같이 TSOP(Thin Small Out-Line Package)형 반도체 칩을 팩키징한 후에 85℃, 85% RH 조건에서 48시간 흡습처리하고 나서 260℃의 땝납욕에 담그었지만 균열은 발생하지 않았고, 반도체의 최종 생산 수율은 99.97% 였다.Packages a thin small out-line package (TSOP) type semiconductor chip by bonding the lead frame and the semiconductor chip to which the composite adhesive sheet is attached and the bonding conditions at a temperature of 3 MPa, 0.5 seconds, and 10 ° C. higher than the initiation temperature. After soaking for 48 hours at 85 ° C. and 85% RH, the solution was immersed in a solder bath at 260 ° C., but no cracking occurred, and the final yield of the semiconductor was 99.97%.

[실시예 2]Example 2

3,3',4,4'-벤조페논테트라카르복실산이무수물 3.22g(1O 밀리몰), 비스[4-(3-아미노페녹시)페닐]술폰(m-APPS or BAPSM) 3.46g(8 밀리몰) 및 PSX750 1.5g(2 밀리몰)을 사용하는 것 이외에는 실시예 1과 동일하게 행하여 폴리아미드산 바니스를 얻었다. 이 폴리아미드산 바니스로부터 실시예 1과 동일하게 행하여 폴리이미드 분말을 얻었다. 그의 환원점도는 1.21dl/g, 유리전이온도는 190℃, 열분해 온도는 410℃이었다.3.22 g (10 mmol) of 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride, 3.46 g (8 mmol) of bis [4- (3-aminophenoxy) phenyl] sulfone (m-APPS or BAPSM) ) And PSX750 1.5 g (2 mmol) were used in the same manner as in Example 1 to obtain a polyamic acid varnish. It carried out similarly to Example 1 from this polyamic-acid varnish, and obtained the polyimide powder. Its reduced viscosity was 1.21 dl / g, glass transition temperature was 190 ° C, and pyrolysis temperature was 410 ° C.

상기 폴리아미드산 바니스를 사용해서 복합시트의 잔류용매량이 0.42중량%이도록 건조조건을 조절하는 것을 제외하고는 실시예 1과 동일하게 행하여 복합시트를 얻었다. 복합시트의 접착개시온도는 280℃였고 잔류용제량은 1.7중량% 였다. 실시예 1과 동일하게 290℃(접착개시온도보다 10℃ 높은 온도)에서 접착하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜처리에 따른 균열이 발생하지 않았고, 반도체의 최종 생산 수율은 99.98% 였다.A composite sheet was obtained in the same manner as in Example 1 except that the drying conditions were adjusted so that the residual solvent amount of the composite sheet was 0.42 wt% using the polyamic acid varnish. The adhesion start temperature of the composite sheet was 280 ℃ and the residual solvent amount was 1.7% by weight. In the same manner as in Example 1, the TSOP semiconductor package obtained by bonding at 290 ° C. (temperature 10 ° C. higher than the adhesion start temperature) did not generate cracks due to soldering after moisture absorption, and the final yield of the semiconductor was 99.98%.

[실시예 3]Example 3

3,3'4,4'-옥시디프탈산이무수물(ODPA) 1.55g(5 밀리몰),3,3',4,4'-벤조페논테트라카르복실산이무수물 1.61g(5 밀리몰), DMF 대신에 NMP 20.6g을 사용하는 것이외에는 실시예1과 동일하게 행하여 풀리아미드산 바니스를 얻었다. 이 바니스에 크실렌 1Og을 첨가해서 180℃에서 5시간 가열하여 폴리이미드 바니스를 얻었다. 환원점도는 0.48dl/g, 유리전이온도는 187℃, 열분해 온도는 405℃이었다.3,3'4,4'-oxydiphthalic dianhydride (ODPA) 1.55 g (5 mmol), 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride 1.61 g (5 mmol) instead of DMF A pulley amic acid varnish was obtained in the same manner as in Example 1 except that NMP 20.6 g was used. 10 g of xylene was added to the varnish and heated at 180 ° C. for 5 hours to obtain a polyimide varnish. The reduced viscosity was 0.48 dl / g, the glass transition temperature was 187 ° C, and the pyrolysis temperature was 405 ° C.

플라즈마 처리한 폴리이미드 필름(상품명 : APICAL-AH, 가네카 주식회사(Kaneka Industries, Ltd)에 상기 폴리이미드 바니스를 도포 후 건조하여 접착개시온도 305℃, 잔류용매량 0.08중량%, 잔류용제량 2.4중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산 수율은 99.97% 였다.Plasma-treated polyimide film (trade name: APICAL-AH, Kaneka Industries, Ltd.) after applying the polyimide varnish and dried, the adhesion start temperature 305 ℃, residual solvent amount 0.08% by weight, residual solvent amount 2.4% The composite adhesive sheet which is% was obtained.The TSOP type semiconductor package obtained by carrying out similarly to Example 1 did not produce the crack by the soldering process after moisture absorption, and the final product yield of the semiconductor package was 99.97%.

[실시예 4]Example 4

DAnMG 2.29g(8 밀리몰) 및 GAPD 0.50g(2 밀리몰)을 DMF 24.5g에 용해 시키고 트리에틸아민 2.02g (2O 밀리몰)을 첨가한 후에 5℃ 이하로 냉각 시키면서 이소프탈산클로라이드 2.03g (10 밀리몰)을 조금씩 첨가하였다. 5℃ 이하에서 5시간 반응시킨 후에 실시예 1과 동일하게 행하여 폴리아미드 분말을 얻었다. 환원점도는 0.45dl/g, 유리전이온도는 160℃, 열분해 온도는 395℃이었다.2.29 g (8 mmol) of DAnMG and 0.50 g (2 mmol) of GAPD were dissolved in 24.5 g of DMF, 2.02 g (10 mmol) of isophthalic acid chloride was cooled to below 5 ° C. after adding 2.02 g (20 mmol) of triethylamine. Was added little by little. After reacting at 5 degrees C or less for 5 hours, it carried out similarly to Example 1, and obtained polyamide powder. The reduced viscosity was 0.45 dl / g, the glass transition temperature was 160 ° C, and the pyrolysis temperature was 395 ° C.

실시예 1과 동일하게 행하여 얻은 폴리이미드 60 중량%와 상기 폴리아미드 40 중량%를 혼합한 DMF 바니스를 플라즈마 처리한 APICAL-AH 필름 위에 도포 후 건조하여 유리전이온도 172℃, 접착개시온도 270℃, 잔류용매량 0.10중량%, 잔류용제량 2.3중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산 수율은 99.99% 였다.60 wt% of polyimide and 40 wt% of the polyamide obtained in the same manner as in Example 1 were applied on a plasma-treated APICAL-AH film, and then dried to obtain a glass transition temperature of 172 ° C, adhesion start temperature of 270 ° C, A composite adhesive sheet having a residual solvent amount of 0.10% by weight and a residual solvent amount of 2.3% by weight was obtained. The TSOP type semiconductor package obtained in the same manner as in Example 1 did not produce cracks due to the soldering process after moisture absorption, and the final production yield of the semiconductor package was 99.99%.

[실시예 5]Example 5

3,3'4,4'-옥시디프탈산이무수물(ODPA) 3.10g(1O 밀리몰), BAPP 2.87g(7 밀리몰), PSX750 2.25g(3 밀리몰) 이외에는 실시예 3과 동일하게 행하여 폴리이미드 분말을 얻었다. 환원점도는 0.62dl/g, 유리전이온도는 161℃, 열분해 온도는 395℃이었다.Polyimide powder in the same manner as in Example 3 except for 3.10 g (10 mmol) of 3,3'4,4'-oxydiphthalic anhydride (ODPA), 2.87 g (7 mmol) of BAPP, and 2.25 g (3 mmol) of PSX750. Got. The reduced viscosity was 0.62 dl / g, the glass transition temperature was 161 占 폚, and the pyrolysis temperature was 395 占 폚.

상기 폴리이미드의 DMAc 바니스를 폴리이미드 필름(상품명 : NPI, 카네카 주식회사(Kaneka Industries, Ltd)) 위에 도포한 후 건조하여 접착개시온도 270℃, 잔류용매량 0.14중량%, 잔류용제량 2.5중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산 수율은 99.99% 였다.The DMAc varnish of the polyimide was applied on a polyimide film (trade name: NPI, Kaneka Industries, Ltd.) and dried, followed by an adhesion start temperature of 270 ° C., residual solvent amount of 0.14% by weight, and residual solvent amount of 2.5% by weight. Phosphorus composite adhesive sheet was obtained. The TSOP type semiconductor package obtained in the same manner as in Example 1 did not produce cracks due to the soldering process after moisture absorption, and the final production yield of the semiconductor package was 99.99%.

[실시예 6]Example 6

3,3'4,4'-옥시디프탈산이무수물(ODPA) 3.10g(1O 밀리몰), 1,3-비스(4-아미노페닐이소프로필)벤젠(BisAM) 2.75g(8 밀리몰), PSX750 1.5g(2 밀리몰)을 사용하는 것 이외에는 실시예 1과 동일하게 행하여 폴리이미드 분말을 얻었다. 환원점도는 0.61dl/g, 유리전이온도는 155℃, 열분해 온도는 415℃이었다.3,3'4,4'-oxydiphthalic anhydride (ODPA) 3.10 g (10 mmol), 1,3-bis (4-aminophenylisopropyl) benzene (BisAM) 2.75 g (8 mmol), PSX750 1.5 A polyimide powder was obtained in the same manner as in Example 1 except that g (2 mmol) was used. The reduced viscosity was 0.61 dl / g, the glass transition temperature was 155 ° C, and the pyrolysis temperature was 415 ° C.

상기 폴리이미드의 NMP 바니스를 플라즈마 처리한 폴리이미드 필름(상품명 : UPILEX-SGA, 우베 산업사 (Ube Industries, Ltd) )위에 도포한 후 건조하여 접착개시온도 270℃, 잔류용매량 0.10중량%, 잔류용제량 1.8중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산 수율은 99.99% 였다.The NMP varnish of the polyimide was applied to a plasma-treated polyimide film (trade name: UPILEX-SGA, Ube Industries, Ltd.), dried, and then dried at an adhesion start temperature of 270 ° C., a residual solvent amount of 0.10% by weight, and a residual solvent. A composite adhesive sheet having an amount of 1.8% by weight was obtained. The TSOP type semiconductor package obtained in the same manner as in Example 1 did not produce cracks due to the soldering process after moisture absorption, and the final production yield of the semiconductor package was 99.99%.

[실시예 7]Example 7

BAPB, 2.58g(7 밀리몰), PSX480 1.44g (3 밀리몰)을 DMF 2Og메 용해 시키고, 트리에틸아민 2.02g (20 밀리몰)을 첨가한 후에 5℃ 이하로 냉각 시키면서 이소프탈신 롤로라이드 2.O3g (10 밀리몰)을 조금씩 첨가하였다. 5℃ 이하에서 5시간 반응시킨 후에 실시예 1과 동일하게 행하여 폴리아미드 분말을 얻었다. 환원점도는 0.88dl/g, 유리전이온도는 185℃, 열분해 온도는 385℃이었다.BAPB, 2.58 g (7 mmol), PSX480 1.44 g (3 mmol) is dissolved in DMF 20 g, and 2.02 g (20 mmol) of triethylamine is added, followed by cooling to below 5 ° C. 10 mmol) was added in portions. After reacting at 5 degrees C or less for 5 hours, it carried out similarly to Example 1, and obtained polyamide powder. The reduced viscosity was 0.88 dl / g, the glass transition temperature was 185 ° C, and the pyrolysis temperature was 385 ° C.

실시예 1의 폴리이미드 6O 중량%와 상기 폴리아미드 4O 중량%를 혼합한 NMP 바니스를 도포 건조하여 접착개시온도 270℃, 잔류용매량 0.19중량%, 잔류용제량 1.9중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산 수율은 99.99% 였다.An NMP varnish containing 6% by weight of polyimide of Example 1 and 4% by weight of polyamide was applied and dried to obtain a composite adhesive sheet having an adhesion start temperature of 270 ° C., a residual solvent amount of 0.19% by weight, and a residual solvent amount of 1.9% by weight. . The TSOP type semiconductor package obtained in the same manner as in Example 1 did not produce cracks due to the soldering process after moisture absorption, and the final production yield of the semiconductor package was 99.99%.

[실시예 8]Example 8

BAPB, 3.69g(10 밀리몰)을 DMF 2Og메 용해 시키고, 에틸렌글리콜비스트리멀리테이트이무수물(EBTA) 1.23g(3 밀리몰), 트리에틸아민 0.30g (3 밀리몰)을 첨가한 후에 5℃ 이하로 냉각 시키면서 옥시프탈산무수물 2.O3g (2.17 밀리몰)을 조금씩 첨가하였다. 5℃ 이하에서 5시간 반응시킨 후에 무수아세트산, 피리딘을 첨가하여 실시예 1과 동일하게 행하여 폴리아미드이미드를 얻었다. 환원점도는 0.88dl/g, 유리전이온도는 165℃, 열분해 온도는 385℃이었다.BAPB, 3.69 g (10 mmol) was dissolved in DMF 2Og, 1.23 g (3 mmol) of ethylene glycol bistrimultate dianhydride (EBTA) and 0.30 g (3 mmol) of triethylamine were added and then cooled to 5 ° C. or lower. 2.O3 g (2.17 mmol) of oxyphthalic anhydride was added little by little. After reacting for 5 hours or less at 5 ° C, acetic anhydride and pyridine were added to carry out in the same manner as in Example 1 to obtain a polyamideimide. The reduced viscosity was 0.88 dl / g, the glass transition temperature was 165 ° C, and the pyrolysis temperature was 385 ° C.

알칼카리처리 후 실란커플링 처리한 NPI 필름에 상기 폴리아미드이미드를 DMAc에 용해시킨 바니스를 도포 후 건조하여 접착개시온도 260℃, 잔류용매량 0.51 중량%, 잔류용제량 2.8중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산 수율은 99.99% 였다.After the alkali treatment, apply the varnish in which the polyamideimide was dissolved in DMAc to the silane coupling-treated NPI film, and then dry it. Got. The TSOP type semiconductor package obtained in the same manner as in Example 1 did not produce cracks due to the soldering process after moisture absorption, and the final production yield of the semiconductor package was 99.99%.

[실시예 9]Example 9

에틸렌글리콜비스트리멀리테이트이무수물(EBTA) 4.10g(10 밀리몰), BisAM 3.44g(10 밀리몰)을 사용하는 것 이외에는, 실시예 1과 동일하게 행하여 폴리이미드 분말을 얻었다. 환원점도는 0.65dl/g, 유리전이온도는 176℃, 열분해 온도는 396℃이었다.Polyimide powder was obtained in the same manner as in Example 1 except that 4.10 g (10 mmol) of ethylene glycol bistrimultate dianhydride (EBTA) and 3.44 g (10 mmol) of BisAM were used. The reduced viscosity was 0.65 dl / g, the glass transition temperature was 176 ° C, and the pyrolysis temperature was 396 ° C.

상기 폴리이미드의 NMP 바니스를 플라즈마처리한 UPILEX-SGA 필름위에 도포 건조하여 접착개시온도 285℃, 잔류용매량 0.05중량%, 잔류용제량 2.1중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산 수율은 99.98% 였다.The NMP varnish of the polyimide was applied and dried on a plasma-treated UPILEX-SGA film to obtain a composite adhesive sheet having a bonding start temperature of 285 ° C., a residual solvent amount of 0.05% by weight, and a residual solvent amount of 2.1% by weight. The TSOP semiconductor package obtained in the same manner as in Example 1 did not generate cracks due to the soldering treatment after moisture absorption, and the final production yield of the semiconductor package was 99.98%.

[실시예 1O]Example 1O

에틸렌글리콜비스트리멀리테이트이무수물(EBTA) 4.10g(10 밀리몰), BisAM 3.10g(9 밀리몰), GAPD 0.25g (1 밀리몰)을 사용하는 것 이외에는, 실시예 1과 동일하게 행하여 폴리이미드 분말을 얻었다. 환원점도는 0.87dl/g, 유리전이온도는 163℃, 열분해 온도는 400℃이었다.Polyimide powder was obtained in the same manner as in Example 1 except that 4.10 g (10 mmol) of ethylene glycol bistrimultate dianhydride (EBTA), 3.10 g (9 mmol) of BisAM, and 0.25 g (1 mmol) of GAPD were obtained. . The reduced viscosity was 0.87 dl / g, the glass transition temperature was 163 占 폚, and the pyrolysis temperature was 400 占 폚.

상기 폴리이미드의 NMP 바니스를 플라즈마 처리한 UPILEX-SGA 필름위에 도포한 후, 건조하여 접착개시온도 260℃, 잔류용매량 0.08중량%, 잔류용제량 2.2중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산 수율은 99.99% 였다.The NMP varnish of the polyimide was applied onto a plasma-treated UPILEX-SGA film, and then dried to obtain a composite adhesive sheet having a bonding start temperature of 260 ° C., a residual solvent amount of 0.08% by weight, and a residual solvent amount of 2.2% by weight. The TSOP type semiconductor package obtained in the same manner as in Example 1 did not produce cracks due to the soldering process after moisture absorption, and the final production yield of the semiconductor package was 99.99%.

[실시예 11]Example 11

실시예 2의 폴리이미드를 사용하여 실시예 1과 동일하게 행하여 접착개시온도 280℃, 잔류용매량 0.10중량%, 잔류용제량 0.8중량%, 밀려나온 길이 2.5mm인 접착제 단독의 필름을 제작하였다.Using the polyimide of Example 2, the same procedure as in Example 1 was carried out to produce a film of an adhesive alone having a bonding start temperature of 280 ° C., a residual solvent amount of 0.10% by weight, a residual solvent amount of 0.8% by weight, and an extended length of 2.5 mm.

실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산 수율은 99.98% 였다.The TSOP semiconductor package obtained in the same manner as in Example 1 did not generate cracks due to the soldering treatment after moisture absorption, and the final production yield of the semiconductor package was 99.98%.

[실시예 12]Example 12

실시예 8의 폴리아미드이미드의 NMP 바니스를 사용해서 반도체 칩 위에 접착제 층을 형성하여 접착개시온도 250℃, 잔류용매량 0.92중량%, 잔류용제량 2.2중량%, 밀려나온 길이 2.3mm인 접착층을 제작하였다.An NMP varnish of polyamideimide of Example 8 was used to form an adhesive layer on a semiconductor chip to prepare an adhesive layer having an adhesion start temperature of 250 ° C., a residual solvent amount of 0.92% by weight, a residual solvent amount of 2.2% by weight, and an extruding length of 2.3 mm. It was.

실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산 수율은 99.99% 였다.The TSOP type semiconductor package obtained in the same manner as in Example 1 did not produce cracks due to the soldering process after moisture absorption, and the final production yield of the semiconductor package was 99.99%.

[실시예 13]Example 13

에틸렌글리콜비스트리멀리테이트이무수물(EBTA) 4.10g(10 밀리몰), 1,3-비스(3-아미노페녹시)벤젠 2.04g(7 밀리몰), GAPD 0.74g (3 밀리몰)을 사용하는 것 이외에는, 실시예 1과 동일하게 행하여 폴리이미드 분말을 얻었다. 환원점도는 0.87dl/g, 유리전이온도는 135℃, 열분해 온도는 380℃이었다.Except for using 4.10 g (10 mmol) of ethylene glycol bistrimultate dianhydride (EBTA), 2.04 g (7 mmol) of 1,3-bis (3-aminophenoxy) benzene, and 0.74 g (3 mmol) of GAPD, In the same manner as in Example 1, a polyimide powder was obtained. The reduced viscosity was 0.87 dl / g, the glass transition temperature was 135 ° C, and the pyrolysis temperature was 380 ° C.

상기 폴리이미드 분말 1OOg과 v-글리시독시프로필트리메톡시실란 3g을 DMF 4OOg에 용해시킨 바니스를 폴리이미드필름(APICAL AH 필름) 위에 도포한 후 건조하여 유리전이온도 143℃, 접착개시온도 300℃, 잔류용매량 0.15중량%, 잔류용제량 2.9중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산 수율은 99.97% 였다.The varnish obtained by dissolving 100 g of the polyimide powder and 3 g of v-glycidoxypropyltrimethoxysilane in DMF 4OOg was applied on a polyimide film (APICAL AH film), dried, and then dried to obtain a glass transition temperature of 143 ° C. and an adhesion start temperature of 300 ° C. And the composite adhesive sheet which is 0.15 weight% of residual solvents, and 2.9 weight% of residual solvents was obtained. The TSOP semiconductor package obtained in the same manner as in Example 1 did not produce cracks due to the soldering process after moisture absorption, and the final production yield of the semiconductor package was 99.97%.

[실시예 14]Example 14

에틸렌글리콜비스트리멀리테이트이무수물(EBTA) 4.10g(10 밀리몰), 1,4-비스(4-아미노페녹시)벤젠 2.04g(7 밀리몰), GAPD 0.74g (3 밀리몰)을 사용하는 것 이외에는, 실시예 1과 동일하게 행하여 폴리이미드 분말을 얻었다. 환원점도는 0.87dl/g, 유리전이온도는 145℃, 열분해 온도는 380℃이었다.Except for using 4.10 g (10 mmol) of ethylene glycol bistrimultate dianhydride (EBTA), 2.04 g (7 mmol) of 1,4-bis (4-aminophenoxy) benzene, and 0.74 g (3 mmol) GAPD, In the same manner as in Example 1, a polyimide powder was obtained. The reduced viscosity was 0.87 dl / g, the glass transition temperature was 145 ° C, and the pyrolysis temperature was 380 ° C.

상기 폴리이미드 분말 1OOg과 γ-글러시독시프로필 메틸디에톡시실란 5g을 DMF 4OOg에 용해시킨 바니스를 사용하여 실시예 13과 동일하게 행하여 유리전이온도 148℃, 접착개시온도 290℃, 잔류용매량 0.11중량%, 잔류용제량 2.8중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산수율은 99.97% 였다.A glass transition temperature of 148 ° C., adhesion start temperature of 290 ° C., and residual solvent amount of 0.11 were carried out in the same manner as in Example 13 using a varnish in which 100 g of the polyimide powder and 5 g of γ-glycidoxypropyl methyldiethoxysilane were dissolved in DMF 4OOg. A composite adhesive sheet having a weight% and residual solvent amount of 2.8 weight% was obtained. The TSOP semiconductor package obtained in the same manner as in Example 1 did not produce cracks due to the soldering treatment after moisture absorption, and the final production yield of the semiconductor package was 99.97%.

[실시예 15]Example 15

에틸렌글리콜비스트리멀리테이트이무수물(EBTA) 4.10g(10 밀리몰), 1,4-비스(4-아미노페녹시)벤젠 2.04g(7 밀리몰), PSX 750 2.25g (3 밀리몰) 사용하는 것 이외에는 실시예 1과 동일하게 행하여 폴리이미드 분말을 얻었다. 환원점도는 0.85dl/g, 유리전이온도는 137℃, 열분해 온도는 395℃이었다.Ethylene glycol bistrimultate dianhydride (EBTA) 4.10 g (10 mmol), 1,4-bis (4-aminophenoxy) benzene 2.04g (7 mmol), PSX 750 2.25g (3 mmol) In the same manner as in Example 1, a polyimide powder was obtained. The reduced viscosity was 0.85 dl / g, the glass transition temperature was 137 ° C, and the pyrolysis temperature was 395 ° C.

폴리이이미드 분말 1OOg과 γ-글리시독시프로필트리메톡시실란 1Og을 NMP 4OOg에 용해시킨 바니스를 플리이미드 필름 (상품명 : UPlLEX-S, 우베 산업사(Ube Industries, Ltd)에서 제조) 양면에 도포하고 건조하여 유리전이온도 141℃, 접착개시온도 290℃, 잔류용매량 0.10중량%, 잔류용제량 1.0중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산 수율은 99.98% 였다.Varnish obtained by dissolving 100 g of polyimide powder and 10 g of γ-glycidoxypropyltrimethoxysilane in NMP 4OOg was applied to both sides of a polyimide film (trade name: UPlLEX-S, manufactured by Ube Industries, Ltd.) It dried and obtained the composite adhesive sheet which is 141 degreeC of glass transition temperature, 290 degreeC of adhesion start temperatures, 0.10 weight% of residual solvents, and 1.0 weight% of residual solvents. The TSOP semiconductor package obtained in the same manner as in Example 1 did not generate cracks due to the soldering treatment after moisture absorption, and the final production yield of the semiconductor package was 99.98%.

[실시예 16]Example 16

에틸렌글리콜비스트리멀리테이트이무수물(EBTA) 4.10g(10 밀리몰), 1,4-비스(4-아미노페녹시)벤젠 2.04g(7 밀리몰), PSX 750 2.22g (3 밀리몰) 사용하여 폴리아민산을 얻었다.4.10 g (10 mmol) of ethylene glycol bistrimultate dianhydride (EBTA), 2.04 g (7 mmol) of 1,4-bis (4-aminophenoxy) benzene, and 2.22 g (3 mmol) of PSX 750 were used to Got it.

이 접착제를 필름으로 제작한 결과 유리전이온도는 137℃, 열분해 온도는 395℃이었다.상기 폴리아민산에 3,3',4,4'-테트라아미노디페닐 0.1g(0.5밀리몰)을 사용하여 실시예 1과 동일하게 하여 폴리이미드 분말을 얻었다. 환원점도는0.90dl/g, 유리전이온도는 151℃, 열분해 온도는 395℃이었다.When the adhesive was formed into a film, the glass transition temperature was 137 ° C. and the thermal decomposition temperature was 395 ° C. 0.1 g (0.5 mmol) of 3,3 ', 4,4'-tetraaminodiphenyl was used as the polyamine acid. Polyimide powder was obtained in the same manner as in Example 1. The reduced viscosity was 0.90 dl / g, the glass transition temperature was 151 占 폚, and the pyrolysis temperature was 395 占 폚.

폴리이미드 분말 1OOg을 NMP 4OOg에 용해시킨 바니스를 폴리이미드 필름(상품명 : UPILEX-SGA, 우베 산업사 (Ube Industries, Ltd)에서 제조 ) 양면에 도포하고 건조하여 접착개시온도 270℃, 잔류용매량 0.06중량%, 잔류용제량 0.6중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산 수율은 99.99% 였다.Varnish obtained by dissolving 100 g of polyimide powder in NMP 4OOg was coated on both sides of a polyimide film (trade name: UPILEX-SGA, manufactured by Ube Industries, Ltd.), dried, and then bonded at an initiation temperature of 270 ° C. and a residual solvent amount of 0.06 weight. % And a residual adhesive amount 0.6 wt% were obtained. The TSOP type semiconductor package obtained in the same manner as in Example 1 did not produce cracks due to the soldering process after moisture absorption, and the final production yield of the semiconductor package was 99.99%.

[실시예 17]Example 17

BTDA 3.22g (10 밀리몰)과 BisAM 3.27g (9.5 밀리몰)과 GAPD 0.12g (0.5 밀리몰)을 사용하는 것 이외에는 실시예 1 과 동일하게 행하여 폴리이미드 분말을 얻었다. 환윈점도는 0.44dl/g, 유리전이온도는 210℃, 열분해 온도는 398℃이었다.Polyimide powder was obtained in the same manner as in Example 1 except that 3.22 g (10 mmol) of BTDA, 3.27 g (9.5 mmol) of BisAM, and 0.12 g (0.5 mmol) of GAPD were used. The ring viscosity was 0.44 dl / g, the glass transition temperature was 210 ° C, and the pyrolysis temperature was 398 ° C.

폴리이미드 바니스를 양면에 도포하고 건조하여 접착개시온도 320℃, 잔류용매량 0.53중량%, 잔류용제량 2.4중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산 수율은 99.96% 였다.The polyimide varnish was applied to both sides and dried to obtain a composite adhesive sheet having a bonding start temperature of 320 ° C., a residual solvent amount of 0.53% by weight, and a residual solvent amount of 2.4% by weight. The TSOP semiconductor package obtained in the same manner as in Example 1 did not generate cracks due to the soldering treatment after moisture absorption, and the final yield of the semiconductor package was 99.96%.

[비교실시예 1]Comparative Example 1

DDS 2.11g (8.5 밀리물), BAPP 0.62g (1.5 밀리몰)을 DMF 2Og에 용해시켜 트리에틸아민 2.02g (2O 밀리몰)을 첨가한 후에 5℃ 이하로 냉각 시키면서 이소프탈산클로라이드 2.O3g (1O 밀리몰)을 조금씩 첨가하였다. 5℃ 이하에서 5시간 반응시킨 후에 실시예1과 동일하게 행하여 폴리아미드 분말을 얻었다. 환원점도는0.45dl/g , 유리전이온도는 280℃, 열분해 온도는 430℃이었다.2.11 g (8.5 mmol) of DDS, 0.62 g (1.5 mmol) of BAPP are dissolved in 20 g of DMF, and 2.02 g (20 mmol) of triethylamine is added, followed by cooling to 5 ° C or less, and 2.O3 g (10 mmol) of isophthalic acid chloride. ) Was added little by little. After reacting at 5 degrees C or less for 5 hours, it carried out similarly to Example 1, and obtained polyamide powder. The reduced viscosity was 0.45 dl / g, the glass transition temperature was 280 ° C, and the pyrolysis temperature was 430 ° C.

알칼리 처리후 실린커플링 처리한 APICAL-AH 필름에 상기 폴리아미드 바니스를 도포 후 건조하여 접착개시온도 430℃, 잔류용매량 0.05중량%, 잔류용제량 3.6중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았지만 반도체 팩키지의 최종 생산 수율은 94.47% 였다.After the alkali treatment, the polyamide varnish was applied to the APICAL-AH film treated with the cylinder coupling and dried to obtain a composite adhesive sheet having an adhesion start temperature of 430 ° C., a residual solvent amount of 0.05% by weight, and a residual solvent amount of 3.6% by weight. The TSOP semiconductor package obtained in the same manner as in Example 1 did not generate cracks due to the soldering treatment after moisture absorption, but the final yield of the semiconductor package was 94.47%.

[비교실시예 2]Comparative Example 2

실시예 6와 동일하게 행하여 환원점도가 0.35dl/g인 폴리이미드 분말을 얻었다. 유리전이온도는 175℃, 열분해 온도는 410℃이었다. 또한 잔류용제량은 0.6 중량%이고, 밀려나온 길이는 6.1mm이었다.In the same manner as in Example 6, a polyimide powder having a reduced viscosity of 0.35 dl / g was obtained. The glass transition temperature was 175 ° C and the pyrolysis temperature was 410 ° C. In addition, the amount of residual solvent was 0.6% by weight, and the length that was pushed out was 6.1mm.

실시예 6와 동일하게 행하여 얻은 복합 접착 시트는 접착개시온도 270℃, 잔류용매량 0.12중량%, 잔류용제량 1.9중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 최종 생산 수율은 99.99% 였으나 흡습후의 납땜 처리에 따른 균열이 발생하였다.The composite adhesive sheet obtained in the same manner as in Example 6 obtained a composite adhesive sheet having a bonding start temperature of 270 ° C., a residual solvent amount of 0.12% by weight, and a residual solvent amount of 1.9% by weight. The TSOP semiconductor package obtained in the same manner as in Example 1 had a final production yield of 99.99%, but cracks occurred due to soldering treatment after moisture absorption.

[비교실시예 3]Comparative Example 3

BTDA 3.22g (10 밀리몰)과 BisAM 3.27g (9.5 밀리몰)과 GAPD 0.12g (0.5 밀리몰)을 사용하는 것 이외에는 실시예 1 과 동일하게 행하여 폴리이미드 분말을 얻었다. 환원점도는 0.44dl/g, 유리전이온도는 210℃, 열분해 온도는 398℃이었다.Polyimide powder was obtained in the same manner as in Example 1 except that 3.22 g (10 mmol) of BTDA, 3.27 g (9.5 mmol) of BisAM, and 0.12 g (0.5 mmol) of GAPD were used. The reduced viscosity was 0.44 dl / g, the glass transition temperature was 210 ° C, and the pyrolysis temperature was 398 ° C.

폴리이미드 분말 1OOg을 NMP 4OOg에 용해시킨 바니스를 폴리이미드 필름(상품명 : UPILEX-SGA, 우베 산업사 (Ube Industries, Ltd)에서 제조 ) 양면에 도포하고 건조하여 접착개시온도 370℃, 잔류용매량 0.11중량%, 잔류용제량 2.0중량%인 복합 접찹 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산 수율은 94.89% 였다.Varnish obtained by dissolving 100 g of polyimide powder in NMP 4OOg was applied to both sides of a polyimide film (trade name: UPILEX-SGA, manufactured by Ube Industries, Ltd.), dried, and then bonded to a starting temperature of 370 ° C. and a residual solvent amount of 0.11 weight. %, A composite adhesive sheet having a residual solvent amount of 2.0% by weight. The TSOP semiconductor package obtained in the same manner as in Example 1 did not generate cracks due to the soldering treatment after moisture absorption, and the final production yield of the semiconductor package was 94.89%.

[비교실시예 4]Comparative Example 4

ODPA 3.10g (10 밀리몰)과 1,3-비스(4-아미노페녹시)벤젠 1.60g (7 밀리몰)과 3,4'-옥시디아닐린(ODA) 0.54 g (2.7 밀리몰), GAPD 0.07g (0.3 밀리몰)을 사용하는 것 이외에는 실시예 1 과 동일하게 행하여 폴리이미드 분말을 얻었다. 환원점도는 0.44dl/g , 유리전이온도는 215℃, 열분해 온도는 398℃이었다.3.10 g (10 mmol) ODPA, 1.60 g (7 mmol) 1,3-bis (4-aminophenoxy) benzene, 0.54 g (2.7 mmol) 3,4'-oxydianiline (ODA), 0.07 g GAPD ( 0.3 mmol) was carried out in the same manner as in Example 1 to obtain a polyimide powder. The reduced viscosity was 0.44 dl / g, the glass transition temperature was 215 ° C, and the pyrolysis temperature was 398 ° C.

폴리이미드 분말 1OOg을 NMP 4OOg에 용해시킨 바니스를 폴리이미드 필름(상품명 : UPILEX-SGA, 우베 산업사 (Ube Industries, Ltd)에서 제조 ) 양면에 도포하고 건조하여 접착개시온도 380℃, 잔류용매량 0.15중량%, 잔류용제량 0.9중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 흡습후의 납땜 처리에 따른 균열이 발생하지 않았고, 반도체 팩키지의 최종 생산 수율은 94.83% 였다.Varnish, in which 100 g of polyimide powder was dissolved in NMP 4OOg, was coated on both sides of a polyimide film (trade name: UPILEX-SGA, manufactured by Ube Industries, Ltd.), dried, and then bonded at an initiation temperature of 380 ° C. and a residual solvent amount of 0.15 weight. % And a residual adhesive amount 0.9 weight% of the composite adhesive sheet were obtained. The TSOP semiconductor package obtained in the same manner as in Example 1 did not produce cracks due to the soldering process after moisture absorption, and the final production yield of the semiconductor package was 94.83%.

[비교실시예 5]Comparative Example 5

실시예 1 과 동일하게 행하여 폴리이미드 분말을 얻었다. 환원점도는 0.71dl/g, 유리전이온도는 182℃, 열분해 온도는 405℃이었다.In the same manner as in Example 1, a polyimide powder was obtained. The reduced viscosity was 0.71 dl / g, the glass transition temperature was 182 ° C, and the pyrolysis temperature was 405 ° C.

폴리이미드의 NMP 바니스를 플라즈마 처리한 폴리이미드 필름(상품명 : UPILEX-SGA, 우베 산업사 (Ube Industries, Ltd)에서 제조 ) 위에 도포한 후에 건조하여 접착개시온도 240℃, 잔류용매량 0.80중량%, 잔류용제량 3.2중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지의 최종 생산 수율은 99.99% 였으나 흡습후의 납땜 처리에 따른 균열이 발생하였다.The NMP varnish of polyimide was applied on a plasma-treated polyimide film (trade name: UPILEX-SGA, manufactured by Ube Industries, Ltd.), dried, and then bonded at an initiation temperature of 240 ° C., a residual solvent amount of 0.80% by weight, and residual. A composite adhesive sheet having a solvent amount of 3.2% by weight was obtained. Final production yield of the TSOP semiconductor package obtained in the same manner as in Example 1 was 99.99%, but cracks occurred due to soldering treatment after moisture absorption.

[비교실시예 6]Comparative Example 6

환원점도가 0.35dl/g인 것을 제외하고 실시예 2와 동일한 폴리이미드를 사용하여 실시예 1과 동일하게 행하여 접착개시온도 280℃, 잔류용매량 0.40중량%, 잔류용제량 1.7중량%, 밀려나온 길이 5.5mm인 접착제 단독의 필름을 제작하였다.Using the same polyimide as in Example 2, except that the reduced viscosity was 0.35 dl / g, the adhesion start temperature was 280 ° C., residual solvent amount 0.40 wt%, residual solvent amount 1.7 wt%, and extruded. A film of adhesive alone having a length of 5.5 mm was produced.

실시예 1과 동일하게 행하여 얻은 TSOP형 반도체 팩키지는 반도체 팩키지의 최종 생산 수율은 99.98%이었으나 흡습후의 납땜 처리에 따른 균열이 발생하였다.The TSOP semiconductor package obtained in the same manner as in Example 1 had a final yield of 99.98% of the semiconductor package, but cracks occurred due to the soldering treatment after moisture absorption.

[비교실시예 7]Comparative Example 7

실시예 5에서 환원점도는 0.30dl/g으로 조절하여 얻어진 폴리이미드 분말은 유리전이온도 161℃, 열분해 온도는 395℃이고 밀려나온 길이가 5.4mm이었다.In Example 5, the polyimide powder obtained by adjusting the reducing viscosity to 0.30 dl / g had a glass transition temperature of 161 ° C., a thermal decomposition temperature of 395 ° C., and an extended length of 5.4 mm.

폴리이미드의 DMF 바니스를 실시예 1과 동일하게 행하여 접착개시온도 260℃, 잔류용매량 0.10중량%, 잔류용제량 1.6중량%인 복합 접착 시트를 얻었다. 실시예 1과 동일하게 얻은 TSOP형 반도체 팩키지는 최종 생산 수율은 99.99% 였으나 흡습후의 납땜 처리에 따른 균열이 발생하였다.The DMF varnish of polyimide was carried out in the same manner as in Example 1 to obtain a composite adhesive sheet having an adhesion start temperature of 260 ° C., a residual solvent amount of 0.10% by weight, and a residual solvent amount of 1.6% by weight. The TSOP semiconductor package obtained in the same manner as in Example 1 had a final production yield of 99.99%, but cracks occurred due to soldering treatment after moisture absorption.

상기 실시예의 결과를 다음의 표 1에 내었다.The results of the above examples are given in Table 1 below.

Tg(℃)Tg (℃) 환원점도(dl/g)Reduced viscosity (dl / g) 접 착개시온도(℃)Adhesive Opening Temperature (℃) 잔 류용매량(중량%)Residual Solvent Amount (wt%) 잔 류용제량(중량%)Residual solvent amount (% by weight) 반도체칩균열Semiconductor chip crack 반도체생산수율(%)Semiconductor production yield (%) 실시예 1Example 1 182182 0.710.71 300300 0.130.13 1.71.7 미발생Not Occurred 99.9799.97 실시예 2Example 2 190190 1.211.21 280280 0.420.42 1.71.7 미발생Not Occurred 99.9899.98 실시예 3Example 3 187187 0.480.48 305305 0.080.08 2.42.4 미발생Not Occurred 99.9799.97 실시예 4Example 4 172172 -- 270270 0.100.10 2.32.3 미발생Not Occurred 99.9999.99 실시예 5Example 5 161161 0.620.62 270270 0.140.14 2.52.5 미발생Not Occurred 99.9999.99 실시예 6Example 6 155155 0.610.61 270270 0.100.10 1.81.8 미발생Not Occurred 99.9999.99 실시예 7Example 7 185185 0.880.88 260260 0.190.19 1.91.9 미발생Not Occurred 99.9999.99 실시예 8Example 8 165165 0.880.88 260260 0.510.51 2.82.8 미발생Not Occurred 99.9999.99 실시예 9Example 9 176176 0.650.65 285285 0.050.05 2.12.1 미발생Not Occurred 99.9899.98 실시예 10Example 10 163163 0.870.87 260260 0.080.08 2.22.2 미발생Not Occurred 99.9999.99 실시예 11Example 11 190190 1.211.21 280280 0.100.10 0.80.8 미발생Not Occurred 99.9899.98 실시예 12Example 12 165165 0.880.88 250250 0.920.92 2.22.2 미발생Not Occurred 99.9999.99 실시예 13Example 13 143143 -- 300300 0.150.15 2.92.9 미발생Not Occurred 99.9799.97 실시예 14Example 14 148148 -- 290290 0.110.11 2.82.8 미발생Not Occurred 99.9799.97 실시예 15Example 15 141141 -- 290290 0.100.10 1.01.0 미발생Not Occurred 99.9899.98 실시예 16Example 16 151151 -- 270270 0.060.06 0.60.6 미발생Not Occurred 99.9999.99 실시예 17Example 17 210210 0.440.44 320320 0.530.53 2.42.4 미발생Not Occurred 99.9699.96 비교실시예 1Comparative Example 1 280280 0.450.45 430430 0.050.05 3.63.6 발생Occur 94.4794.47 비교실시예 2Comparative Example 2 175175 0.350.35 270270 0.120.12 1.91.9 발생*Occur* 99.9999.99 비교실시예 3Comparative Example 3 210210 0.440.44 370370 0.110.11 2.02.0 미발생Not Occurred 94.8994.89 비교실시예 4Comparative Example 4 215215 0.440.44 380380 0.150.15 0.90.9 미발생Not Occurred 94.8394.83 비교실시예 5Comparative Example 5 182182 0.710.71 240240 0.800.80 3.23.2 발생Occur 99.9999.99 비교실시예 6Comparative Example 6 190190 0.350.35 280280 0.400.40 1.71.7 발생*Occur* 99.9899.98 비교실시예 7Comparative Example 7 161161 0.300.30 260260 0.100.10 1.61.6 발생*Occur* 99.9999.99

표1에서 비교실시예 2, 6, 7의 반도체 칩 균열은 내열성 접착제의 밀려나온 길이가 5.0mm이상이기 때문에 발생한 것이다.In Table 1, the cracks in the semiconductor chips of Comparative Examples 2, 6, and 7 occurred because the extruded length of the heat resistant adhesive was 5.0 mm or more.

상기 실시예 및 비교실시예에서도 명백히 알수 있듯이, 본 발명의 내열성 접착제 및 복합 접착 시트를 사용한 경우 내크랙성 및 반도체 생산수율이 우수한 반도체 패키지를 제조할 수 있었다.As is apparent from the above Examples and Comparative Examples, when the heat resistant adhesive and the composite adhesive sheet of the present invention were used, a semiconductor package having excellent crack resistance and semiconductor production yield could be manufactured.

Claims (7)

반도체 칩을 리드프레임에 접착부재로 접착하고, 적어도 반도체 칩, 및 반도체 칩과 리드프레임의 접착부를 밀봉재로 밀봉하여 LOC(lead-on chip)형 반도체 팩키지를 제조하기 위한 접착부재에 사용되는, 이미드기를 갖는 수지를 포함하고, 접착개시온도가 230~330℃범위이고, 잔류용매량이 0.03~1.00중량%범위이고, 잔류용제량이 3.0중량%이하인 내열성 접착제 도막을 내열성 기재필름의 적어도 한면에 설치하여 이루어진 복합 접착 시트.Already used in the adhesive member for manufacturing the lead-on chip (LOC) type semiconductor package by bonding the semiconductor chip to the lead frame with an adhesive member and sealing at least the semiconductor chip and the adhesive portion of the semiconductor chip and the lead frame with a sealing material. A heat-resistant adhesive coating film containing a resin having a deg, having a bonding start temperature in the range of 230 to 330 ° C., a residual solvent in a range of 0.03 to 1.00% by weight, and a residual solvent in an amount of 3.0% by weight or less, Consisting of composite adhesive sheet. 제 1항에 있어서, 내열성 접착제의 유리전이온도가 150~ 200℃범위인 것을 특징으로 하는 복합 접착 시트.The composite adhesive sheet according to claim 1, wherein the glass transition temperature of the heat resistant adhesive is in the range of 150 to 200 ° C. 제 1항에 있어서, 내열성 접착제에 트라아민과 테트라아민 등 아민기 3개 이상인 폴리아미노 화합물이 0.01~ 5.0중량%범위인 것을 특징으로 하는 복합 접착 시트.The composite adhesive sheet according to claim 1, wherein a polyamino compound having three or more amine groups such as triamine and tetraamine is in the range of 0.01 to 5.0% by weight in the heat resistant adhesive. 제 1항에 있어서, 내열성 접착제의 밀려나온 길이가 2.0~5.0mm 범위인 것을 특징으로 하는 복합 접착 시트.The composite adhesive sheet according to claim 1, wherein the extruded length of the heat resistant adhesive is in the range of 2.0 to 5.0 mm. 반도체 칩을 리드프레임에 접착부재로 접착하고, 적어도 반도체 칩, 및 반도체 칩과 리드프레임의 접착부를 밀봉재로 밀봉하여 LOC(lead-on chip)형 반도체 팩키지를 제조하기 위한 접착부재에 사용되는, 이미드기를 갖는 수지를 포함하고, 접착개시온도가 230~330℃범위이고, 잔류용매량이 0.03~1.00중량%범위이고, 잔류용제량이 3.0중량%이하이고, 밀려나온 길이가 2.0~5.0mm범위인 내열성 접착제로만으로 이루어진 내열성 접착제.Already used in the adhesive member for manufacturing the lead-on chip (LOC) type semiconductor package by bonding the semiconductor chip to the lead frame with an adhesive member and sealing at least the semiconductor chip and the adhesive portion of the semiconductor chip and the lead frame with a sealing material. It includes a resin having a rare group, the adhesion start temperature is 230 ~ 330 ℃ range, the residual solvent amount is 0.03 ~ 1.00% by weight, the residual solvent amount is 3.0% by weight or less, the extruded length is 2.0 ~ 5.0mm range Heat-resistant adhesive consisting only of adhesive. 제 2항에 있어서, 내열성 접착제의 유리전이온도가 150~ 200℃범위인 것을 특징으로 하는 내열성 접착제.The heat resistant adhesive according to claim 2, wherein the glass transition temperature of the heat resistant adhesive is in the range of 150 to 200 ° C. 제 2항에 있어서, 내열성 접착제에 트라아민과 테트라아민 등 아민기 3개 이상인 폴리아미노 화합물이 0.01~ 5중량%범위인것을 특징으로 하는 내열성 접착제.The heat resistant adhesive according to claim 2, wherein the heat resistant adhesive has a polyamino compound having three or more amine groups such as triamine and tetraamine in the range of 0.01 to 5% by weight.
KR1020020058450A 2002-09-26 2002-09-26 Heat resistant adhesive and adhesive tape for semiconductors KR20020079703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020058450A KR20020079703A (en) 2002-09-26 2002-09-26 Heat resistant adhesive and adhesive tape for semiconductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020058450A KR20020079703A (en) 2002-09-26 2002-09-26 Heat resistant adhesive and adhesive tape for semiconductors

Publications (1)

Publication Number Publication Date
KR20020079703A true KR20020079703A (en) 2002-10-19

Family

ID=27728468

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020058450A KR20020079703A (en) 2002-09-26 2002-09-26 Heat resistant adhesive and adhesive tape for semiconductors

Country Status (1)

Country Link
KR (1) KR20020079703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999396B2 (en) 2009-01-23 2011-08-16 Samsung Techwin Co., Ltd. Adhesive tape and semiconductor package using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999396B2 (en) 2009-01-23 2011-08-16 Samsung Techwin Co., Ltd. Adhesive tape and semiconductor package using the same

Similar Documents

Publication Publication Date Title
US6046072A (en) Process for fabricating a crack resistant resin encapsulated semiconductor chip package
EP1266926B1 (en) Adhesive polyimide resin and adhesive laminate
US20090053498A1 (en) Adhesive film for semiconductor use, metal sheet laminated with adhesive film, wiring circuit laminated with adhesive film, and semiconductor device using same, and method for producing semiconductor device
KR100481347B1 (en) Adhesive Film for Semiconductor, Lead Frame and Semiconductor Device Using the Same
JP4900244B2 (en) Thermoplastic resin composition for semiconductor, adhesive film, lead frame, semiconductor device using the same, and method for manufacturing semiconductor device
KR100266548B1 (en) Adhesive tape for electronic parts and liquid adhesive
KR100262417B1 (en) Film adhesive and production thereof
KR19990014024A (en) Adhesive tape for electronic parts
JP4213998B2 (en) Adhesive resin composition and film adhesive using the same
US20050165196A1 (en) Adhesive resin and film adhesive made by using the same
KR100243731B1 (en) Heat-resistant adhesive
KR100334475B1 (en) Adhesive tape for electronic parts
US6372080B1 (en) Process for fabricating a crack resistant resin encapsulated semiconductor chip package
JP3650493B2 (en) Adhesive tape for electronic parts
JP3074187B2 (en) Chip support substrate for semiconductor package, semiconductor device, and method of manufacturing the same
US6045886A (en) Adhesive tape for electronic parts
JP3839887B2 (en) Adhesive tape for electronic parts
JP3109707B2 (en) Heat resistant adhesive and semiconductor package containing the same
KR20020079703A (en) Heat resistant adhesive and adhesive tape for semiconductors
JP3535281B2 (en) Adhesive tape and liquid adhesive for electronic parts
TWI658936B (en) Cover layer and application thereof
JP2006282973A (en) Adhesive film, lead frame with adhesive film, and semiconductor device using them
JP3304479B2 (en) TAB adhesive tape
JP2005220356A (en) Adhesive film for semiconductor, semiconductor adhesive film-applied lead frame using the same, and semiconductor device
JP2001064618A (en) Adhesive film for semiconductor, lead frame provided with adhesive film for semiconductor and semiconductor device using the same

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application