KR20020076784A - Photocatalytic Coating Composition, Preparation Method Thereof and Coated Body Using the Same - Google Patents

Photocatalytic Coating Composition, Preparation Method Thereof and Coated Body Using the Same Download PDF

Info

Publication number
KR20020076784A
KR20020076784A KR1020010016907A KR20010016907A KR20020076784A KR 20020076784 A KR20020076784 A KR 20020076784A KR 1020010016907 A KR1020010016907 A KR 1020010016907A KR 20010016907 A KR20010016907 A KR 20010016907A KR 20020076784 A KR20020076784 A KR 20020076784A
Authority
KR
South Korea
Prior art keywords
coating composition
weight
group
photocatalyst
photocatalyst coating
Prior art date
Application number
KR1020010016907A
Other languages
Korean (ko)
Other versions
KR100403275B1 (en
Inventor
박태성
홍성창
김상범
황현태
차왕석
Original Assignee
주식회사 매그린
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 매그린 filed Critical 주식회사 매그린
Priority to KR10-2001-0016907A priority Critical patent/KR100403275B1/en
Publication of KR20020076784A publication Critical patent/KR20020076784A/en
Application granted granted Critical
Publication of KR100403275B1 publication Critical patent/KR100403275B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/02Polysilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: Provided are a photocatalyst coating composition excellent in the resolution of liquid/gas phase organic material and storage stability, which has wide specific surface area and forms a transparent thin photocatalyst coating film, a preparation thereof, and a coated body produced by using the photocatalyst coating composition. CONSTITUTION: The photocatalyst coating composition contains 4-50wt% of an organic silane(formula: R1aSi(OR2)4-a) or a partial condensate thereof, 5-85wt% of at least one semiconductor oxide selected from TiO2, SnO2, ZnO, ZrO2, and V2O5, 0.1-10wt% of an organic or inorganic acid as a storing stabilizer, wherein R1 and R2 are alkyl, alkyl halogenide, aryl, vinyl, or phenyl, and a is 0-3. The photocatalyst coating composition is produced by a process comprising the steps of: a) stirring 2-10pts.wt. of the organic silane(formula: R1aSi(OR2)4-a) or the partial condensate thereof and 10-50pts.wt. of a low alcohol; b) dropping a solution, comprising 2-10pts.wt. of deionized water, 10-50pts.wt. of the low alcohol, and 0.05-1pts.wt. of the organic or inorganic acid, to the solution of the a) step and stirring; c) stirring 5-30pts.wt. of the solution of the b) step, 10-50pts.wt. of the low alcohol, and 10-50pts.wt. of the deionized water and dropping 5-90pts.wt. of the semiconductor oxide sol and stirring. And the coated body is produced by impregnating a substrate into the solution of the photocatalyst coating composition and coating by pulling up the substrate or discharging the solution of the photocatalyst coating composition and then drying the coated substrate.

Description

광촉매 코팅 조성물, 그 제조방법 및 이를 사용하여 제조된 코팅체{Photocatalytic Coating Composition, Preparation Method Thereof and Coated Body Using the Same}Photocatalytic Coating Composition, Preparation Method Thereof and Coated Body Using the Same}

본 발명은 광촉매 코팅 조성물, 그 제조방법 및 이를 코팅하여 제조된 코팅체에 관한 것이다. 보다 구체적으로, 본 발명은 반도체 산화물 졸(sol)을 출발 물질로 하고, 광촉매 코팅 조성물 내에서 50㎚ 이하의 입자크기를 갖는 분말의 2차 응집체가 졸 상태로 분산될 수 있고, 상기 졸의 고형분 함량이 15% 이상인 광촉매 코팅 조성물 및 그 제조방법 및 이를 코팅하여 제조된 코팅체에 관한 것이다.The present invention relates to a photocatalyst coating composition, a preparation method thereof and a coating prepared by coating the same. More specifically, the present invention is a semiconductor oxide sol (sol) as a starting material, the secondary aggregates of the powder having a particle size of 50 nm or less in the photocatalyst coating composition can be dispersed in the sol state, the solid content of the sol The present invention relates to a photocatalyst coating composition having a content of 15% or more, a method for preparing the same, and a coating prepared by coating the same.

광화학(photochemistry) 분야는 전기적으로 여기된 분자들의 직접적인 반응에 관한 분야로서, 자외선이나 가시광선의 조사에 의하여 물질의 화학적 변형이 일어나는 반응, 즉 광에너지를 화학에너지로 전환하는 화학반응들을 수반한다. 광화학 반응에 의하여 기저상태의 분자가 빛의 파장별 영역에 따라서 다양한 여기상태를 거치고, 이들은 다시 에너지 준위가 이들은 다시 에너지 준위가 낮은 새로운 성분의 분자로 변형되므로 광화학은 태양에너지의 이용이라는 고차원적인 연구영역으로서 인식되고 있다. 현재 빛에너지를 유용한 에너지원으로 전환하는 방법은 크게 세 가지로 구분된다. 첫 번쩨로 자연의 광합성을 들 수 있는데, 이러한 빛에너지는 지구상의 모든 생명을 지탱하는 근본 에너지원이라 할 수 있으며 현대문명의 주 에너지원인 화석연료도 바로 이 광합성에 의하여 저장된 태양에너지가 지질학적 작용에 의하여 오랜 시간에 걸쳐 변형된 형태라고 볼 수 있다. 두 번째로는 광기전성 전지(photovoltaic cell)로서 이는 빛에너지를 직접 전기에너지로 전환시키는 장치이다. 그 기본적 원리는 주로 상이한 고체물질을 접합시켜 그 계면에서 발생한 전위사면을 이용하여 전류를 외부회로로 흐르게 하고 이 과정에서 전력을 얻는 것이다. 세 번째로 반도체 전극, 분말, 콜로이드 등을 빛에너지 흡수에 이용하는 광촉매를 들 수 있다. 이에 관한 연구는 1972년에 Fujishima와 Honda가 TiO2단결정 전극에 빛을 조사하면 물이 수소와 산소로 분해된다는 사실을 처음으로 보고함으로써 시작되었다. 이후, 이 분야의 연구는 그 결과의 엄청난 잠재성 때문에 폭발적으로 증가하였으며 현재도 꾸준히 연구되고 있다. 반도체 광촉매는 그 밴드 갭(band gap) 이상의 에너지를 갖는 빛을 흡수함으로써 생성된 공유 띠 정공과 전도 띠 전자의 화학전위 에너지를 이용하여 계면에서 전자전이(산화ㆍ환원 반응)를 일으킴으로써 빛에너지를 화학에너지로 전환시킨다. 여러 종류의 반도체 물질이 이용될 수 있으며 그 물리적 형태로서 광전기화학적(photoelectrochemical) 전지에서는 고체전극으로, 기체상 광반응기에서는 분말 또는 박막 형태로, 슬러리 형태의(slurry-typed) 액상 광반응기에서는 콜로이드 상으로 이용된다. 초기 광촉매 연구는 주로 태양에너지의 전환ㆍ저장에 관련된 일들이 주종을 이루었으나 점차 다른 분야로의 성공적인 응용사례가 보고되기 시작하였다.The field of photochemistry relates to the direct reaction of electrically excited molecules, and involves chemical reactions in which chemical transformation of a material occurs by irradiation of ultraviolet or visible light, that is, chemical reactions that convert light energy into chemical energy. By photochemical reactions, the molecules in the ground state undergo various excitation states according to the wavelength range of the light.Then, the energy levels are transformed into molecules of new components with lower energy levels. It is recognized as an area. Currently, there are three ways to convert light energy into useful energy sources. The first is the photosynthesis of nature. Light energy is a fundamental energy source that sustains all life on Earth, and fossil fuel, the main energy source of modern civilization, is the geological action of solar energy stored by photosynthesis. It can be seen that the modified form over a long time. The second is a photovoltaic cell, a device that converts light energy directly into electrical energy. The basic principle is to bond different solid materials, and use electric potential slopes generated at the interface to flow current to an external circuit and obtain power in this process. Third, the photocatalyst which uses a semiconductor electrode, powder, a colloid, etc. for light energy absorption is mentioned. The study began in 1972 when Fujishima and Honda first reported that water decomposed into hydrogen and oxygen when irradiated with TiO 2 single crystal electrodes. Since then, research in this area has exploded due to the enormous potential of the results and is still being studied. The semiconductor photocatalyst uses the chemical potential energy of the shared band holes and the conduction band electrons generated by absorbing light with energy above the band gap to generate electron energy (oxidation / reduction reaction) at the interface. Convert to chemical energy. Various kinds of semiconductor materials can be used, and their physical forms are solid electrodes in photoelectrochemical cells, powder or thin film in gas phase photoreactors, and colloidal phase in slurry-typed liquid photoreactors. Used as Early photocatalyst research mainly focused on the conversion and storage of solar energy, but more successful applications in other fields began to be reported.

한편, 태양에너지를 화학에너지로 전환하는 주 분야의 연구실적이 답보 상태에 빠진 반면, 타 분야 특히 오염된 물 또는 공기의 정화에 광촉매를 이용하는 분야가 각광을 받고 있는데 최근에는 오히려 이러한 환경문제로 응용시키는 연구가 광촉매의 주 연구영역이 될 정도로 활발히 진행되고 있다.On the other hand, while research in the main field of converting solar energy into chemical energy has fallen short of its status, other fields, in particular, the use of photocatalysts for the purification of polluted water or air, have been in the spotlight. The research has been actively conducted to become the main research area of photocatalyst.

유독 유기물질의 처리방식은 기존의 전형적인 화학적ㆍ생물학적 처리, 물리적 흡착, 촉매를 이용하는 방법 등이 있는데 이와 같은 방식은 다량의 산화제 등 화학물질 사용, 환경에 민감한 미생물의 적용, 흡착물의 2차 처리 및 고가의 귀금속 촉매 사용 등의 문제점이 있는데 광촉매를 이용한 유독 유기물의 처리는 상기와 같은 문제를 해결할 수 있어 환경 친화적일 뿐만 아니라, 또한 상온ㆍ상압 조건하에서 반응이 진행되므로 관련 장치의 운전이 용이하고 약간의 시스템 변형만으로 액상ㆍ기상 모두에 적용할 수 있다는 장점을 갖고 있다.Treatment of toxic organic substances includes conventional chemical and biological treatment, physical adsorption, and the use of catalysts. Such methods include the use of a large amount of chemicals such as oxidants, the application of microorganisms sensitive to the environment, and the secondary treatment of adsorbates. There are problems such as the use of expensive noble metal catalysts, but the treatment of toxic organics using photocatalysts solves the above problems, which is not only environmentally friendly, but also the reaction proceeds under normal temperature and pressure conditions, making it easier to operate related devices. It has the advantage that it can be applied to both liquid phase and gas phase only by system modification.

한편, 광촉매로 사용 가능한 화합물로는 TiO2, WO3, SrTiO3, Fe2O3, SnO2, ZnO 등 많은 화합물들이 보고되고 있으나 화학적 안정성, 취급의 용이성, 안전성, 경제성 등으로 판단하여 TiO2(이산화티탄 또는 티타니아)가 현재로서는 가장 각광받고 있다.On the other hand, as a compound that can be used as a photocatalyst, many compounds such as TiO 2 , WO 3 , SrTiO 3 , Fe 2 O 3 , SnO 2 , ZnO have been reported, but TiO 2 has been determined based on chemical stability, ease of handling, safety, and economic efficiency. (Titanium dioxide or titania) is currently in the spotlight.

이산화티탄 광촉매 도포액을 제조하는 경우, 출발원료로는 티타늄 화합물의 성질에 따라 크게 유기계 및 무기계로 분류된다. 유기계는 주로 내열성 기판에 도포 및 소성하여 고정하는 경우의 원료화합물로 사용되는데, 반응성이 우수한 티타늄 알콕사이드, 안정성이 높은 티타늄 킬레이트 화합물 등이 이에 속한다. 이 중티타늄 알콕사이드는 반응성이 가장 우수하여 공기나 용제 중에 존재하는 소량의 수분으로도 급속히 가수분해하여 수산화물을 형성할 수 있고, 비교적 저온의 가열 건조에 의하여 고활성을 갖는 TiO2광촉매를 형성시킬 수 있으나 가격이 비싼 단점이 있고, 티타늄 킬레이트는 수분에 안정한 물질이고 취급 또한 용이하지만 결정화 온도가 400∼500℃로 약간 높다는 결점이 있다. 한편, 무기계인 이산화티탄 분말 또는 졸 원료는 주로 저온에서 도포 건조하여 고정하는 경우의 원료화합물로 사용된다. 예를 들면, 미국특허 제6,107,241호에 개시된 바와 같이 사염화티탄 등의 티타늄염의 수용액에 암모니아 수용액 또는 수산화나트륨 수용액을 첨가하는 등, 이산화티탄의 전구체로 사용되는 사염화티탄, 질산티타늄, 황산티타늄 등은 알칼리 가수분해 또는 가열 가수분해 공정이 필수적이며, 저가인 장점을 갖지만 취급이 불편한 단점이 있다. 이에 비하여, 같은 무기계인 TiO2분말 또는 졸 원료는 손쉽게 구할 수 있는 장점이 있다. 그러나, 분말 원료의 경우 액상에서의 분산이 불충분시 1차 입자가 응집되며, 분말 분산액 도포 시 백화 현상이 나타날 수 있어서 그 이용에 세심한 주의를 요한다. 또한, 졸 원료의 경우 산화물 함유량이 10% 이상이 될 때 2차 입자(1차 입자들의 응집체) 크기를 100㎚ 이하로 제조하기 곤란하여 도포층의 투명도를 감소시킬 뿐만 아니라 경화된 도포층의 내마모성, 부착성 및 광촉매 활성 등이 저하되는 문제가 있다.When preparing a titanium dioxide photocatalyst coating liquid, starting materials are classified into organic and inorganic systems according to the properties of the titanium compound. The organic system is mainly used as a raw material compound when applied to a heat resistant substrate and fixed by firing. Examples thereof include titanium alkoxide having excellent reactivity and titanium chelate compound having high stability. This titanium alkoxide has the highest reactivity, so it can be rapidly hydrolyzed to form a hydroxide even with a small amount of water present in air or a solvent, and can form a highly active TiO 2 photocatalyst by relatively low temperature heat drying. However, there is an expensive disadvantage, titanium chelate is a material that is stable to moisture and easy to handle, but the crystallization temperature is 400 ~ 500 ℃ slightly high. On the other hand, the inorganic titanium dioxide powder or sol raw material is mainly used as a raw material compound in the case of fixing by applying and drying at low temperature. For example, titanium tetrachloride, titanium nitrate, titanium sulfate and the like used as precursors of titanium dioxide, such as adding an aqueous ammonia solution or an aqueous sodium hydroxide solution to an aqueous solution of a titanium salt such as titanium tetrachloride, as disclosed in US Pat. No. 6,107,241, are alkali. A hydrolysis or heat hydrolysis process is essential and has the advantage of low cost but has the disadvantage of inconvenient handling. In contrast, the same inorganic TiO 2 powder or sol raw material has an advantage that can be easily obtained. However, in the case of powder raw materials, primary particles are agglomerated when the dispersion in the liquid phase is insufficient, and whitening may occur when the powder dispersion is applied. In addition, in the case of a sol raw material, when the oxide content is 10% or more, it is difficult to manufacture secondary particles (agglomerates of primary particles) to 100 nm or less, which not only reduces the transparency of the coating layer but also wear resistance of the cured coating layer. , Adhesion, photocatalytic activity, and the like are lowered.

한편, 일반적으로 광산화 반응에 대한 광촉매의 활성은 TiO2(anatase)>TiO2(rutile)>ZnO>ZrO2>SnO2>V2O5순으로 알려져 있고, 그 각각의 경우에 있어서도 제조방법에 따라 다소 활성의 차이가 나타나는 것으로 알려져 있다. 광촉매에서 전자-정공 쌍의 재결합 방지 또는 지연 즉, 전자-정공 쌍의 분리 효과를 증가시키고 광에 의하여 여기되는 에너지의 범위를 확장시키기 위하여 다양한 광촉매 표면개질 방법이 시도되고 있는데, 그 중 첫째로 반도체 광촉매에 귀금속을 첨가하여 광촉매 반응의 속도를 증가시키거나 반응생성물을 변화시킬 수 있다. 금속이 첨가된 광촉매는 전자-정공 쌍이 생성된 후 전자가 금속으로 이동하여 전자-정공의 재결합이 지연되며 정공은 자유롭게 반도체 표면으로 이동하여 광촉매 산화반응에 참여하게 된다. 두 번째로 광촉매에 반도체 산화물을 혼합시킨 복합반도체 광촉매 제조방법으로서, 예를 들면 CdS-TiO2복합 반도체 시스템에서 TiO2(띠간격=3.2eV) 부분을 활성시키기 위하여는 부족하나 CdS(2.5eV)의 전자를 여기시키는데 충분한 광에너지가 공급된다면 CdS 공유띠에서 전도띠로 여기된 전자는 에너지 사면을 따라 TiO2의 전도띠로 이동하게 되고, CdS의 공유띠에 생성된 정공은 그대로 CdS에 남게 된다. 결국, CdS로부터 TiO2로의 전자 이동은 전하의 분리효과를 증진시켜 광촉매 반응의 효율을 향상시키는 것이다.On the other hand, photocatalytic activity of photocatalytic reactions is generally known in the order of TiO 2 (anatase)> TiO 2 (rutile)>ZnO> ZrO 2 > SnO 2 > V 2 O 5 . Therefore, it is known that the difference in activity appears. Various photocatalyst surface modification methods have been attempted to increase or reduce the recombination of electron-hole pairs in photocatalysts, that is, to increase the separation effect of electron-hole pairs and to expand the range of energy excited by light. Precious metals can be added to the photocatalyst to speed up the photocatalytic reaction or to change the reaction product. In the metal-added photocatalyst, the electrons move to the metal after the electron-hole pair is generated to delay the recombination of the electron-holes, and the holes move freely to the semiconductor surface to participate in the photocatalytic oxidation reaction. Secondly, a method for manufacturing a composite semiconductor photocatalyst in which a semiconductor oxide is mixed with a photocatalyst, for example, CdS (2.5eV) is insufficient for activating TiO 2 (band spacing = 3.2 eV) in a CdS-TiO 2 composite semiconductor system. If sufficient light energy is supplied to excite the electrons, electrons excited by the conduction band in the CdS covalent band move to the conduction band of TiO 2 along the energy slope, and the holes generated in the covalent band of CdS remain in the CdS. As a result, electron transfer from CdS to TiO 2 enhances the separation effect of the charge to improve the efficiency of the photocatalytic reaction.

또 다른 방법으로는 반도체에 전이금속을 도핑하는 방법이 있는데, 이의 효과는 전자를 포획하여 전자-정공의 재결합을 지연시키고자 하는 것이다.Another method is to dope a transition metal in a semiconductor, the effect of which is to trap electrons to delay electron-hole recombination.

또한, 본 발명이 속하는 분야에 있어서, 광촉매는 그 입자가 용액 내에 분산된 형태로 사용하는 것이 촉매 활성면에서 우수한 것으로 알려져 있으나, 실제 다양한 용도에 적용하기 위하여는 그 취급상의 용이성으로 인하여 적절한기질(substrate)에 코팅하여 적용하는 것이 널리 알려져 있다. 예를 들면, 일본 특개평 8-164334호는 티타늄 산화물 입자를 함유하는 조성물 및 실리콘 화합물로 기질을 코팅하고, 상기 코팅된 기질을 건조 또는 소성하여 기질의 표면에 티타늄 산화물을 고정시키는 방법을 개시하고 있으며, 미국특허번호 제5,919,726호는 기질상에 실리카 갤을 함유하는 언더코팅(undercoating)을 형성한 후에 상기 언더코팅과 사염화티타늄을 접촉시킨 코팅된 기질을 열처리하는 광촉매 물질의 제조방법을 개시하고 있다.In addition, in the field of the present invention, photocatalysts are known to be excellent in terms of catalytic activity in that the particles are dispersed in a solution. However, in order to be applied to various applications, a suitable substrate ( Coating and application to substrates are well known. For example, Japanese Patent Laid-Open No. Hei 8-164334 discloses a method of coating a substrate with a composition containing a titanium oxide particle and a silicone compound, and drying or firing the coated substrate to fix the titanium oxide on the surface of the substrate. And U. S. Patent No. 5,919, 726 discloses a method for preparing a photocatalytic material which heat-treats a coated substrate in which the undercoating and titanium tetrachloride are contacted after forming an undercoating containing silica gallium on the substrate. .

상기와 같이, 광촉매 코팅 조성물을 기재에 코팅된 형태로 사용하기 위하여는 코팅된 광촉매가 적절한 내마모성, 내후성 등의 물성을 만족하고 있을 것이 요구된다. 이와 관련하여, 내열성, 내마모성, 내한성, 내후성, 전기적 특성 등이 우수한 실리콘을 이용하여 기질 코팅용 광촉매 코팅 조성물을 제조하는 방법이 시도되었다. 이러한 실리콘(silicone)계 화합물은 일반식 RnSi(OR')4-n(n=1∼3)으로 표시되며, 이를 코팅재로 사용할 경우 우수한 물성 및 표면특성을 갖는 것으로 알려져 있다. 미국특허번호 제5,755,867호는 경화시 실리콘 수지의 코팅을 형성할 수 있는 코팅 형성 성분 및 그 안에 분산된 광촉매로 이루어지는 광촉매 코팅 조성물을 개시하고 있으며, 상기 코팅 형성 성분은 C1∼8인 1가의 유기기 및 C1∼4의 알콕시기를 갖는 오가노폴리실록산으로 이루어지고, 코팅 조성물이 기질에 적용되고 경화되어 실리콘 코팅을 형성하고 있다. 또한, 상기 코팅이 빛에 노출되는 경우 코팅면상에서 광촉매가 여기되어 실리콘(silicone) 분자의 규소 원자에 부착된 유기기가 물의 존재 하에서 히드록실기로 대치되도록 하는 광촉매화를 제공하여 코팅면을 친수성화시킴으로써 내후성을 향상시킨다. 그러나, 상기 특허는 저장성이 좋지 않고, 단순히 광촉매 성분으로 통상적인 TiO2만을 사용하고 있어, 촉매 효율도 그리 우수하지 않았다.As described above, in order to use the photocatalytic coating composition in a form coated on a substrate, it is required that the coated photocatalyst satisfies physical properties such as proper wear resistance and weather resistance. In this regard, a method of preparing a photocatalytic coating composition for coating a substrate using silicon having excellent heat resistance, abrasion resistance, cold resistance, weather resistance, and electrical characteristics has been attempted. Such a silicon-based compound is represented by the general formula R n Si (OR ′) 4-n (n = 1 to 3), and is known to have excellent physical properties and surface properties when used as a coating material. US Patent No. 5,755,867 discloses a photocatalyst coating composition comprising a coating forming component capable of forming a coating of a silicone resin upon curing and a photocatalyst dispersed therein, wherein the coating forming component is a C 1-8 monovalent oil. Consisting of an instrument and an organopolysiloxane having a C 1-4 alkoxy group, the coating composition is applied to the substrate and cured to form a silicone coating. In addition, when the coating is exposed to light, the photocatalyst is excited on the coating surface to provide a photocatalysis that allows organic groups attached to silicon atoms of silicon molecules to be replaced with hydroxyl groups in the presence of water to make the coating surface hydrophilic. This improves weather resistance. However, the patent does not have good storage properties, and simply uses conventional TiO 2 as a photocatalyst component, and the catalyst efficiency is not so excellent.

이에 대하여, 본 발명자들은 종래에 알려진 이산화티탄, 산화아연, 이산화지르코늄 등의 반도체 산화물 또는 상기 반도체 산화물에 텅스텐, 팔라듐, 백금 등을 더 첨가하고 그 함량을 적절하게 조절함으로써 광촉매 반응의 효율을 향상시키며, 그리고 기질 상에 우수한 투명성, 내후성 등을 갖는 코팅층을 형성시킴과 동시에 저장안정성 역시 향상된 광촉매 코팅 조성물을 개발하게 된 것이다.In contrast, the present inventors further improve the efficiency of the photocatalytic reaction by further adding tungsten, palladium, platinum, and the like to the semiconductor oxides or the semiconductor oxides known in the art, such as titanium dioxide, zinc oxide, zirconium dioxide, and appropriately adjusting the content thereof. In addition, while forming a coating layer having excellent transparency, weather resistance, and the like on the substrate, storage stability is also improved.

따라서, 본 발명의 목적은 액상/기상의 유기물질의 분해성능이 우수하고 저장안정성이 우수한 광촉매 코팅 조성물을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a photocatalyst coating composition having excellent degradability of liquid / phase organic materials and excellent storage stability.

본 발명의 다른 목적은 기질에 코팅 시 넓은 비표면적을 가질 뿐 아니라 투명하고 얇은 광촉매 코팅막을 형성시킴으로써 가시광선 영역의 빛을 이용할 수 있는 광촉매 코팅 조성물을 제공하는 것이다.It is another object of the present invention to provide a photocatalyst coating composition which can utilize light in the visible region by forming a transparent and thin photocatalyst coating film as well as having a large specific surface area when coating a substrate.

본 발명의 또 다른 목적은 광촉매 코팅 조성물 용액 내 분말의 2차 응집체 크기가 50㎚ 이하인 광촉매 졸 상태로 분산될 수 있고, 졸의 고형분 함량이 15% 이상인 광촉매 코팅 조성물을 제공하는 것이다.It is another object of the present invention to provide a photocatalyst coating composition which can be dispersed in a photocatalyst sol state in which the secondary aggregate size of the powder in the photocatalyst coating composition solution is 50 nm or less, and the solid content of the sol is 15% or more.

본 발명의 또 다른 목적은 비교적 저렴한 비용으로 상기 촉매 조성물을 제조하는 방법을 제공하는 것이다.It is another object of the present invention to provide a method for preparing the catalyst composition at a relatively low cost.

본 발명의 또 다른 목적은 상기 광촉매 코팅 조성물을 기질에 고정시켜 광촉매 효율 및 기계적 강도가 우수한 촉매체의 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a method for preparing a catalyst body having excellent photocatalytic efficiency and mechanical strength by fixing the photocatalyst coating composition to a substrate.

상기와 같은 목적을 달성하기 위한 본 발명의 광촉매 코팅 조성물은 하기 화학식 1로 표시되는 유기실란 또는 그의 부분축합물 4∼50 중량%; TiO2, SnO2, ZnO, ZrO2및 V2O5로 이루어진 군으로부터 1 또는 그 이상이 선택되는 반도체 산화물 5∼85 중량%; 및 유기 또는 무기산인 저장 안정제 0.1∼10 중량%를 포함하는 것을 특징으로 한다:Photocatalyst coating composition of the present invention for achieving the above object is 4 to 50% by weight of an organosilane represented by the formula (1) or a partial condensate thereof; 5 to 85% by weight of a semiconductor oxide selected from the group consisting of TiO 2 , SnO 2 , ZnO, ZrO 2 and V 2 O 5 ; And from 0.1 to 10% by weight of a storage stabilizer which is an organic or inorganic acid:

화학식 1Formula 1

R1 aSi(OR2)4-a R 1 a Si (OR 2 ) 4-a

상기 식에서, R1및 R2는 알킬기, 할로겐화 알킬기, 아릴기, 비닐기 또는 페닐기이고, a는 0∼3이다.In the above formula, R 1 and R 2 are an alkyl group, a halogenated alkyl group, an aryl group, a vinyl group or a phenyl group, and a is 0-3.

상기 목적을 달성하기 위한 본 발명의 광촉매 코팅 조성물의 제조방법은 a) 상기 화학식 1로 표시되는 유기실란 또는 그 부분축합물 2∼10 중량부 및 저급 알코올 10∼50 중량부를 0∼25℃의 온도 및 교반 하에서 0.5∼1.5 시간 동안 용해시키는 단계; b) 탈이온수 2∼10 중량부, 저급 알코올 10∼50 중량부 및 유기 또는 무기산 0.05∼1 중량부를 혼합한 용액을 상기 a) 단계에서 제조된 용액에 적하시켜 1∼3 시간에 걸쳐 교반 하에서 반응시키는 단계; 및 c) 상기 b) 단계를 통하여 제조된 용액 5∼30 중량부, 저급 알코올 10∼50 중량부, 및 탈이온수 10∼50 중량부를 0∼25℃의 온도 및 교반 하에서 0.5∼1.5 시간 동안 TiO2, SnO2, ZnO, ZrO2및 V2O5로 이루어진 군으로부터 1 또는 그 이상이 선택되는 반도체 산화물 졸 5∼90 중량부를 적하시키면서 2∼4 시간 동안 교반 하에서 반응시키는 단계를 포함하는 것을 특징으로 한다.Method for producing a photocatalyst coating composition of the present invention for achieving the above object is a) 2 to 10 parts by weight of the organosilane represented by the formula (1) or its partial condensate and 10 to 50 parts by weight of lower alcohol 0 to 25 ℃ And dissolving for 0.5 to 1.5 hours under stirring; b) A solution of 2 to 10 parts by weight of deionized water, 10 to 50 parts by weight of lower alcohol and 0.05 to 1 part by weight of an organic or inorganic acid is added dropwise to the solution prepared in step a) and reacted under stirring for 1 to 3 hours. Making a step; And c) TiO 2 for 0.5~1.5 hours under step b) a solution of 5 to 30 parts by weight, 10 to 50 parts by weight of a lower alcohol, and deionized water 10 to 50 temperature and agitation of 0~25 parts by weight ℃ prepared by the steps , SnO 2 , ZnO, ZrO 2 and V 2 O 5 The step of reacting under stirring for 2 to 4 hours while dropping 5 to 90 parts by weight of a semiconductor oxide sol selected from one or more selected from the group consisting of do.

도 1은 실시예 4에 따라 광촉매 효율을 측정하기 위한 회분식 반응 장치를 개략적으로 도시한 도면이다.1 is a schematic view of a batch reactor for measuring photocatalytic efficiency according to Example 4. FIG.

도 2는 실시예 2, 실시예 3 및 비교실시예 2에 따라 제조된 광촉매 코팅 조성물 용액을 사용한 광촉매체를 대상으로 자외선 조사시간에 따른 트리클로로에틸렌의 분해효율을 나타내는 선도이다.2 is a diagram showing the decomposition efficiency of trichloroethylene according to the ultraviolet irradiation time for the photocatalyst using the photocatalyst coating composition solution prepared according to Examples 2, 3 and Comparative Example 2.

도 3은 실시예 2, 실시예 3 및 비교실시예 2에 따라 제조된 광촉매 코팅 조성물 용액을 사용한 광촉매체를 대상으로 자외선 조사시간에 따른 아세톤의 분해효율을 나타내는 선도이다.Figure 3 is a diagram showing the decomposition efficiency of acetone according to the ultraviolet irradiation time for the photocatalyst using the photocatalyst coating composition solution prepared according to Example 2, Example 3 and Comparative Example 2.

도 4는 실시예 1, 실시예 3 및 비교실시예 2에 따라 제조된 광촉매 코팅 조성물 용액을 사용한 광촉매체를 대상으로 자외선 조사시간에 따른 메탄올의 분해효율을 나타내는 선도이다.Figure 4 is a diagram showing the decomposition efficiency of methanol according to the ultraviolet irradiation time for the photocatalyst using the photocatalyst coating composition solution prepared according to Example 1, Example 3 and Comparative Example 2.

도 5는 실시예 1, 실시예 3 및 비교실시예 2에 따라 제조된 광촉매 코팅 조성물 용액을 사용한 광촉매체를 대상으로 자외선 조사시간에 따른 톨루엔의 분해효율을 나타내는 선도이다.FIG. 5 is a diagram showing the decomposition efficiency of toluene according to UV irradiation time for a photocatalyst using a photocatalyst coating composition solution prepared according to Examples 1, 3 and Comparative Example 2. FIG.

*도면 주요부호에 대한 설명** Description of the major symbols in the drawings *

1 : 반응기 부분2 : 교반기(stirrer)1 reactor part 2 stirrer

3 : 항온조/순환장치4 : 공기통(air bomb)3: thermostat / circulator 4: air bomb

5 : 분석기 부분6 : 데이터 입수 시스템5 analyzer part 6 data acquisition system

본 발명의 목적은 하기의 설명에 의하여 모두 달성될 수 있다.The objects of the present invention can be achieved by the following description.

본 발명의 광촉매 코팅 조성물 중에 사용되는 유기실란은 하기 화학식 1에 의하여 표시된다:The organosilane used in the photocatalyst coating composition of the present invention is represented by the following general formula (1):

화학식 1Formula 1

R1 aSi(OR2)4-a R 1 a Si (OR 2 ) 4-a

상기 식에서, R1및 R2는 알킬기, 할로겐화 알킬기, 아릴기, 비닐기 또는 페닐기이고, a는 0∼3이다.In the above formula, R 1 and R 2 are an alkyl group, a halogenated alkyl group, an aryl group, a vinyl group or a phenyl group, and a is 0-3.

이러한 유기실란 화합물의 예로는 메틸트리메톡시실란, 메틸트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 비닐메틸디메톡시실란, 비닐메틸디에톡시실란, 페닐트리메톡시실란, 테트라에톡시실란, 디부톡시디메틸실란, 부톡시트리메틸실란, 디페닐에톡시비닐실란, 메틸트리이소프로폭시실란, 테트라페녹시실란, 테트라프로폭시실란 등이며, 단독 또는2 이상의 화합물이 함께 사용될 수 있다. 상기 유기실란 화합물의 함량은 광촉매 코팅 조성물 중량을 기준으로 4∼50 중량%이며, 바람직하게는 8∼25 중량%이다.Examples of such organosilane compounds include methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, vinylmethyldimethoxysilane, vinylmethyldie Methoxysilane, phenyltrimethoxysilane, tetraethoxysilane, dibutoxydimethylsilane, butoxytrimethylsilane, diphenylethoxyvinylsilane, methyltriisopropoxysilane, tetraphenoxysilane, tetrapropoxysilane, and the like. Single or two or more compounds may be used together. The content of the organosilane compound is 4 to 50% by weight, preferably 8 to 25% by weight based on the weight of the photocatalyst coating composition.

본 발명의 광촉매 코팅 조성물 중에서 광촉매 반도체 산화물은 TiO2, SnO2, ZnO, ZrO2및 V2O5로 이루어진 군으로부터 1 또는 그 이상이 선택된다. 바람직하게는 도포 후 피막의 투명도를 감소시키지 않도록 평균입경이 5∼20㎚이며 광촉매 활성이 높은 아나타아제 결정구조인 TiO2, 평균입경이 15∼50㎚인 SnO2, 루타일 결정구조인 TiO2, ZnO, ZrO2, V2O5등을 포함하며 단독 또는 2 이상의 화합물이 함께 사용될 수 있다. 이러한 복합 반도체 산화물 성분의 함량은 광촉매 코팅 조성물 중량을 기준으로 5∼85 중량%이며, 30∼80 중량%가 바람직하다. 이때, 5 중량% 미만인 경우에는 광촉매 활성이 높은 피막을 얻기 어렵고 85 중량% 이상인 경우에는 피막의 경도가 낮아지고 내구성이 감소하는 문제점이 있다.In the photocatalytic coating composition of the present invention, the photocatalytic semiconductor oxide is selected from the group consisting of TiO 2 , SnO 2 , ZnO, ZrO 2 and V 2 O 5 . Preferably, TiO 2 having an average particle diameter of 5 to 20 nm and a high photocatalytic activity, SnO 2 having an average particle diameter of 15 to 50 nm, and TiO of a rutile crystal structure so as not to reduce the transparency of the film after coating. 2 , ZnO, ZrO 2 , V 2 O 5, and the like, and may be used alone or in combination of two or more compounds. The content of such a composite semiconductor oxide component is 5 to 85% by weight based on the weight of the photocatalyst coating composition, preferably 30 to 80% by weight. At this time, when the content is less than 5% by weight, it is difficult to obtain a high photocatalytic activity film. When the content is 85% by weight or more, the hardness of the film is lowered and durability is decreased.

본 발명의 광촉매 코팅 조성물 중에 있어서, 선택적 성분으로서 텅스텐, 팔라듐, 백금, 몰리브덴, 철 및 망간으로 이루어진 군으로부터 1 또는 그 이상이 선택되는 금속의 전구체를 더 포함할 수 있다. 이러한 금속 전구체의 예로는 암모늄 텅스테이트, 팔라듐 나이트레이트, 염화 백금산, 몰리브덴 클로라이드, 염화제이철(ferric chlororide), 망간 나이트레이트(manganese nitrate) 등이 있으며, 상기 반도체 산화물에 첨가 또는 담지되어 광촉매 활성 발현 시 생성된 전자-정공 쌍의 재결합을 방지하거나 지연시킨다. 즉, 전자-정공 쌍의 분리효과를 증가시킴으로써 광촉매 반응의 효율을 향상시킬 수 있는 것이다. 이때, 상기 금속 전구체 내의 금속의 함량은 상기 반도체 산화물의 금속(Ti, Sn, Zn, Zr 및 V)의 중량 기준으로 0.5∼3.0 중량%, 바람직하게는 0.5∼1.5 중량%이다.In the photocatalyst coating composition of the present invention, an optional component may further include a precursor of a metal selected from the group consisting of tungsten, palladium, platinum, molybdenum, iron and manganese. Examples of such metal precursors include ammonium tungstate, palladium nitrate, chloroplatinic acid, molybdenum chloride, ferric chlororide, manganese nitrate, and the like when added or supported on the semiconductor oxide to express photocatalytic activity. Prevent or delay recombination of the resulting electron-hole pairs. That is, the efficiency of the photocatalytic reaction can be improved by increasing the separation effect of the electron-hole pair. At this time, the content of the metal in the metal precursor is 0.5 to 3.0% by weight, preferably 0.5 to 1.5% by weight based on the weight of the metal (Ti, Sn, Zn, Zr and V) of the semiconductor oxide.

본 발명의 광촉매 코팅 조성물에 있어서, 유기 또는 무기산은 광촉매 용액 제조 시 pH 및 반응속도 조절용으로 사용되며, 특히 제조된 광촉매 용액의 저장 안정성을 확보할 수 있도록 한다. 이러한 산의 종류로는 예를 들면, 초산, 인산, 황산, 염산, 질산, 클로로설폰산, 파라-톨루엔설폰산, 트리클로로아세트산, 이들의 혼합물 등이 사용된다.In the photocatalyst coating composition of the present invention, the organic or inorganic acid is used for pH and reaction rate control when preparing the photocatalyst solution, and in particular, to ensure the storage stability of the prepared photocatalyst solution. Examples of such acids include acetic acid, phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, chlorosulfonic acid, para-toluenesulfonic acid, trichloroacetic acid, mixtures thereof, and the like.

상기 광촉매 코팅 조성물 내에는 50㎚ 이하의 입자크기를 갖는 반도체산화물 분말의 2차 응집체가 졸 상태로 분산될 수 있고, 상기 졸의 고형분 함량이 15% 이상이다.In the photocatalyst coating composition, secondary aggregates of the semiconductor oxide powder having a particle size of 50 nm or less may be dispersed in a sol state, and the solid content of the sol is 15% or more.

한편, 상기 광촉매 코팅 조성물은 하기의 방법에 따라 제조될 수 있다:On the other hand, the photocatalyst coating composition may be prepared according to the following method:

먼저, 하기 화학식 1로 표시되는 유기실란 또는 그 부분축합물 2∼10 중량부 및 저급 알코올 10∼50 중량부를 0∼25℃의 온도 및 교반 하에서 0.5∼1.5 시간 동안 용해시킨다.First, 2 to 10 parts by weight of the organosilane represented by the following formula (1) or a partial condensate thereof and 10 to 50 parts by weight of the lower alcohol are dissolved for 0.5 to 1.5 hours at a temperature of 0 to 25 ° C and stirring.

화학식 1Formula 1

R1 aSi(OR2)4-a R 1 a Si (OR 2 ) 4-a

상기 식에서, R1및 R2는 알킬기, 할로겐화 알킬기, 아릴기, 비닐기 또는 페닐기이고, a는 0∼3이다.In the above formula, R 1 and R 2 are an alkyl group, a halogenated alkyl group, an aryl group, a vinyl group or a phenyl group, and a is 0-3.

상기에서 물 및 저급 알코올은 광촉매 코팅 조성물의 각 성분의 분산 매트릭스로 사용되는 것으로, 이때 저급 알코올의 예로는 메탄올, 에탄올, 이소프로필 알코올, 노르말 부탄올 등을 들 수 있다. 또한, 유기실란 또는 그 부분축합물은 전술한 바와 동일하다.The water and the lower alcohol are used as the dispersion matrix of each component of the photocatalyst coating composition, and examples of the lower alcohol include methanol, ethanol, isopropyl alcohol, normal butanol, and the like. In addition, organosilane or its partial condensate is the same as that mentioned above.

그 다음, 탈이온수 2∼10 중량부, 저급 알코올 10∼50 중량부 및 유기 또는 무기산 0.05∼1 중량부를 혼합한 용액을 전 단계에서 제조된 용액에 적하시켜 1∼3 시간에 걸쳐 교반 하에서 반응시킨다. 이때, 첨가되는 유기 또는 무기산의 기능은 전술한 바와 같고, 광촉매 용액의 최종 pH 또는 저장안정성을 고려하여 1 또는 2 이상 사용할 수 있다.Then, a solution of 2 to 10 parts by weight of deionized water, 10 to 50 parts by weight of lower alcohol and 0.05 to 1 part by weight of an organic or inorganic acid is added dropwise to the solution prepared in the previous step and reacted under stirring for 1 to 3 hours. . At this time, the function of the organic or inorganic acid to be added is as described above, may be used 1 or 2 or more in consideration of the final pH or storage stability of the photocatalyst solution.

상기와 같이 제조된 용액 5∼30 중량부, 저급 알코올 10∼50 중량부, 및 탈이온수 10∼50 중량부를 0∼25℃의 온도 및 교반 하에서 0.5∼1.5 시간 동안 TiO2, SnO2, ZnO, ZrO2및 V2O5로 이루어진 군으로부터 1 또는 그 이상이 선택되는 반도체 산화물 졸 5∼90 중량부를 적하시키면서 2∼4 시간 동안 교반 하에서 반응시킴으로써 최종적인 광촉매 코팅 조성물이 제조된다. 상기 반도체 산화물 졸은 나노 크기를 갖기 때문에 후술하는 금속 전구체 성분이 단순 첨가로 담지될 수 있는 장점을 갖는다.5 to 30 parts by weight of the solution prepared as described above, 10 to 50 parts by weight of lower alcohol, and 10 to 50 parts by weight of deionized water at a temperature of 0 to 25 ° C. and stirring for 0.5 to 1.5 hours in TiO 2 , SnO 2 , ZnO, The final photocatalyst coating composition is prepared by reacting under stirring for 2 to 4 hours while dropping 5 to 90 parts by weight of a semiconductor oxide sol selected from the group consisting of ZrO 2 and V 2 O 5 . Since the semiconductor oxide sol has a nano size, the metal precursor component described later may be supported by simple addition.

한편, 선택적으로 첨가되는, 텅스텐, 팔라듐, 백금, 몰리브덴, 철 및 망간으로 이루어진 군으로부터 1 또는 그 이상 선택되는 금속의 전구체는 상기 반도체 산화물 졸을 적하시키기 전 단계에서 첨가되어 교반되는데 그 첨가량은 약 0.5∼5 중량부이다.Meanwhile, a precursor of a metal selected from the group consisting of tungsten, palladium, platinum, molybdenum, iron and manganese, which is optionally added, is added and stirred in a step before dropping the semiconductor oxide sol. 0.5 to 5 parts by weight.

상기와 같이 제조된 광촉매 코팅 조성물 용액은 사용되는 분야 또는 용도에 따라 기질(substrate)에 고정되어 투명한 얇은 광촉매 도포 피막을 형성할 수 있다. 본 발명의 경우 반도체 산화물의 크기가 나노 크기로 조절되기 때문에 도포 후 피막의 투명성을 적절히 유지할 수 있는 것이다. 이러한 피막을 형성하기 위하여는 침적 코팅(dip-coating)을 실시한 후에 건조 경화과정을 거치는 것이 바람직한데, 이러한 기질로는 원통형 및 판형의 유리, 석영, 금속(스테인리스스틸, 알루미늄, 구리 등), 세라믹, 고분자 수지 등이 사용될 수 있다. 침적 코팅 시 실온에서 0.5∼10 cP의 점도를 갖고 표면장력이 30∼80dyn/㎝인 광촉매 코팅 조성물 용액에 기질을 침적시킨 후에 일정한 속도로 끌어올리거나 광촉매 코팅 조성물 용액을 일정한 유량으로 배출시키는데, 이때 끌어올리는 기질 또는 배출시키는 용액의 선속도는 약 5∼20㎜/min가 되도록 행하는 것이 바람직하다. 이때, 선속도가 5㎜/min 미만인 경우에는 도포 후 피막의 일정한 도포두께 및 투명성을 적절히 유지할 수 없는 문제가 있으며, 20㎜/min를 초과하는 경우에는 코팅체의 생산성 저하의 문제가 있다.The photocatalyst coating composition solution prepared as described above may be fixed to a substrate to form a transparent thin photocatalyst coating film according to the field or use used. In the case of the present invention, since the size of the semiconductor oxide is adjusted to a nano size, the transparency of the film can be properly maintained after application. In order to form such a film, it is preferable to carry out a dip-coating and then dry harden the process. Such substrates include cylindrical and plate-shaped glass, quartz, metals (stainless steel, aluminum, copper, etc.) and ceramics. , Polymer resins and the like can be used. During deposition, the substrate is deposited in a solution of a photocatalyst coating composition having a viscosity of 0.5 to 10 cP and a surface tension of 30 to 80 dyn / cm at room temperature, and then the substrate is pulled up at a constant rate or the solution of the photocatalyst coating composition is discharged at a constant flow rate. It is preferable to carry out so that the linear velocity of the substrate to be raised or the solution to be discharged may be about 5 to 20 mm / min. At this time, when the linear velocity is less than 5 mm / min, there is a problem that can not properly maintain a constant coating thickness and transparency of the coating after application, when the linear velocity exceeds 20 mm / min, there is a problem of productivity of the coating.

상기 침적 코팅단계 후에 고 경도의 광촉매 도포피막을 얻기 위하여 건조 및 경화단계를 거치게 되는데, 도포피막 내 잔류하는 유기물 또는 수분, 및 금속 전구체의 염화물 또는 질산염 등을 휘발시키기 위하여 약 80∼150℃에서 1∼3 시간 동안 건조시키고, 텅스텐 등의 금속전구체를 담지시킨 경우에는 금속의 원하는 산화가를 얻기 위하여 300∼500℃에서 2∼5 시간 동안 소성시킨다.After the immersion coating step, a drying and curing step is performed in order to obtain a high hardness photocatalyst coating film, and at about 80 to 150 ° C. to volatilize organic substances or water remaining in the coating film, chlorides or nitrates of metal precursors, and the like. In the case of drying for 3 hours and carrying a metal precursor such as tungsten, the metal is calcined at 300 to 500 ° C. for 2 to 5 hours to obtain a desired oxidation value of the metal.

본 발명은 하기의 실시예에 의하여, 보다 명확히 이해될 수 있으며, 하기의실시예는 본 발명의 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다.The present invention can be more clearly understood by the following examples, which are only intended to illustrate the present invention and are not intended to limit the scope of the invention.

실시예 1Example 1

온도 5℃인 얼음물 배스(ice water bath)에서 이소프로필 알코올 10g, 테트라에톡시실란 3g 및 디메틸메톡시실란 2g을 반응기에 넣고 교반하면서 용해시켰다. 그 다음, 탈이온수 2g, 이소프로필알코올 10g 및 질산 0.05g을 완전 혼합한 뒤에 상기 용액을 이에 1시간 동안 적하시켰으며, 2시간 동안 교반하면서 반응시켰다. 상기 반응용액 20g, 이소프로필알코올 15g, 탈이온수 15g 및 암모늄 텅스테이트 0.5g을 온도 5℃인 얼음물 배스(ice water bath)에서 교반하면서 용해시켰고, 이에 평균 입경 7㎚인 아나타제 결정 TiO2졸 50g을 1시간 동안 적하시킨 후 3시간 동안 반응시켜 광촉매 코팅 조성물 용액을 제조하였다.In an ice water bath having a temperature of 5 ° C., 10 g of isopropyl alcohol, 3 g of tetraethoxysilane, and 2 g of dimethylmethoxysilane were placed in a reactor and dissolved with stirring. Then, 2 g of deionized water, 10 g of isopropyl alcohol, and 0.05 g of nitric acid were thoroughly mixed, and then the solution was added dropwise thereto for 1 hour, and reacted with stirring for 2 hours. 20 g of the reaction solution, 15 g of isopropyl alcohol, 15 g of deionized water, and 0.5 g of ammonium tungstate were dissolved in an ice water bath having a temperature of 5 ° C. with stirring, and thus 50 g of anatase crystal TiO 2 sol having an average particle diameter of 7 nm was dissolved. After dropping for 1 hour and reacting for 3 hours, a photocatalyst coating composition solution was prepared.

실시예 2Example 2

암모늄 텅스테이트 대신 팔라듐 전구체인 팔라듐니트레이트 0.2g을 첨가한 것을 제외하고는 상기 실시예 1과 같이 동일하게 광촉매 코팅 조성물 용액을 제조하였다.A photocatalyst coating composition solution was prepared in the same manner as in Example 1, except that 0.2 g of palladium nitrate, a palladium precursor, was added instead of ammonium tungstate.

실시예 3Example 3

텅스텐 전구체인 암모늄 텅스테이트를 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 광촉매 코팅 조성물 용액을 제조하였다.A photocatalyst coating composition solution was prepared in the same manner as in Example 1 except that tungsten precursor, ammonium tungstate, was not added.

비교실시예 1Comparative Example 1

질산을 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 광촉매 코팅 조성물 용액을 제조하였다. 그 결과, 광촉매 코팅 조성물 용액을 약 72 시간 동안 보관할 경우 광촉매 입자가 침전되었으며, 용액의 점도 변화가 심하여 저장 안정성에 문제가 있음을 확인하였다.A photocatalyst coating composition solution was prepared in the same manner as in Example 1 except that nitric acid was not added. As a result, the photocatalyst particles precipitated when the solution of the photocatalyst coating composition was stored for about 72 hours, and it was confirmed that there was a problem in storage stability due to the severe change in viscosity of the solution.

비교실시예 2Comparative Example 2

평균 입경 30㎚, 비표면적 50㎡/g인 데구사(Degussa) 사의 상용 광촉매 TiO2를 탈이온수에 5 중량%가 되도록 투입한 후에 초음파 장치로 완전 분산시켜 광촉매 코팅 조성물 용액을 제조하였다.Degussa commercial photocatalyst TiO 2 having an average particle diameter of 30 nm and a specific surface area of 50 m 2 / g was added to 5% by weight of deionized water, and then completely dispersed with an ultrasonic device to prepare a photocatalyst coating composition solution.

실시예 4Example 4

광촉매 코팅 조성물 용액의 성능 평가Performance Evaluation of Photocatalyst Coating Composition Solution

실시예 1∼3 및 비교실시예 1∼2에 의하여 제조된 광촉매 코팅 조성물 용액의 저장 안정성을 다음과 같이 평가하였다.The storage stability of the photocatalyst coating composition solution prepared in Examples 1-3 and Comparative Examples 1-2 was evaluated as follows.

또한, 세정처리된 파이렉스를 상기 광촉매 코팅 조성물 용액에 침적시킨 후에 5 ㎜/min의 선속도로 끌어올리기를 2∼3회 반복하였고 120 ℃에서 1 시간 동안 건조시킨(실시예 1, 2 및 비교실시예 2) 다음 300∼500 ℃에서 3 시간 동안 소성시켜(실시예 3 및 비교실시예 1) 촉매체를 제조하였다. 제조된 광촉매 코팅 조성물이 적용된 촉매체에 대한 외관 및 광촉매 효율을 다음과 같이 평가하였다.In addition, after the cleaned pyrex was immersed in the photocatalyst coating composition solution, the lift was repeated 2-3 times at a linear speed of 5 mm / min and dried at 120 ° C. for 1 hour (Examples 1, 2 and Comparative Examples). Example 2) A catalyst body was prepared by calcination at 300 to 500 ° C. for 3 hours (Example 3 and Comparative Example 1). The appearance and photocatalytic efficiency of the catalyst body to which the prepared photocatalyst coating composition was applied were evaluated as follows.

(1) 저장 안정성(1) storage stability

제조된 광촉매 용액 자체의 보관시 안정성으로 광촉매 입자의 침전 여부와용액의 점도 변화를 평가하였다.The stability of the prepared photocatalyst solution itself was evaluated for the precipitation of photocatalyst particles and the viscosity change of the solution.

(2) 외관(2) appearance

건조 및 소성 후의 광촉매 도포피막을 육안으로 관찰하여 투명도, 두께, 균열 등의 도포 상태를 평가하였다.The photocatalyst coating film after drying and firing was visually observed to evaluate the coating conditions such as transparency, thickness, and cracking.

(3) 광촉매 효율(3) photocatalytic efficiency

최근 광화학 스모그의 원인이 되는 휘발성 유기화합물이 주로 고정 배출원인 도장공정이나 세정공정을 통하여 그 배출량이 증가되는 추세이므로 이러한 휘발성 유기화합물(트리클로로에틸렌, 아세톤, 메탄올 및 톨루엔)을 대상으로 광촉매 반응 효율을 평가하기 위한 회분식 반응장치는 도 1에 도시된 바와 같이 크게 반응기 부분, 항온 순환장치 부분, 및 분석기 부분으로 구분된다. 이때, 반응기는 내경 100㎜, 높이 210㎜, 그리고 부피가 약 1600㎤이며 이중 자켓의 파이렉스(pyrex)로 구성되어 있다. 반응기 중심부에 수직으로 UV 램프를 삽입하고 그 외부에 광촉매 코팅 조성물을 코팅한 파이렉스를 고정시켰으며 반응기 내의 온도를 일정하게 유지시키기 위해 항온조/순환장치와 반응기 내의 농도가 균일하도록 반응기 하부에 마그네틱 교반기(magnetic stirrer)를 설치하였다. 회분식 반응기 및 UV 램프에 대한 사양을 표 1 및 표 2에 요약하였다.Since the volatile organic compounds that cause photochemical smog have been increasing mainly through the coating process or the cleaning process, which are fixed sources, the photocatalytic reaction efficiency for such volatile organic compounds (trichloroethylene, acetone, methanol, and toluene) The batch reactor for evaluating is divided into a reactor section, a constant temperature circulator section, and an analyzer section as shown in FIG. At this time, the reactor is 100 mm in inner diameter, 210 mm in height, and has a volume of about 1600 cm 3 and consists of a double jacketed pyrex. A UV lamp was inserted vertically in the center of the reactor, and a Pyrex coated with a photocatalyst coating composition was fixed to the outside thereof. magnetic stirrer). Specifications for the batch reactors and UV lamps are summarized in Tables 1 and 2.

항 목Item 규격(Dimension)Dimension 반응기 내경(㎜)Reactor Inner Diameter (mm) 100100 반응기 깊이(㎜)Reactor Depth (mm) 210210 반응기 부피(㎤)Reactor volume (cm 3) 내부 부속 제외시When internal parts are excluded 약 1650About 1650 내부 부속 체결시When tightening internal parts 약 1600About 1600 촉매코팅내부 파이렉스 관(2종)Catalyst coating inner Pyrex pipe (2 types) 길이(㎜)Length (mm) 165165 내경(㎜)Internal diameter (mm) 26, 3626, 36 UV 램프(2종)UV lamp (2 types) 길이(㎜)Length (mm) 210.5210.5 외경(㎜)Outer diameter (mm) 15.515.5

UV 종류UV class 제조회사manufacture company 모델명model name 파장(㎚)Wavelength (nm) Lamp Watt(W)Lamp Watt (W) 길이(㎜)Length (mm) 외경(㎜)Outer diameter (mm) Germicidal lampGermicidal lamp Sankyo Denki Co., LTD.Sankyo Denki Co., LTD. G6T5G6T5 254254 66 210.5210.5 15.515.5 Blacklight lampBlacklight lamp Sankyo Denki Co., LTD.Sankyo Denki Co., LTD. F6T5. BLF6T5. BL 352352 66 210.5210.5 15.515.5

실험은 반응기에 파이렉스 관을 삽입한 후에 공기 유입구 및 유출구를 개방하여 공기를 유입시켜 반응기 내부의 압력을 대기압 상태로 유지시킨 후 액상의 물과 휘발성 유기화합물을 원하는 농도만큼 투입, 기화시킨 후 UV 램프를 작동하여 시간에 따른 반응가스의 농도변화를 GC-FID로 분석하였다.In the experiment, the Pyrex tube was inserted into the reactor, and then the air inlet and outlet were opened to introduce air to keep the pressure inside the reactor at atmospheric pressure, and then the liquid water and the volatile organic compound were added and vaporized to a desired concentration. By operating the concentration of the reaction gas with time was analyzed by GC-FID.

실험 결과, 트리클로로에틸렌의 경우(Co: 315 ppm, 온도: 45℃, CH2O: 1.0체적%)에는 도 2에서 알 수 있듯이 실시예 3 및 비교실시예 2보다 팔라듐을 담지한 실시예 2의 경우가 광촉매 효율이 우수하였다.As a result, in the case of trichloroethylene ( Co : 315 ppm, temperature: 45 ℃, C H2O : 1.0 volume%), as can be seen in Figure 2 Example 2 carrying palladium than Example 3 and Comparative Example 2 In the case of photocatalyst efficiency was excellent.

아세톤의 경우(Co: 315 ppm, 온도: 45℃, CH2O: 1.0 체적%) 에는 도 3에서 알 수 있듯이 팔라듐을 담지한 실시예 2 및 금속을 담지 하지 않은 실시예 3의 경우가비교실시예 2의 광촉매 코팅 조성물 용액을 코팅한 촉매체보다 반응성이 증가되었다.In the case of acetone (C o : 315 ppm, temperature: 45 ° C., C H 2 O : 1.0 vol%), as shown in FIG. 3, the comparison of the case of Example 2 with palladium and Example 3 without metal was carried out. The reactivity was increased over the catalyst body coated with the photocatalyst coating composition solution of Example 2.

메탄올의 경우(Co: 300 ppm, 온도: 45℃, CH2O: 1.0체적%)에는 도 4와 같이 텅스텐을 담지한 실시예 1의 광촉매 코팅 조성물 용액을 적용한 경우가 반응성이 우수함을 확인하였다.In the case of methanol ( Co : 300 ppm, temperature: 45 ℃, C H2O : 1.0 volume%) it was confirmed that the reactivity was excellent when the photocatalyst coating composition solution of Example 1 loaded with tungsten as shown in FIG.

도장공정에서 도 5의 결과와 같이 가장 사용량이 많은 방향족 화합물이며 분해하기 곤란한 톨루엔의 경우(Co: 100 ppm, 온도: 45℃, CH2O: 2.0체적%)에는 텅스텐을 담지한 실시예 1의 광촉매 코팅 조성물 용액을 적용한 경우가 다른 촉매에 비하여 월등히 반응성이 우수하였다.In the case of toluene, which is the most used aromatic compound and difficult to decompose (C o : 100 ppm, temperature: 45 ° C., C H 2 O : 2.0 vol%), as shown in FIG. Application of the photocatalyst coating composition solution was significantly superior to other catalysts.

결국, 트리클로로에틸렌 및 아세톤은 팔라듐을 담지한 광촉매 코팅 조성물 용액이 우수하였고, 메탄올 및 톨루엔은 텅스텐을 담지한 광촉매 코팅 조성물 용액이 보다 우수한 광촉매 효율을 갖고 있음이 확인되었다.As a result, it was confirmed that trichloroethylene and acetone were excellent in the photocatalyst coating composition solution carrying palladium, and methanol and toluene were found to have better photocatalytic efficiency in the solution of the photocatalyst coating composition carrying tungsten.

상기 평가 항목에 대한 평가 결과를 표 3에 나타내었다.Table 3 shows the evaluation results for the above evaluation items.

평가 항목Evaluation item 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 저장 안정성Storage stability ×× ×× 외관Exterior ×× 광촉매 효율Photocatalytic Efficiency

(구분 : 매우 양호 ◎ , 양호 ○ , 불량 ×)(Division: Very good ◎, Good ○, Poor ×)

본 발명의 광촉매 코팅 조성물은 입자로서는 나노 크기(nano size)의 반도체산화물 함유하고 있기 때문에 코팅시 넓은 비표면적을 가질 뿐 아니라 투명하고 얇은 광촉매 코팅막을 형성시킴으로써 가시광선 영역의 빛을 이용할 수 있고, 액상/기상의 유기물질의 분해성능 및 저장안정성이 우수하여 폐수처리와 대기가스 처리뿐만 아니라 생활공간의 환경정화 시스템에 적절하게 적용할 수 있는 장점을 갖는다. 광촉매이므로 비표면적이 매우 클 뿐만 아니라 투명한 얇은 광촉매 도포피막을 형성할 수 있어 가시광선 영역의 빛을 이용할 수 있는 장점을 가지고 있다. 또한 귀금속 및 전이금속 산화물이 담지된 광촉매 제조가 가능하여 광촉매 효율 향상을 꾀할 수 있다. 이와 같은 본 발명의 광촉매를 이용하여 폐수처리 및 대기가스 처리 즉, 액상/기상의 유독성 유기물 처리뿐만 아니라 생활 공간의 환경정화 시스템에도 적용이 가능하다. 또한, 기질에 고정시킨 촉매체는 광촉매 효율 및 기계적 강도가 우수하다.Since the photocatalyst coating composition of the present invention contains nano-sized semiconductor oxides as particles, not only has a large specific surface area when coating, but also a transparent and thin photocatalyst coating film can be used to use light in the visible region, and liquid It has excellent merit of degrading performance and storage stability of organic substances on the gas, which can be applied to wastewater treatment and atmospheric gas treatment as well as environmental purification system of living space. Since it is a photocatalyst, the specific surface area is very large and a transparent thin photocatalyst coating film can be formed, which has the advantage of using light in the visible region. In addition, it is possible to manufacture a photocatalyst loaded with a noble metal and a transition metal oxide, thereby improving the photocatalyst efficiency. The photocatalyst of the present invention can be applied to wastewater treatment and atmospheric gas treatment, that is, liquid / phase toxic organic matter treatment as well as environmental purification system of living space. In addition, the catalyst body immobilized on the substrate has excellent photocatalytic efficiency and mechanical strength.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 이용될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications and variations of the present invention can be readily used by those skilled in the art, and all such variations or modifications can be considered to be included within the scope of the present invention.

Claims (11)

하기 화학식 1로 표시되는 유기실란 또는 그의 부분축합물 4∼50 중량%;4 to 50% by weight of an organosilane represented by Formula 1 or a partial condensate thereof; TiO2, SnO2, ZnO, ZrO2및 V2O5로 이루어진 군으로부터 1 또는 그 이상이 선택되는 반도체 산화물 5∼85 중량%; 및 5 to 85% by weight of a semiconductor oxide selected from the group consisting of TiO 2 , SnO 2 , ZnO, ZrO 2 and V 2 O 5 ; And 유기 또는 무기산인 저장 안정제 0.1∼10 중량%;0.1 to 10% by weight of a storage stabilizer which is an organic or inorganic acid; 를 포함하는 것을 특징으로 하는 광촉매 코팅 조성물:Photocatalyst coating composition comprising: 화학식 1Formula 1 R1 aSi(OR2)4-a R 1 a Si (OR 2 ) 4-a 상기 식에서, R1및 R2는 알킬기, 할로겐화 알킬기, 아릴기, 비닐기 또는 페닐기이고, a는 0∼3임.Wherein R 1 and R 2 are an alkyl group, a halogenated alkyl group, an aryl group, a vinyl group or a phenyl group, and a is 0-3. 제1항에 있어서, 텅스텐, 팔라듐, 백금, 몰리브덴, 철 및 망간으로 이루어진 군으로부터 1 또는 그 이상이 선택되는 금속 전구체를 더 포함하며, 상기 금속전구체 내의 금속의 함량이 상기 반도체 산화물 내의 금속 중량을 기준으로 0.5∼3.0 중량%인 것을 특징으로 광촉매 코팅 조성물.The method of claim 1, further comprising a metal precursor selected from the group consisting of tungsten, palladium, platinum, molybdenum, iron and manganese, wherein the content of the metal in the metal precursor is determined by the weight of the metal in the semiconductor oxide. Photocatalyst coating composition, characterized in that 0.5 to 3.0% by weight. 제1항에 있어서, 상기 유기실란 또는 그의 부분축합물은 메틸트리메톡시실란, 메틸트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 비닐메틸디메톡시실란, 비닐메틸디에톡시실란, 페닐트리메톡시실란, 테트라에톡시실란, 디부톡시디메틸실란, 부톡시트리메틸실란, 디페닐에톡시비닐실란, 메틸트리이소프로폭시실란, 테트라페녹시실란 및 테트라프로폭시실란으로 이루어진 군으로부터 1 또는 그 이상이 선택되는 것을 특징으로 하는 광촉매 코팅 조성물.The method of claim 1, wherein the organosilane or a partial condensate thereof is methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, vinyl Methyldimethoxysilane, vinylmethyldiethoxysilane, phenyltrimethoxysilane, tetraethoxysilane, dibutoxydimethylsilane, butoxytrimethylsilane, diphenylethoxyvinylsilane, methyltriisopropoxysilane, tetraphenoxysilane And one or more selected from the group consisting of tetrapropoxysilane. 제1항에 있어서, 상기 반도체 산화물은 평균입경이 5∼20㎚이고 아나타제 결정구조인 TiO2,15∼50㎚ 크기의 SnO2, 루타일 결정구조인 TiO2, ZnO, ZrO2, 및 V2O5로 이루어진 군으로부터 1 또는 그 이상이 선택되는 것을 특징으로 하는 광촉매 코팅 조성물.The semiconductor oxide of claim 1, wherein the semiconductor oxide has an average particle diameter of 5 to 20 nm and an anatase crystal structure of TiO 2, a size of 15 to 50 nm of SnO 2 , a rutile crystal structure of TiO 2 , ZnO, ZrO 2 , and V 2. Photocatalyst coating composition, characterized in that one or more selected from the group consisting of O 5 . 제1항에 있어서, 상기 유기 또는 무기산은 초산, 인산, 황산, 염산, 질산, 클로로설폰산, 파라-톨루엔설폰산 및 트리클로로아세트산으로 이루어진 군으로부터 1 또는 그 이상이 선택되는 것을 특징으로 하는 광촉매 코팅 조성물.The photocatalyst of claim 1, wherein the organic or inorganic acid is selected from the group consisting of acetic acid, phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, chlorosulfonic acid, para-toluenesulfonic acid, and trichloroacetic acid. Coating composition. a) 하기 화학식 1로 표시되는 유기실란 또는 그 부분축합물 2∼10 중량부 및 저급 알코올 10∼50 중량부를 0∼25℃의 온도 및 교반 하에서 0.5∼1.5 시간 동안 용해시키는 단계;a) dissolving 2 to 10 parts by weight of an organosilane represented by Formula 1 or a partial condensate thereof and 10 to 50 parts by weight of lower alcohol for 0.5 to 1.5 hours at a temperature of 0 to 25 ° C and stirring; b) 탈이온수 2∼10 중량부, 저급 알코올 10∼50 중량부 및 유기 또는 무기산 0.05∼1 중량부를 혼합한 용액을 상기 a) 단계에서 제조된 용액에 적하시켜 1∼3 시간에 걸쳐 교반 하에서 반응시키는 단계; 및b) A solution of 2 to 10 parts by weight of deionized water, 10 to 50 parts by weight of lower alcohol and 0.05 to 1 part by weight of an organic or inorganic acid is added dropwise to the solution prepared in step a) and reacted under stirring for 1 to 3 hours. Making a step; And c) 상기 b) 단계를 통하여 제조된 용액 5∼30 중량부, 저급 알코올 10∼50 중량부, 및 탈이온수 10∼50 중량부를 0∼25℃의 온도 및 교반 하에서 0.5∼1.5 시간 동안 TiO2, SnO2, ZnO, ZrO2및 V2O5로 이루어진 군으로부터 1 또는 그 이상이 선택되는 반도체 산화물 졸 5∼90 중량부를 적하시키면서 2∼4 시간 동안 교반 하에서 반응시키는 단계;c) 5 to 30 parts by weight of the solution prepared through step b), 10 to 50 parts by weight of lower alcohol, and 10 to 50 parts by weight of deionized water under a temperature of 0 to 25 ° C. and stirring for 0.5 to 1.5 hours in TiO 2 , Reacting under stirring for 2 to 4 hours while dropping 5 to 90 parts by weight of a semiconductor oxide sol selected from the group consisting of SnO 2 , ZnO, ZrO 2 and V 2 O 5 ; 를 포함하는 것을 특징으로 하는 제1항의 광촉매 코팅 조성물의 제조방법:Method for producing a photocatalyst coating composition of claim 1 comprising: 화학식 1Formula 1 R1 aSi(OR2)4-a R 1 a Si (OR 2 ) 4-a 상기 식에서, R1및 R2는 알킬기, 할로겐화 알킬기, 아릴기, 비닐기 또는 페닐기이고, a는 0∼3임.Wherein R 1 and R 2 are an alkyl group, a halogenated alkyl group, an aryl group, a vinyl group or a phenyl group, and a is 0-3. 제6항에 있어서, 상기 c) 단계 중 텅스텐, 팔라듐, 백금, 몰리브덴, 철 및 망간으로 이루어진 군으로부터 1 또는 그 이상이 선택되는 금속 전구체를 상기 반도체 산화물 졸을 적하시키기 전에 첨가하여 교반하며, 상기 금속 전구체가 0.5∼5 중량부로 첨가되는 것을 특징으로 하는 광촉매 코팅 조성물의 제조방법.The method of claim 6, wherein the metal precursor selected from the group consisting of tungsten, palladium, platinum, molybdenum, iron and manganese in step c) is added and stirred before dropping the semiconductor oxide sol, Method for producing a photocatalyst coating composition characterized in that the metal precursor is added in 0.5 to 5 parts by weight. 제6항에 있어서, 상기 반도체 산화물 졸은 평균입경이 5∼20㎚이고 아나타제 결정구조인 TiO2,15∼50㎚ 크기의 SnO2, 루타일 결정구조인 TiO2, ZnO, ZrO2, 및 V2O5로 이루어진 군으로부터 1 또는 그 이상이 선택되는 성분의 졸을 포함하는 것을 특징으로 하는 광촉매 조성물의 제조방법.7. The semiconductor oxide sol of claim 6, wherein the semiconductor oxide sol has an average particle diameter of 5 to 20 nm and anatase crystal structure of TiO 2, a size of 15 to 50 nm of SnO 2 , a rutile crystal structure of TiO 2 , ZnO, ZrO 2 , and V. A method for producing a photocatalyst composition, characterized in that it comprises a sol of one or more components selected from the group consisting of 2 O 5 . 0.5∼10 cP의 점도 및 30∼80dyn/㎝의 표면장력을 갖는, 제1항의 광촉매 코팅 조성물의 용액에 기질을 실온에서 침적시킨 후에 5∼20㎜/min의 선속도로 끌어올리거나 상기 광촉매 코팅 조성물의 용액을 배출시킴으로써 침적 코팅하는 단계; 및 상기 침적 코팅된 기질을 80∼150℃에서 1∼3 시간 동안 건조시키는 단계를 포함하는 것을 특징으로 하는 광촉매체의 제조방법.The substrate is deposited at room temperature in a solution of the photocatalytic coating composition of claim 1 having a viscosity of 0.5 to 10 cP and a surface tension of 30 to 80 dyn / cm, followed by raising at a linear speed of 5 to 20 mm / min or the photocatalyst coating. Dip coating by draining a solution of the composition; And drying the dip coated substrate at 80 to 150 ° C. for 1 to 3 hours. 0.5∼10 cP의 점도 및 30∼80dyn/㎝의 표면장력을 갖는, 제2항의 광촉매 코팅 조성물의 용액에 기질을 실온에서 침적시킨 후에 5∼20㎜/min의 선속도로 끌어올리거나 상기 광촉매 코팅 조성물의 용액을 배출시킴으로써 침적 코팅하는 단계; 상기 침적 코팅된 기질을 80∼150℃에서 1∼3 시간 동안 건조시키는 단계; 및 상기 건조된 기질을 300∼500℃에서 2∼5 시간 동안 소성시키는 단계를 포함하는 것을 특징으로 하는 광촉매체의 제조방법.The substrate is deposited at room temperature in a solution of the photocatalytic coating composition of claim 2 having a viscosity of 0.5 to 10 cP and a surface tension of 30 to 80 dyn / cm, followed by raising at a linear speed of 5 to 20 mm / min or the photocatalyst coating. Dip coating by draining a solution of the composition; Drying the deposited coated substrate at 80 to 150 ° C. for 1 to 3 hours; And calcining the dried substrate at 300 to 500 ° C. for 2 to 5 hours. 제9항 또는 제10항에 있어서, 상기 기질은 원통형 또는 판형의 유리, 석영, 금속, 세라믹 및 고분자 수지로 이루어진 군으로부터 선택되는 것을 특징으로 하는 광촉매체의 제조방법.The method of claim 9, wherein the substrate is selected from the group consisting of cylindrical or plate-shaped glass, quartz, metal, ceramic, and polymer resin.
KR10-2001-0016907A 2001-03-30 2001-03-30 Photocatalytic Coating Composition, Preparation Method Thereof and Coated Body Using the Same KR100403275B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0016907A KR100403275B1 (en) 2001-03-30 2001-03-30 Photocatalytic Coating Composition, Preparation Method Thereof and Coated Body Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0016907A KR100403275B1 (en) 2001-03-30 2001-03-30 Photocatalytic Coating Composition, Preparation Method Thereof and Coated Body Using the Same

Publications (2)

Publication Number Publication Date
KR20020076784A true KR20020076784A (en) 2002-10-11
KR100403275B1 KR100403275B1 (en) 2003-10-30

Family

ID=27699342

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0016907A KR100403275B1 (en) 2001-03-30 2001-03-30 Photocatalytic Coating Composition, Preparation Method Thereof and Coated Body Using the Same

Country Status (1)

Country Link
KR (1) KR100403275B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518956B1 (en) * 2001-04-25 2005-10-05 (주) 나노팩 Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
KR100614416B1 (en) * 2004-10-11 2006-08-21 김문찬 Coating solution of visible photo catalyst and prepation method
KR100917060B1 (en) * 2009-01-29 2009-09-10 주식회사 무진하이테크 Visible ray reaction type hybrid photocatalyst for removing carbon monoxide, carbon dioxide, nitrogen oxide and painting compositions and manufacturing method thereof
KR100987356B1 (en) * 2008-05-30 2010-10-12 충북대학교 산학협력단 Silicone Hybrid Hard Coating Composition for Platic Substrate Comprising Photocatalyst
KR101137371B1 (en) * 2009-12-03 2012-04-20 삼성에스디아이 주식회사 A method for manufacturing smart glass and a smart glass
KR20170040170A (en) * 2017-04-04 2017-04-12 정지희 Visible-light responsive photocatalytic coating composition and preparation methods thereof
CN110240817A (en) * 2019-07-09 2019-09-17 华南理工大学 A kind of hydrophilic non-sticky coating of high-performance and preparation method thereof
KR20220065592A (en) * 2020-11-13 2022-05-20 한국생산기술연구원 Method for preparing a catalyst for catalytic reduction reaction including a water resistant coating layer and a catalyst layer for catalytic ring reaction including a water resistant coating layer using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101003021B1 (en) 2008-11-26 2010-12-24 위승용 Porcelain tile
KR20230095433A (en) 2021-12-22 2023-06-29 문승환 Photoelectrochemical tungsten catalyst for hydrogen production using solar energy
KR102408287B1 (en) * 2022-02-04 2022-06-22 차경순 Power supply device for electric blinds for windows

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3444012B2 (en) * 1995-03-24 2003-09-08 松下電工株式会社 Method of forming inorganic paint film
KR100280910B1 (en) * 1995-06-19 2001-02-01 쓰끼하시 다미까따 Photocatalyst-carrying structure and photocatalyst coating material
JPH11302596A (en) * 1998-04-20 1999-11-02 Kansai Paint Co Ltd Harmful substance-decomposable coating composition and substrate applying the same composition
TWI229617B (en) * 1998-07-30 2005-03-21 Toto Ltd Method for manufacturing functional material having photo-catalystic functional and apparatus therefor
JP2000129176A (en) * 1998-10-29 2000-05-09 Jsr Corp Composition for coating

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518956B1 (en) * 2001-04-25 2005-10-05 (주) 나노팩 Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
KR100614416B1 (en) * 2004-10-11 2006-08-21 김문찬 Coating solution of visible photo catalyst and prepation method
KR100987356B1 (en) * 2008-05-30 2010-10-12 충북대학교 산학협력단 Silicone Hybrid Hard Coating Composition for Platic Substrate Comprising Photocatalyst
KR100917060B1 (en) * 2009-01-29 2009-09-10 주식회사 무진하이테크 Visible ray reaction type hybrid photocatalyst for removing carbon monoxide, carbon dioxide, nitrogen oxide and painting compositions and manufacturing method thereof
KR101137371B1 (en) * 2009-12-03 2012-04-20 삼성에스디아이 주식회사 A method for manufacturing smart glass and a smart glass
US8482842B2 (en) 2009-12-03 2013-07-09 Samsung Sdi Co., Ltd. Method of manufacturing smart panel and smart panel
KR20170040170A (en) * 2017-04-04 2017-04-12 정지희 Visible-light responsive photocatalytic coating composition and preparation methods thereof
CN110240817A (en) * 2019-07-09 2019-09-17 华南理工大学 A kind of hydrophilic non-sticky coating of high-performance and preparation method thereof
KR20220065592A (en) * 2020-11-13 2022-05-20 한국생산기술연구원 Method for preparing a catalyst for catalytic reduction reaction including a water resistant coating layer and a catalyst layer for catalytic ring reaction including a water resistant coating layer using the same

Also Published As

Publication number Publication date
KR100403275B1 (en) 2003-10-30

Similar Documents

Publication Publication Date Title
Zaleska Doped-TiO2: a review
Wang et al. H2WO4· H2O/Ag/AgCl composite nanoplates: a plasmonic Z-scheme visible-light photocatalyst
Li et al. Photocatalytic degradation of rhodamine B over Pb3Nb4O13/fumed SiO2 composite under visible light irradiation
Wu et al. Low-temperature growth of a nitrogen-doped titania nanoflower film and its ability to assist photodegradation of rhodamine B in water
CN100351011C (en) Composite photo catalytic sewage treating material and its prepn
KR100403275B1 (en) Photocatalytic Coating Composition, Preparation Method Thereof and Coated Body Using the Same
JP5447178B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
CN104759280A (en) Method for preparing nano silver composite titanium dioxide sol photocatalyst, coating liquid, member and use method
US9718695B2 (en) Visible light sensitive photocatalyst, method of producing the same, and electrochemical water decomposition cell, water decomposition system, and organic material decomposition system each including the same
WO2011145385A1 (en) Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
TW200944288A (en) Method for producing catalyst for wastewater treatment
CN104338522A (en) Preparing method of titanium dioxide sol photocatalyst and applications of the titanium dioxide sol photocatalyst in decontamination and self-cleaning
Muangmora et al. Titanium dioxide and its modified forms as photocatalysts for air treatment
JPH0417098B2 (en)
CN113976103B (en) High-activity visible-light-driven photocatalyst for wastewater treatment and preparation method thereof
KR20030037050A (en) Titanium dioxide photocatalyst comprising an antimicrobial metallic component and method of preparation the catalyst
JP3987289B2 (en) Photocatalyst, method for producing the same, and photocatalyst using the same
CN100400606C (en) Method of preparing anatase type titanium dioxide dispersion at low temperature by hot-liquid method
JP5447177B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
TWI460132B (en) Method of producing titania sol and its applications on self-cleaning and dirt-removing
JP3791067B2 (en) Photocatalyst composition and glass article
JP7070474B2 (en) Titanium oxide fine particles, their dispersion, and a method for producing the dispersion.
TW201902353A (en) Method of producing nano ceria-titania binary oxide sol and its application in antibacteria
JP3885248B2 (en) Photocatalyst composition
Liu et al. Facile preparation of efficient WO3 photocatalysts based on surface modification

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee