KR20020074561A - Barley medium and method of preparing beta-glucan in schizophyllum commune using same - Google Patents

Barley medium and method of preparing beta-glucan in schizophyllum commune using same Download PDF

Info

Publication number
KR20020074561A
KR20020074561A KR1020010014390A KR20010014390A KR20020074561A KR 20020074561 A KR20020074561 A KR 20020074561A KR 1020010014390 A KR1020010014390 A KR 1020010014390A KR 20010014390 A KR20010014390 A KR 20010014390A KR 20020074561 A KR20020074561 A KR 20020074561A
Authority
KR
South Korea
Prior art keywords
glucan
barley
medium
schizophyllum commune
concentration
Prior art date
Application number
KR1020010014390A
Other languages
Korean (ko)
Other versions
KR100442149B1 (en
Inventor
조만기
구재근
박성우
곽중기
페터고에츠
Original Assignee
학교법인 동서학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 동서학원 filed Critical 학교법인 동서학원
Priority to KR10-2001-0014390A priority Critical patent/KR100442149B1/en
Publication of KR20020074561A publication Critical patent/KR20020074561A/en
Application granted granted Critical
Publication of KR100442149B1 publication Critical patent/KR100442149B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/70Undefined extracts
    • C12N2500/76Undefined extracts from plants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PURPOSE: Provided is a barley medium and a method of preparing beta-glucan in Schizophyllum commune, DSMZ 1025 using the same, thereby producing beta-glucan much than using a glucose medium. CONSTITUTION: The method of preparing beta-glucan in Schizophyllum commune, DSMZ 1025 is characterized by culturing Schizophyllum commune, DSMZ 1025 at 30 deg.C for 400 hours in a barley medium containing 0.5-1.5 wt.% of barley and 0-1.0 wt.% of dietary salts. Therefore, beta-glucan can be manufactured more economically and effectively in the barley medium than in a glucose medium containing 30g/L of glucose, 1.0g/l of KH2PO4, 0.5g/L of MgSO4 7H2O, and 3.0g/L of yeast extract.

Description

보리배지 및 이를 이용하여 시조필륨 코뮨으로부터 베타-글루칸을 생산하는 방법{BARLEY MEDIUM AND METHOD OF PREPARING BETA-GLUCAN IN SCHIZOPHYLLUM COMMUNE USING SAME}BARLEY MEDIUM AND METHOD OF PREPARING BETA-GLUCAN IN SCHIZOPHYLLUM COMMUNE USING SAME}

본 발명은 보리배지 중에서 체외로 다당류를 생산하는 시조필륨 코뮨(Schizophyllum commune)을 이용하여 β-글루칸을 생산하는 방법 및 이에 이용되는 보리배지에 관한 것이다.The present invention relates to a method for producing β-glucan using Schizophyllum commune , which produces polysaccharides in vitro in barley medium, and to barley medium used therein.

체외 다당류인 β-글루칸은 β-글루코실 단위가 β-1,3-과 β-1,6-으로 결합되어있는 수용성 다당류로 곡류나 효모류의 세포벽에 존재하는 물질이다. 특히 효모인 사카로마이세스 세레비지애(Saccharomyces cerevisiae)의 세포벽으로부터 추출된 β-글루칸은 미국 FDA에 의하여 GRAS(Generally Recognized As Safe) 수준의 영양 물질로 인정될 정도로 영양성이 높다. 또한 대식세포의 활성을 증강시키고, 자외선에 의한 노화를 억제하며 체내의 자유-라디칼을 제거하는 등 여러 가지 기능을 가지고 있다(Browderet al., 1990 ; Williamset al., 1996 ; Engstadet al., 1992 ; Rorstadet al., 1993 ; Sunget al., 1994). 현재 대부분의 β-글루칸의 생산은 효모의 세포벽을 추출함으로써 이루어지고 있으나 이 방법에서는 세포벽을 파쇄하는 추가의 공정이 요구된다는 단점이 있다. 이러한 문제점을 극복하기 위해, 최근 체외로 다당류를 생산하는 미생물인 시조필륨 코뮨(Schizophyllume commune) 균주를 이용하여 β-글루칸을 생산하고자 하였으나 다당류 생성 배지의 단가(특히 질소원)가 매우 높아 생산에 어려움이 있다.In vitro polysaccharide, β-glucan, is a water-soluble polysaccharide in which β-glucosyl units are bonded to β-1,3- and β-1,6-, and are substances present in the cell walls of cereals and yeasts. In particular, β-glucan extracted from the cell wall of the yeast Saccharomyces cerevisiae is highly nutritious enough to be recognized as a GRAS (Generally Recognized As Safe) level by the US FDA. In addition, it has several functions, such as enhancing macrophage activity, inhibiting aging caused by ultraviolet rays and removing free radicals in the body (Browder et al ., 1990; Williams et al ., 1996; Engstad et al . , 1992; Rorstad et al. , 1993; Sung et al ., 1994). Currently, most of the production of β-glucan is achieved by extracting the cell wall of yeast, but this method requires the additional process of breaking the cell wall. In order to overcome this problem, recently tried to produce β-glucan using Schizophyllume commune , a microorganism that produces polysaccharides in vitro, but the production cost of polysaccharide production medium (especially nitrogen source) is very difficult have.

이에 본 발명자들은 효율적이고 경제적인 방법으로 β-글루칸을 생산할 수있는 방법을 개발하기 위해 계속 연구를 진행한 결과, 기존의 글루코스 배지를 대체할 수 있는 보리배지를 개발함으로써 이를 이용하여 β-글루칸을 효율적이고 경제적으로 생산할 수 있게 되어 본 발명을 완성하였다.Therefore, the present inventors continued to develop a method for producing β-glucan in an efficient and economical manner, and as a result, by developing a barley medium that can replace the existing glucose medium, Efficient and economical production was possible to complete the present invention.

본 발명의 목적은 β-글루칸을 보다 효율적이고 경제적으로 생산하는 방법 및 이에 사용되는 보리배지를 제공하는 것이다.It is an object of the present invention to provide a method for producing β-glucan more efficiently and economically and barley medium used therein.

도 1은 본 발명의 보리 배지와 기존의 글루코스 배지를 이용한 β-글루칸의 시간당 생산량을 비교한 그래프(a: 시조필륨 코뮨(Schizophyllum commune)의 시간당 생체량 및 b: β-글루칸의 시간당 농도)이고,And (per a concentration of a β- glucan:: progenitor of biomass per hour pilryum commune (Schizophyllum commune) and b), 1 is the barley medium, and a graph comparing the hourly production of β- glucan using existing glucose medium of the invention

도 2a 및 2b는 각각 표준 설탕 및 본 발명에서 생산된 β-글루칸의 가스 크로마토그래피 분석 결과이고,2a and 2b are the results of gas chromatography analysis of the standard sugar and β-glucan produced in the present invention, respectively,

도 3은 본 발명에서 생산된 β-글루칸의 크기 배제 크로마토그래피 분석 결과이고,3 is a result of size exclusion chromatography analysis of β-glucan produced in the present invention,

도 4는 본 발명에서 생산된 β-글루칸의 FT-IR 스펙트럼 분석 결과이고,4 is an FT-IR spectrum analysis result of β-glucan produced in the present invention,

도 5는 보리의 농도에 따른 β-글루칸의 시간당 생산량을 나타낸 그래프(a: 시조필륨 코뮨의 시간당 생체량 및 b: β-글루칸의 시간당 농도)이고, 및5 is a graph showing the hourly production of β-glucan according to the concentration of barley (a: hourly biomass of sizophyllium comb and b: hourly concentration of β-glucan), and

도 6은 식염의 농도에 따른 β-글루칸의 시간당 생산량을 나타낸 그래프(a: 시조필륨 코뮨의 시간당 생체량 및 b: β-글루칸의 시간당 농도)이다.6 is a graph showing the hourly production of β-glucan according to the concentration of the salt (a: hourly biomass of sizophyllium comb and b: hourly concentration of β-glucan).

상기 목적을 달성하기 위하여, 본 발명에서는 시조필륨 코뮨(Schizophyllum commune) 균주를 이용하여 β-글루칸을 생산하는 방법에 있어서, 보리 0.5 내지 1.5 중량% 및 식염 0 내지 1.0 중량%를 포함하는 보리배지 중에서 시조필륨 코뮨 균주를 배양하여 β-글루칸을 생산하는 것을 특징으로 하는 방법을 제공한다.In order to achieve the above object, in the present invention in the method for producing β-glucan using the Schizophyllum commune strain, barley medium containing 0.5 to 1.5% by weight of barley and 0 to 1.0% by weight of salt Provided is a method for producing β-glucan by culturing Schizophyllium comonum strains.

또한 본 발명에서는 보리 0.5 내지 1.5 중량% 및 식염 0 내지 1.0 중량%를 포함하는, 시조필륨 코뮨 균주를 이용한 β-글루칸 생산용 보리배지를 제공한다.In addition, the present invention provides a barley medium for β-glucan production using a sizophyllium comb strain comprising 0.5 to 1.5% by weight of barley and 0 to 1.0% by weight of salt.

본 발명에 사용된 시조필륨 코뮨(Schizophullum commune)은 다당류인 β-글루칸을 체외분비하는 담자균으로서 이에 의해 생산되는 β-글루칸은 특히 '시조필란(Schizophyllan)'이라 칭한다. Schizophullum commune used in the present invention is a basophilic bacterium secreting the polysaccharide β-glucan in vitro, and the β-glucan produced thereby is particularly referred to as 'Schizophyllan'.

본 발명의 보리배지는 다음과 같이 제조될 수 있다. 먼저, 시중에서 구입가능한 보리를 분쇄기로 분쇄한다. 증류수에 분쇄된 보리가루를 총 배지의 중량에대해 0.5 내지 1.5 중량%, 바람직하게는 1 중량%를 첨가하고, 여기에 식염을 총 배지의 중량에 대해 0 내지 1.0 중량%, 바람직하게는 0.5 중량%를 첨가하여 습열멸균기에서 보리의 수용성 영양원인 당질, 영양염류 등을 열수추출하여 냉각하고 고형물을 제거한 후 pH 5.6으로 조절하여 다시 습열 멸균하여 제조할 수 있다.Barley medium of the present invention can be prepared as follows. First, commercially available barley is ground with a grinder. Grinded barley flour in distilled water is added 0.5 to 1.5% by weight, preferably 1% by weight, based on the weight of the total medium, and the salt is added to 0 to 1.0% by weight, preferably 0.5% by weight of the total medium. By adding%, the water-soluble nutrients such as sugar, nutrients, etc. of barley in the wet heat sterilizer can be prepared by hot water extraction, cooling, removing the solids, and then adjusting the pH to 5.6 to wet heat sterilization.

이어서, 시조필륨 코뮨 균주를 상기 제조된 보리배지에 접종하여 배양온도를 28 내지 33℃, 바람직하게는 30℃로 조절하면서 배양하여 β-글루칸을 발현시킨다. 발현된 β-글루칸은 통상적인 방법에 따라 분리할 수 있는데, 예를 들어 고농도의 다당류 배양액에 동량의 증류수를 가하고 세포 파쇄기로 미생물에 부착되어 있는 다당류까지 분리시킨 후 원심 분리하여 상층액을 회수하고, 여기에 에탄올을 첨가하여 침전된 다당류를 회수한다. 이어서, 회수된 다당류를 건조오븐에서 일정시간 동안 건조시켜 β-글루칸을 분리할 수 있다.Subsequently, S. pylori strains were inoculated in the barley medium prepared above to incubate while controlling the culture temperature to 28 to 33 ℃, preferably 30 ℃ to express β-glucan. The expressed β-glucan can be separated according to a conventional method. For example, an equal amount of distilled water is added to a high concentration of polysaccharide culture medium, a polysaccharide attached to a microorganism is separated by a cell crusher, and centrifuged to recover the supernatant. Ethanol is added thereto to recover the precipitated polysaccharide. Subsequently, the recovered polysaccharide may be dried in a drying oven for a predetermined time to separate β-glucan.

본 발명에서 생산된 β-글루칸은 95.3%의 글루코스로 이루어져 있고, 분자량은 약 500 kDa이며, FT-IR 분석결과 888cm-1에서 피크가 검출되고, GC/MS 분석결과 β-1,3 및 β-1,6으로 구성되어 있음을 확인하였다.Β-glucan produced in the present invention is composed of 95.3% glucose, molecular weight is about 500 kDa, peaks are detected at 888 cm -1 by FT-IR analysis, β-1,3 and β by GC / MS analysis It was confirmed that it consists of -1,6.

이하 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명하고자한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

실시예 1: 보리배지의 제조Example 1 Preparation of Barley Medium

시중에서 구입한 보리를 분쇄기로 잘게 분쇄하고, 분쇄된 보리가루 10g/ℓ를 증류수에 가하고, 여기에 식염 5 g/ℓ를 가하여 습윤멸균기에서 수용성 영양원을 열수 추출하여 고형분을 제거한 후 pH를 5.6으로 조절하여 다시 습열멸균하여 배지로 사용하였다.Commercially prepared barley is pulverized finely with a grinder, 10 g / l of crushed barley flour is added to distilled water, and 5 g / l of salt is added thereto to remove the solid content by hydrothermal extraction of water-soluble nutrients from a wet sterilizer, and then to pH 5.6. The mixture was moist heat sterilized again and used as a medium.

실시예 2 : 보리배지를 이용한 체외 다당류의 생산Example 2 Production of In Vitro Polysaccharides Using Barley Medium

상기 실시예 1에서 제조된 보리배지 1ℓ에 미리 액체 배양시킨 시조필륨 코뮨(Schizophyllume communeDSMZ 1025, 독일 도이취 삼룽 폰 미크로오르가니즘엔 운트 첼쿨투렌 게엠베하(Deutsche Sammlung von Mikroorganismen und Zellculturen GmbH)) 균주를 약 6% 되게 접종하고, 30℃에서 약 400 시간 동안 배양하였다. 비교군으로서 일반적으로 다당류의 생성배지로서 사용되는 글루코스 배지(글루코스 30 g/ℓ, KH2PO41.0g/ℓ, MgSO4·7H2O 0.5g/ℓ및 효모 추출물 3.0g/ℓ)를 사용하였다. Schizophyllume commune DSMZ 1025 (Deutsche Sammlung von Mikroorganismen und Zellculturen GmbH) strain previously cultured in 1 L of the barley medium prepared in Example 1 Inoculated at about 6% and incubated at 30 ° C. for about 400 hours. As a comparative group, a glucose medium (glucose 30 g / l, KH 2 PO 4 1.0 g / l, MgSO 4 · 7H 2 O 0.5 g / l and yeast extract 3.0 g / l), which is generally used as a production medium of polysaccharides, was used. It was.

각 배양액에 동량의 증류수를 가하여 세포파쇄기로 미생물에 부착되어 있는 다당류까지 분리시킨 후 7500 x g로 15 분간 원심분리하여 상층액을 취하였다. 여기에 최종농도 30%로 에탄올을 첨가하여 침전되는 다당류를 회수한 다음, 100℃의 건조오븐에서 4 시간 동안 건조하여 β-글루칸을 분리하였다. 각 배양액에 분리된 체외 다당류의 양 및 이에 소요된 제조비용을 비교하여 하기 표 1에 나타내었으며,본 발명의 보리 배지와 기존의 글루코스 배지를 이용한 β-글루칸의 시간당 생산량을 비교하여 도 1(a: 시조필륨 코뮨(Schizophyllum commune)의 시간당 생체량 및 b: β-글루칸의 시간당 농도)에 나타내었다.The same amount of distilled water was added to each culture solution to separate the polysaccharides attached to the microorganisms using a cell crusher, followed by centrifugation at 7500 xg for 15 minutes to obtain the supernatant. After recovering the polysaccharide precipitated by adding ethanol at a final concentration of 30%, it was dried for 4 hours in a drying oven at 100 ℃ to isolate β-glucan. The amount of extracorporeal polysaccharide separated in each culture solution and the manufacturing cost thereof are shown in Table 1 below, and the hourly production of β-glucan using the barley medium and the existing glucose medium of the present invention is compared to FIG. : Hourly biomass of Schizophyllum commune and hourly concentration of b: β-glucan).

글루코스 배지Glucose medium 보리배지Barley Badge β-글루칸β-glucan 2.8 [g/ℓ]2.8 [g / ℓ] 1.8 [g/ℓ]1.8 [g / ℓ] 100ℓ제조시 배지 단가Medium unit price when manufacturing 100ℓ 80,000 [원]80,000 [Won] 4,700 [원]4,700 [won] 배지 제조 단가 10,000원일 때의 체외 다당류 생산량Extracorporeal Polysaccharide Production at Medium Production Cost of 10,000 Won 35 [g]35 [g] 383 [g]383 [g]

상기 표 1에서 보듯이, 보리배지를 사용한 경우 글루코스 배지에 필적할 만한 수준의 β-글루칸을 제조할 수 있으며, 배지의 단가가 저렴하여 매우 경제적임을 알 수 있다.As shown in Table 1, when the barley medium is used, β-glucan can be prepared at a level comparable to glucose medium, and it can be seen that the medium cost is low and very economical.

실시예 3: 생산된 체외 다당류의 구조분석Example 3: Structural Analysis of the In Vitro Polysaccharides Produced

상기 실시예 1에서 제조된 보리배지에서 생산된 체외 다당류의 구성당을 블랙케니 등(Blakeney et al., 1983) 방법에 따라 다음과 같이 가스 크로마토그래피를 수행하여 분석하였다. 즉, 분석용 시료 전처리에 따라 가수분해한 시료(구성당분석을 위해서는 Nishino(1989)의 방법에 따라 가수분해하여 사용하였다. 즉, Teflon-lined cap이 있는 reaction vial에 일정량의 시료를 취한 후 90% formic acid 0.5㎖를 넣고 이산화탄소로 치환한 뒤 100℃에서 6시간 1차 가수분해 하였다. 다시 증류수 2.5㎖를 첨가하여 희석시킨 후 이산화탄소로 치환하여 100℃에서 2시간 2차 가수분해를 하였다. 가수분해한 시료는 중화시킨 후 시료로 하였다.) 0.2㎖에 15M NH4OH를 첨가하여 NH4OH의 농도가 1.0M이 되게 조정한 후 내부표준 물질로서 미오이노시톨(myo-inositol)을 첨가하였다. 시료용액에 수소화붕소나트륨 용액(NaBH42g을 건조-디메틸 설폭사이드 100㎖에 100℃에서 녹여 조제된 용액)을 넣어 40℃에서 90분 동안 환원시킨 후 과잉의 수소화붕소나트륨을 아세트산으로 분해시켰다. 환원된 시료 용액에 아세트산 무수물 2㎖와 1-메틸 이미다졸 0.2㎖을 넣고 교반한 후 실온에서 10분간 방치하여 아세틸화시킨 다음 과잉의 아세트산 무수물에 증류수 5㎖를 첨가하여 분해시켰다. 이어서 냉각시킨 후 디클로로메탄 1㎖를 넣어 교반한 후 층 분리하여 디클로로메탄 층을 얻은 후 -20℃에서 저장하고 분석하였다. 가스크로마토그래피의 분석 조건은 하기 표 2와 같다. 그리고 구성당은 표준시약의 크로마토그램과 지체 시간(retention time)을 비교하여 확인하였다. 정량은 내부표준물질(myo-inositol)과 표준시약(L-람노즈, L-푸코즈, L-리보즈, L-아라비노즈, D-자일로즈, D-만노즈, D-갈락토즈, D-글루코즈)을 시료와 동일하게 아세틸화하여 농도별 상대적 면적비를 구하여 환산하였다. 도 2a 및 2b는 각각 표준 설탕 및 본 발명에서 생산된 다당류의 가스 크로마토그래피 분석결과로서, 여기에서 보듯이, 본 발명에서 생산된 다당류에는 글루코스가 95.3%를 차지함을 알 수 있다.The constituent sugars of the in vitro polysaccharide produced in the barley medium prepared in Example 1 were analyzed by gas chromatography according to the method according to Blackney et al. (Blakeney et al., 1983). That is, the sample hydrolyzed according to the analytical sample pretreatment (for constituent sugar analysis, it was hydrolyzed according to the method of Nishino (1989). That is, after taking a certain amount of sample in the reaction vial with Teflon-lined cap, 0.5 ml of% formic acid was added and replaced with carbon dioxide, followed by primary hydrolysis for 6 hours at 100 ° C. Then, 2.5 ml of distilled water was added and diluted, followed by dilution with carbon dioxide, followed by secondary hydrolysis at 100 ° C. for 2 hours. The decomposed sample was neutralized and used as a sample.) 15 M NH 4 OH was added to 0.2 ml to adjust the concentration of NH 4 OH to 1.0 M, followed by addition of myo-inositol as an internal standard. Sodium borohydride solution (solution prepared by dissolving 2 g of NaBH 4 in 100 ml of dry-dimethyl sulfoxide at 100 ° C.) was added to the sample solution for 90 minutes at 40 ° C., and the excess sodium borohydride was decomposed with acetic acid. 2 ml of acetic anhydride and 0.2 ml of 1-methyl imidazole were added to the reduced sample solution, followed by stirring. The mixture was left at room temperature for 10 minutes to be acetylated, and 5 ml of distilled water was added to the excess acetic anhydride and decomposed. Subsequently, after cooling, 1 ml of dichloromethane was added, the mixture was stirred, and the layers were separated to obtain a dichloromethane layer. Analysis conditions of gas chromatography are shown in Table 2 below. The component sugar was confirmed by comparing the chromatogram of the standard reagent and the retention time. Quantification is based on internal standard (myo-inositol) and standard reagents (L-Ranose, L-fucose, L-ribose, L-Arabinose, D-Xylose, D-Mannose, D-Galactose, D) -Glucose) was acetylated in the same manner as the sample to obtain a relative area ratio for each concentration. 2A and 2B are gas chromatographic analysis results of the standard sugar and the polysaccharide produced in the present invention, and as shown here, it can be seen that glucose accounts for 95.3% of the polysaccharide produced in the present invention.

기기device 휴렛페커드 GC 모델 5890(Hewlett Packard GC Model 5890)Hewlett Packard GC Model 5890 칼럼column SP-2330(0.25㎜ x 30m; 필름 두께:0.2㎛)SP-2330 (0.25 mm x 30 m; film thickness: 0.2 μm) 오븐 온도Oven temperature 230℃(작동시간: 10분),2.5℃/분, 265℃230 ° C (operating time: 10 minutes), 2.5 ° C / min, 265 ° C 이동가스(carrier gas)Carrier gas 헬륨 11psiHelium 11psi 보충 가스(make-up gas)Make-up gas 질소(30㎖/분)Nitrogen (30 ml / min) 탐색기Explorer 플레임 이온화 탐색기Flame Ionization Explorer 투입 온도Input temperature 240℃240 ℃ 탐색기 온도Explorer temperature 240℃240 ℃

또한, 다당류를 HPLC 증류수에 0.25% 농도로 녹인 다음, 0.45㎛ 막여과기로 여과한 10㎕를 크기배제 크로마토그래피로 분석하였다(칼럼: YMC-Pack Diol-300 크기 배제 칼럼(YMC사, 300 × 8.0 mm I.D.), 이동상: HPLC용 증류수, 유속: 0.6㎖/분, 탐색기: 굴절률 탐색기(refractive index detector), 분자량 마커(marker): 블루 덱스트란(Blue dextran), 덱스트란 T-500, 덱스트란 T-70, 덱스트란 T-40). 그 결과, 분자량은 약 500 kDa이었으며, 결합 방식은 FT-IR 스펙트럼으로 분석한 결과 888cm-1에서 피크가 검출되어 β-결합의 글루칸임이 밝혀졌다. 그리고 구성당의 결합양식은 GC/MS로 분석한 결과 본 체외 다당류는 β-1,3 및 β-1,6으로 구성되어 있음을 알 수 있었다. 도 3 및 4는 각각 본 발명에서 생산된 β-글루칸의 크기 배제 크로마토그래피 및 FT-IR 스펙트럼 분석 결과이다.In addition, the polysaccharide was dissolved in HPLC distilled water at a concentration of 0.25%, and then analyzed by size exclusion chromatography using a 10 μl filtered by 0.45 ㎛ membrane filter (column: YMC-Pack Diol-300 size exclusion column (YMC, 300 × 8.0) mm ID), mobile phase: distilled water for HPLC, flow rate: 0.6 ml / min, searcher: refractive index detector, molecular weight marker: blue dextran, dextran T-500, dextran T -70, dextran T-40). As a result, the molecular weight was about 500 kDa, and the binding mode was analyzed by the FT-IR spectrum, and the peak was detected at 888 cm −1 , indicating that it was a glucan of β-binding. In addition, the binding patterns of constituent sugars were analyzed by GC / MS, and the in vitro polysaccharides were composed of β-1,3 and β-1,6. 3 and 4 are the results of size exclusion chromatography and FT-IR spectra of β-glucan produced in the present invention, respectively.

실시예 4: 보리농도에 따른 β-글루칸의 생산Example 4 Production of β-Glucan According to Barley Concentration

보리배지 중 최적의 보리농도를 확인하기 위하여, 배지 중의 보리농도를 0.5%, 1.0% 및 1.5%로 조절하여 상기 실시예 1과 동일한 방법으로 각각의 보리배지를 제조하였다.In order to determine the optimal barley concentration in the barley medium, the barley concentration in the medium was adjusted to 0.5%, 1.0% and 1.5% to prepare each barley medium in the same manner as in Example 1.

이어서, 상기 제조된 보리배지에 상기 실시예 2와 동일한 방법으로 시조필륨 코뮨 균주를 접종하고 적합한 배양조건에서 배양한 후 생성된 β-글루칸을 분리하여 그 생산량을 측정하였다.Subsequently, the prepared barley medium was inoculated with the S. pylori strain in the same manner as in Example 2, and cultured under suitable culture conditions, and the produced β-glucan was isolated to measure its yield.

도 5는 보리의 농도에 따른 β-글루칸의 시간당 생산량을 나타낸 그래프(a: 시조필륨 코뮨의 시간당 생체량 및 b: β-글루칸의 시간당 농도)로서, 여기에서 보듯이, 보리농도 1%에서 최대 비증식 속도(maximum specific growth rate) 및 미생물 농도에 대한 β-글루칸의 생산성(specific productivity)이 가장 높음을 알 수 있다.FIG. 5 is a graph showing the hourly production of β-glucan according to the concentration of barley (a: hourly biomass of sizophyllium comb and b: hourly concentration of β-glucan). It can be seen that the specific productivity of β-glucan with respect to the maximum specific growth rate and the microbial concentration is the highest.

실시예 5: 식염농도에 따른 β-글루칸의 생산Example 5 Production of β-Glucan According to Saline Concentration

보리배지 중 최적의 식염농도를 확인하기 위하여, 배지 중의 식염농도를 0%, 0.5% 및 1.0%로 조절하여 상기 실시예 1과 동일한 방법으로 각각의 보리배지를 제조하였다.In order to determine the optimal salt concentration in barley medium, each barley medium was prepared in the same manner as in Example 1 by adjusting the salt concentration in the medium to 0%, 0.5% and 1.0%.

이어서, 상기 제조된 보리배지에 상기 실시예 2와 동일한 방법으로 시조필륨 코뮨 균주를 접종하고 적합한 배양조건에서 배양한 후 생성된 β-글루칸을 분리하여 그 생산량을 측정하였다.Subsequently, the prepared barley medium was inoculated with the S. pylori strain in the same manner as in Example 2, and cultured under suitable culture conditions, and the produced β-glucan was isolated to measure its yield.

도 6은 식염의 농도에 따른 β-글루칸의 시간당 생성량을 나타낸 그래프(a: 시조필륨 코뮨의 시간당 생체량 및 b: β-글루칸의 시간당 농도)로서, 여기에서 보듯이, 식염농도 0.5%에서 최대 비증식 속도 및 미생물 농도에 대한 β-글루칸의 생산성이 가장 높음을 알 수 있다.FIG. 6 is a graph showing the hourly production of β-glucan according to the concentration of saline (a: hourly biomass of sizophyllium comb and b: hourly concentration of β-glucan), and as shown here, the maximum ratio at the salt concentration of 0.5% It can be seen that β-glucan has the highest productivity with respect to growth rate and microbial concentration.

본 발명의 보리배지를 이용함으로써 시조필륨 코뮨 균주로부터 기존의 글루코스 배지를 이용하는 경우에 필적할 만한 수준으로 β-글루칸을 생산할 수 있어 경제적으로 유용하다.By using the barley medium of the present invention, it is economically useful to produce β-glucan at a level comparable to that of the existing glucose medium from Schizophyllium comonum strains.

Claims (2)

시조필륨 코뮨(Schizophyllum commune) 균주를 이용하여 β-글루칸을 생산하는 방법에 있어서, 보리 0.5 내지 1.5 중량% 및 식염 0 내지 1.0 중량%를 포함하는 보리배지 중에서 시조필륨 코뮨 균주를 배양하여 β-글루칸을 생산하는 것을 특징으로 하는 방법.In the method for producing β-glucan using the Schizophyllum commune strain, β-glucan by culturing the Schizophyllium comon strain in barley medium containing 0.5 to 1.5% by weight of barley and 0 to 1.0% by weight of salt Method for producing a. 보리 0.5 내지 1.5 중량% 및 식염 0 내지 1.0 중량%를 포함하는, 시조필륨 코뮨(Schizophyllum commune) 균주를 이용한 β-글루칸 생산용 보리배지.Barley medium for β-glucan production using Schizophyllum commune strain comprising 0.5 to 1.5% by weight of barley and 0 to 1.0% by weight of salt.
KR10-2001-0014390A 2001-03-20 2001-03-20 Barley medium and method of preparing beta-glucan in schizophyllum commune using same KR100442149B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0014390A KR100442149B1 (en) 2001-03-20 2001-03-20 Barley medium and method of preparing beta-glucan in schizophyllum commune using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0014390A KR100442149B1 (en) 2001-03-20 2001-03-20 Barley medium and method of preparing beta-glucan in schizophyllum commune using same

Publications (2)

Publication Number Publication Date
KR20020074561A true KR20020074561A (en) 2002-10-04
KR100442149B1 KR100442149B1 (en) 2004-07-27

Family

ID=27698011

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0014390A KR100442149B1 (en) 2001-03-20 2001-03-20 Barley medium and method of preparing beta-glucan in schizophyllum commune using same

Country Status (1)

Country Link
KR (1) KR100442149B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101108128B1 (en) * 2011-08-30 2012-01-31 강현녀 The stone machining method and maching device for getting sculpture

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712560A (en) * 1985-08-09 1987-12-15 General Electric Company Apparatus and method of acquiring physiological gating signals for magnetic resonance imaging of moving objects
KR0157617B1 (en) * 1990-10-12 1998-10-15 알프레트 크라인, 로란트 울브릭트 Self-blocking gas spring with temperature-responsive bypass valve
JPH04364746A (en) * 1991-06-12 1992-12-17 Tokyo Electron Yamanashi Kk Probe apparatus
JP3651697B2 (en) * 1995-03-24 2005-05-25 株式会社アミノアップ化学 New polysaccharide substances
KR960036902A (en) * 1995-04-15 1996-11-19 한긍희 Manufacturing method of spawn for mushroom cultivation
KR100189514B1 (en) * 1996-12-03 1999-06-01 김신일 The method for culturing mushroom hyphae
KR100295623B1 (en) * 1998-03-24 2001-09-06 서경배 A method for isolation of β-1,6-branched-β-1,3-glucan from Schizophyllum commune Fr. and compositions for cosmetic application containing β-1,6-branched-β-1,3-glucan obtained by the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101108128B1 (en) * 2011-08-30 2012-01-31 강현녀 The stone machining method and maching device for getting sculpture

Also Published As

Publication number Publication date
KR100442149B1 (en) 2004-07-27

Similar Documents

Publication Publication Date Title
Liu et al. Recent advances in endophytic exopolysaccharides: Production, structural characterization, physiological role and biological activity
Wu et al. Extraction optimization, physicochemical properties and antioxidant and hypoglycemic activities of polysaccharides from roxburgh rose (Rosa roxburghii Tratt.) leaves
Reddy et al. Production of high-pure xylooligosaccharides from sugarcane bagasse using crude β-xylosidase-free xylanase of Bacillus subtilis KCX006 and their bifidogenic function
Albersheim et al. Host-pathogen interactions: VII. Plant pathogens secrete proteins which inhibit enzymes of the host capable of attacking the pathogen
Kreisl et al. Chemical structure of the cell wall polymer of Methanosarcina
Ma et al. Purification, characterization, antioxidant activity and anti-aging of exopolysaccharides by Flammulina velutipes SF-06
Salama et al. Characterization of a new efficient low molecular weight Bacillus subtilis NRC 16 levansucrase and its levan
Rau et al. Production and structural analysis of the polysaccharide secreted by Trametes (Coriolus) versicolor ATCC 200801
Li et al. Production of enzymes by Alteromonas sp. A321 to degrade polysaccharides from Enteromorpha prolifera
Papaspyridi et al. Growth and biomass production with enhanced β‐glucan and dietary fibre contents of Ganoderma australe ATHUM 4345 in a batch‐stirred tank bioreactor
Le et al. Structural characterization of mannoglucan isolated from Ophiocordyceps sobolifera and its antioxidant activities
Lu et al. Improved production and antioxidant activity of exopolysaccharides by submerged culture of Lentinula edodes by the addition of lignocellulose
Fukui et al. Induction of shikonin biosynthesis by endogenous polysaccharides in Lithospermum erythrorhizon cell suspension cultures
KR100695779B1 (en) Microorganism producing fucoidan and method for producing fucoidan using the same
KR100442149B1 (en) Barley medium and method of preparing beta-glucan in schizophyllum commune using same
KR100385913B1 (en) Oligosaccahrides from Ginseng and process for preparation thereof
Boual et al. Partial Characterization and Hydrolysis Procedure of Water Soluble Polysaccharides Extracted from Onesaharian Medicinal Plant: Malvaaegyptiaca L.
Zähringer et al. Structure of a new 6-deoxy-α-d-talan from Burkholderia (Pseudomonas) plantarii strain DSM 6535, which is different from the O-chain of the lipopolysaccharide
Zhang et al. Optimization of fermentation of Fomes fomentarius extracellular polysaccharide and antioxidation of derivatized polysaccharides
Lima et al. Oligosaccharides derived from the xyloglucan isolated from the seeds of Hymenaea courbaril var. stilbocarpa
KR100491186B1 (en) THE ISOFLAVONE-β-D-GLUCAN PRODUCED BY AGARICUS BLAZEI IN THE SUBMERGED LIQUID CULTUR AND THE PRODUCING METHOD THERE OF
Abdel-Aziz et al. Production and assessment of antioxidant activity of exopolysaccharide from marine Streptomyces globisporus bu2018
CN112870298B (en) Dendrobium officinale stock solution as well as preparation method and application thereof
KR100339715B1 (en) Process for Preparing Pullulan Employing Waste Materials Containing High Concentration of Sugars from Food-processing Industry
Updegraff et al. Microbial utilization of Pinus radiata bark

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee