KR20020070716A - Method for manufacturing ZnO layer using sputtering deposition - Google Patents
Method for manufacturing ZnO layer using sputtering deposition Download PDFInfo
- Publication number
- KR20020070716A KR20020070716A KR1020010010912A KR20010010912A KR20020070716A KR 20020070716 A KR20020070716 A KR 20020070716A KR 1020010010912 A KR1020010010912 A KR 1020010010912A KR 20010010912 A KR20010010912 A KR 20010010912A KR 20020070716 A KR20020070716 A KR 20020070716A
- Authority
- KR
- South Korea
- Prior art keywords
- zno
- deposition
- temperature
- film
- thin film
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/541—Heating or cooling of the substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Physical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
본 발명은 기판상에 박막을 형성하는 방법에 관한 것으로, 더욱 상세하게는 기판상에 ZnO막을 스퍼터링증착하는 방법에 관한 것이다.The present invention relates to a method for forming a thin film on a substrate, and more particularly, to a method for sputter deposition of a ZnO film on a substrate.
고품질의 산화아연(ZnO)막을 얻기 위한 종래의 방법중의 하나는, MgO와 같은 버퍼층(완충막)을 ZnO막과 기판사이에 사용하는 방법이 시도되었다(참고문헌: Y. Chen, H. J. Ko, S. K. Hong, 및 T. Yao, Appl. Phys. Lett. 76,559(2000)]. 그러나, 이 방법은 MgO라는 이종물질을 추가로 사용하여 제조공정이 복잡하게 되고, 분자선에피택셜 성장법(Molecular Beam Epitaxy Method)을 사용하기 때문에 대량생산이나 산업계의 응용은 불가능하였다.One conventional method for obtaining a high quality zinc oxide (ZnO) film has been a method of using a buffer layer (buffer film) such as MgO between a ZnO film and a substrate (Ref .: Y. Chen, HJ Ko, SK Hong, and T. Yao, Appl. Phys. Lett. 76,559 (2000)] However, this method adds a heterogeneous substance called MgO, which complicates the manufacturing process and results in a molecular beam epitaxy. Because of the method, mass production or industrial applications were not possible.
고품질의 ZnO막을 얻기 위한 다른 방법은 두 단계 공정을 사용하였다[참고문헌: S. H. Park, B. C. Seo, 및 G. W. Yoon, J. Vac. Sci. Technol. A 18(5), Sep/Oct 2000]. 이 방법은 1차공정에서 약 1000Å의 다결정 버퍼층(완층)층을 먼저 증착시키는 것이다. 다음에 다결정막을 증착한다. 그러나, 이 방법은 1차 및 2차 공정 모두 다결정(Polycrystalline)막을 사용하기 때문에 (002)면의 상(Phase)외에 (101)면상에 불순물상이 발생하는 등, 고품질의 ZnO막을 제조하는 데는 한계가 있다.Other methods for obtaining high quality ZnO films have used a two step process [Ref. S. H. Park, B. C. Seo, and G. W. Yoon, J. Vac. Sci. Technol. A 18 (5), Sep / Oct 2000]. This method first deposits a polycrystalline buffer layer (complete layer) of about 1000 mW in the first step. Next, a polycrystalline film is deposited. However, since this method uses a polycrystalline film in both the primary and secondary processes, there are limitations in producing a high quality ZnO film, such as impurity phases on the (101) plane in addition to the (002) plane. have.
본 발명은 상기의 문제점을 해결하기 위해서 개량된 것으로서, 스퍼터링법을 이용하여 고품질의 에피택시(Epitaxy)막을 형성하는 방법을 제공하는 것을 목적으로 한다.The present invention has been made to solve the above problems, and an object thereof is to provide a method for forming a high quality epitaxy film using a sputtering method.
도1은 본 발명에 따른 박막 형성방법을 수행하기 위하여 사용되는 스퍼터링증착장치의 일 예를 보여주는 개략도.1 is a schematic view showing an example of a sputtering deposition apparatus used to perform a thin film forming method according to the present invention.
도2는 비교예1,2와 본 발명의 실시예에 따라 증착된 박막의 세타락킹의 반가전폭을 보여주는 그래프.2 is a graph showing the semi-full width of the seta rocking of the thin film deposited according to Comparative Example 1, 2 and the embodiment of the present invention.
도3은 비교예1,2와 본 발명의 실시예에 따라 증착된 박막의 X-선 회절측정결과를 보여주는 그래프.Figure 3 is a graph showing the X-ray diffraction measurement results of the thin film deposited according to Comparative Examples 1 and 2 and the embodiment of the present invention.
도 4a 내지 도 4c는 비교예1,2와 본 발명의 실시예에 따라 증착된 박막의 표면거칠기를 보여주는 그래프로서, 도 4a는 비교예1에서 증착한 경우, 도 4b는 본 발명의 실시예1에서 증착한 경우 및 도 4c는 비교예2에서 증착한 경우를 도시한 그래프.4A to 4C are graphs showing surface roughnesses of the thin films deposited according to Comparative Examples 1 and 2 and the embodiment of the present invention, and FIG. 4A is a deposition example 1 and FIG. 4C is a graph showing the case of deposition in Comparative Example 2.
본 발명은 상기의 목적을 달성하기 위하여 2 차원층(2 Dimensional layer)만을 증착하는 제 1 단계와, 제 1 단계의 증착온도 보다 기판의 온도를 높여서 나머지 막을 증착하는 제 2 단계를 포함하는 두 단계 증착방법을 사용하였다. 일반적으로 ZnO 증착시 기판의 온도가 높으면 막질은 향상되지만{(FWHM(Full Width at Half Maximum:반가전폭)의 감소}, 증착초기부터 2D 증 성장모드 보다는 3 D 원주상 또는 아일랜드 성장 모드를 가지지 때문에, 증착된 막의 거칠기는 증가한다 참고문헌 [Y.Chen, H.J.Hong 및 T.Yao, Applied Physics Letters Vol. 76, 559 Page (2000)], [A.Ohtomo, H.Kimura, T.Mkkino, Y.Segawa, H.Koinuma 및 M.Kawasaki, J.Crystal Growth, 214/215(2000) 284-288]. 반면 기판의 온도가 낮으면 증착초기에 2D 층 성장후 3 D 원주상 또는 아일랜드 성장 모드로 전환되기 때문에, 막의 거칠기는 감소하지만, 막질은 고온증착에 비해 저하된 특징(반가전폭의 증가)을 가진다 참고문헌[S.I.Pa가, T.S.Cho, S.J.Doh, J.L.Lee 및 J.H.Je, Applied Physics Letters, Vol 77, 349(2000)]. 따라서, 궁극적으로는 각각의 온도에 따른 장점인 향상된 막질(즉, 낮은 반가전폭)과 낮은 거칠기를 동시에 가지는 막을 제공할 필요가 있다.The present invention includes a first step of depositing only a two-dimensional layer in order to achieve the above object, and a second step of depositing the remaining film by raising the temperature of the substrate than the deposition temperature of the first step The deposition method was used. Generally, the higher the temperature of the substrate during ZnO deposition, the better the film quality (reduction of FWHM (Full Width at Half Maximum)), but since it has a 3D circumferential or island growth mode rather than a 2D growth mode from the beginning of deposition. , The roughness of the deposited film is increased. See, Y. Chen, HJHong and T. Yao, Applied Physics Letters Vol. 76, 559 Page (2000), A. Ohtomo, H. Kimura, T. Mkkino, Y. Segawa, H.Koinuma and M.Kawasaki, J.Crystal Growth, 214/215 (2000) 284-288] On the other hand, if the temperature of the substrate is low, the 2D layer can be grown in 3D circumferential or island growth mode after the initial deposition Because of the conversion, the roughness of the membrane is reduced, but the membrane quality has a lowered characteristic (increase in half width) compared to high temperature deposition. Reference [SIPa, TSCho, SJDoh, JLLee and JHJe, Applied Physics Letters, Vol 77, 349 (2000)] Thus, ultimately, the improved film quality (i.e., low half-width), which is a benefit of each temperature, There is a need to provide a film having a low roughness simultaneously.
본 발명의 목적은 상기 문제점을 해결하기 위한 것으로서, 스퍼터링증착법을 이용한 낮은 반가전폭 및 낮은 거칠기의 ZnO 막을 제조하는 방법을 제공하는 데에 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a ZnO film having a low semi-full width and low roughness using a sputtering deposition method.
본 발명은 제 1 저온 증착 공정에서 증착된 막이 2D 층 성분만을 가지며, 제 2 증착공정은 제 1 저온증착공정보다 더 높은 온도에서 실시되는 것을 특징으로 한다.The present invention is characterized in that the film deposited in the first low temperature deposition process has only a 2D layer component, and the second deposition process is performed at a higher temperature than the first low temperature deposition process.
이하, 본 발명의 실시예를 첨부도면을 참고하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
우선, 비교예1 및 2을 제시한다.First, Comparative Examples 1 and 2 are shown.
[비교예 1]Comparative Example 1
다음의 조건에 따라 스퍼터링 법으로 증착을 실시한다.The deposition is carried out by the sputtering method under the following conditions.
1단계증착을 실시한다.Carry out one-step deposition.
기본압력:10-6토르Basic Pressure: 10 -6 Torr
사용기체: Ar(99.99%), 산소(99.999%)Gas used: Ar (99.99%), oxygen (99.999%)
공정압력:2×10-2토르Process pressure: 2 x 10 -2 Torr
전력: 20 WPower: 20 W
기판:사파이어(Al2O3) (002)Substrate: Sapphire (Al 2 O 3 ) (002)
타깃: ZnOTarget: ZnO
기판온도:300℃Substrate temperature: 300 ℃
본 비교예에서 증착된 박막에 대하여 측정된 X-선 회절법에서 세타로킹(Θ-Rocking)을 실시한 결과, 도2에 보여진 바와 같이, 3차원 성장 모드를 보였다. 반가전폭을 측정한 결과, 0.72°인 것을 알 수 있다. 여기서 세타로킹의 반가전폭은 작을수록 에피텍시정도가 크며 막질이 우수하다는 것을 의미한다. 기판의 거칠기는 30Å이었다.As a result of performing theta rocking in the X-ray diffraction method measured on the thin film deposited in the comparative example, as shown in FIG. 2, it showed a three-dimensional growth mode. As a result of measuring the half-width width, it turns out that it is 0.72 degrees. The smaller the half-width of theta locking, the higher the epitaxy and the better the film quality. The roughness of the substrate was 30 kPa.
[비교예 2]Comparative Example 2
다음의 조건에서 스퍼터링증착을 실시하였다.Sputtering deposition was performed under the following conditions.
1단계 증착공정을 실시하였다.One step deposition process was performed.
기본압력:10-6토르Basic Pressure: 10 -6 Torr
사용기체:Ar(99.99%), 산소(99.999%)Gas used: Ar (99.99%), oxygen (99.999%)
공정압력: 2×10-6토르Process pressure: 2 × 10 -6 Torr
전력:20WPower: 20 W
기판:사파이어(Al203) (002)Substrate: Sapphire (Al 2 0 3 ) (002)
타깃:ZnOTarget: ZnO
기판온도:500℃Substrate temperature: 500 ℃
본 비교예2에서 증착된 박막에 대하여 측정된 X-선 회절법에서 분말주사(Θ-2Θ주사)을 실시한 결과, 도3에 보여진 바와 같이 (002) 및 (101)상을 동시에 가지는 다결정막이었다. 2가지 이상의 상이 동시에 존재한다는 것은 박막의 에피텍시가 현저히 감소하였다는 것을 의미한다. 기판의 표면거칠기는 약 3000Å으로 아주 거칠은 표면구조를 가지고 있음을 알 수 있다.Powder scanning (Θ-2Θ scanning) was performed by X-ray diffraction on the thin film deposited in Comparative Example 2, and as a result, it was a polycrystalline film having both (002) and (101) phases as shown in FIG. . The presence of two or more phases simultaneously means that the epitaxy of the thin film is significantly reduced. The surface roughness of the substrate is about 3000Å and it can be seen that it has a very rough surface structure.
[실시예1]Example 1
본 실시예는 스퍼터링법을 이용하여 ZnO 막을 증착하는 방법을 제시한다.This embodiment presents a method of depositing a ZnO film using a sputtering method.
본 발명의 실시예1을 도1을 참조하면서 설명한다.다만, 종래와 동일한 부분이나 상당하는 부분에서는 동일한 부호를 붙여진다.Embodiment 1 of the present invention will be described with reference to Fig. 1. However, the same reference numerals are given to the same or corresponding parts as in the prior art.
본 발명의 두 증착단계를 이용한 스퍼터링방법을 실시하기 위한 장치는, 도1와 같이, 진공조(1)내에는 캐소우드(3)가 설치되고, 캐소우드(3)의 하부에는 ZnO 타킷(2)이 부착되어 있다. 타킷(2)에는 DC바이어스를 인가하기 위한 플라즈마전력원(6)이 설치되어 있다. 그리고, 타킷(2)과 동일한 축상으로 평행하게 대향하는 애노우드(4)가 설치되고, 애노우드(4)의 상부에는 사파이어(Al2O3)기판(5)이 위치한다. 또한, 진공조(1)의 내부의 산소 및 알콘과 같은 기체를 이용하여 플라즈마를 발생시키기 위하여 플라즈마전력원(6)이 설치되며, 진공조(1)내부의 진공발생을 위하여 진공시스템(7)이 설치된다. 이와 같은 장치를 이용하여 스퍼터링 증착을 수행할 때, 플라즈마 전력원(6)으로 인해서 발생한 +로 이온화된 플라즈마 기체가 음의 바이어스전압이 가해진 타깃(2)에 충돌하여 타깃(2)의 물질을 스퍼터링시킨다. 이렇게 타깃(2)으로부터 떨어져 나온 입자가 기판(5)쪽으로 날아가서 기판(5)에 증착된다.In the apparatus for carrying out the sputtering method using the two deposition steps of the present invention, as shown in FIG. 1, a cathode 3 is installed in the vacuum chamber 1, and a ZnO target 2 is disposed below the cathode 3. ) Is attached. The target 2 is provided with a plasma power source 6 for applying a DC bias. An anode 4 facing the same axis in parallel with the target 2 is provided, and a sapphire (Al 2 O 3 ) substrate 5 is positioned above the anode 4. In addition, a plasma power source 6 is installed to generate a plasma by using a gas such as oxygen and alcon inside the vacuum chamber 1, and a vacuum system 7 for generating a vacuum inside the vacuum chamber 1. This is installed. When sputtering deposition is performed using such a device, the plasma gas ionized by + generated by the plasma power source 6 collides with the target 2 to which a negative bias voltage is applied, and the material of the target 2 is sputtered. Let's do it. Thus, particles falling off the target 2 fly toward the substrate 5 and are deposited on the substrate 5.
본 발명의 스퍼터링방법에 대하여 설명한다.The sputtering method of the present invention will be described.
우선, 도입관(8)을 통하여 인가방향으로 Ar(99.99%)의 불활성가스 및 산소(99.999%)를 진공챔버(7)내로 도입하고, 진공챔버(7)내의 가스압을 10-6토르로 한다. ZnO 타깃(2)에 플라즈마전력원(6)으로부터 약 20W의 전력을 공급하여, 플라즈마중의 Ar이온을 타깃(2)에 충돌시켜 , 타깃(2)의 표면으로부터 스퍼터 입자를 형성하여, 스퍼터 입자를 약 300℃에서 약 17분동안 기판(5)의 (002)면상에 퇴적시켜 ZnO막을 형성한다. 여기서, 약 17분은 2 D 층만이 생성되는 시간이다. 공정압력은 약 2×10-2토르이다. 이것을 1차 공정이라 한다.First, inert gas and oxygen (99.999%) of Ar (99.99%) are introduced into the vacuum chamber 7 through the introduction pipe 8, and the gas pressure in the vacuum chamber 7 is set to 10 -6 Torr. . About 20W of electric power is supplied to the ZnO target 2 from the plasma power source 6, the Ar ions in plasma collide with the target 2, and sputter particle is formed from the surface of the target 2, and sputter particle is carried out. Is deposited on the (002) plane of the substrate 5 at about 300 ° C. for about 17 minutes to form a ZnO film. Here, about 17 minutes is the time when only the 2D layer is produced. The process pressure is about 2 x 10 -2 torr. This is called the primary process.
1차 공정실시후에 플라즈마 전력원(2)의 전력을 오프시키거나 또는 약하게 공급한 후에 기판가열을 위한 전력을 증가시켜서 원하는 온도로 상승시킨 후에 2차 공정을 실시한다. 2차 공정의 온도는 약 500℃이며, 2차 공정온도가 1차 공정온도보다 높다는 것을 제외하고는 1차 공정의 조건과 동일하다.After the first process is performed, the power of the plasma power source 2 is turned off or weakly supplied, and then the power for heating the substrate is increased to raise the desired temperature, and then the second process is performed. The temperature of the secondary process is about 500 ° C. and is the same as the conditions of the primary process except that the secondary process temperature is higher than the primary process temperature.
이 실시예에서 증착된 박막에 대하여 측정된 Θ-로킹(rocking) 반가전폭(FWHM)은 도2에서 보여진 바와 같이, 0.005°였으며, 후술하는 비교예1에서 보여진 반가전폭 0.72°에 비해 월등히 낮은 값이다. 이는 본 발명의 실시예에 따라 증착된 ZnO박막이 종래의 기술에 따라 증착된 박막에 비해 애피텍시(epitaxi)정도가 월등히 높은 것을 의미한다. 기판의 표면거칠기는 28Å으로 비교예에서 보인 거칠기 30Å와 거의 동일한 정도를 나타내고 있다. 이는 본 발명의 실시예에 사용된 기술을 적용함으로써 500℃의 고온에서 2차공정을 행하여 증착하더라도 300℃의 저온에서 증착된 막과 동일한 수준의 거칠기를 가진다는 것을 의미한다.In this example, the measured Θ-rocking half-width (FWHM) of the deposited thin film was 0.005 °, as shown in FIG. 2, and is much lower than the half-width 0.72 ° shown in Comparative Example 1 described below. to be. This means that the ZnO thin film deposited according to the embodiment of the present invention is much higher in epitaxial (epitaxi) than the thin film deposited according to the prior art. The surface roughness of the substrate was 28 kW, which was almost the same as that of the roughness 30 k shown in the comparative example. This means that by applying the technique used in the embodiment of the present invention, even if the deposition is performed by a secondary process at a high temperature of 500 ℃ has the same level of roughness as the film deposited at a low temperature of 300 ℃.
이상의 비교예와 실시예를 종합하면, ZnO 박막의 증착시 1차 공정에서 2차원층만 증착하고, 2차 공정에서 1차공정보다 높은 온도에서 증착을 행하면, 증착된 박막의 막질이 월등히 개선된다. 이를 보다 상세히 설명하면, 박막의 에피텍시가 향상되었으며 박막의 거칠기 또한 개선되었다. 도2에 보여진 바와 같이, 본 발명에 따른 2 단계 증착을 행하면, 종래의 기술에 비하여 반가전폭이 0.72°에서 0.005°로 크게 감소하였다. 또한 도3에 보여진 바와 같이, 종래의 기술에 따라 증착된 박막은 (002) 및 (101) 면에서 세기가 피이크를 나타내는 것으로 보아 다결정박막임을 알 수 있으며, 반면에 본 실시예에 따라 증착된 박막은 (002) 면에서만 세기가 피이크를 나타내는 것으로 보아 단일상의 박막임을 알 수 있다. 이는 본 발명에 따라 증착된 박막이 종래기술에 따라 증착된 박막에 비해 에피텍시 정도가 월등히 증가한 것을 의미한다. 도4는 박막의 거칠기를 비교한 것으로서, 본 실시예에 따라 2단계 증착으로 얻어진 박막의 거칠기는 28Å으로 동일한 조건의 300℃의 저온에서 1 단계로 증착한 박막과 동일한 수준의 거칠기(30Å)을 보이고 있다. 그리고 동일조건의 500℃의 고온에서 1 단계로 증착한 박막의 거칠기(3000Å)에 비해서는 월등히 개선된 표면거칠기를 보이고 있다.In summary, when the ZnO thin film is deposited, only the two-dimensional layer is deposited in the first step, and the deposition is performed at a higher temperature than the first step in the second step, and the film quality of the deposited thin film is significantly improved. . In more detail, the epitaxy of the thin film was improved and the roughness of the thin film was also improved. As shown in Fig. 2, when the two-stage deposition according to the present invention is carried out, the semi-conducting width is greatly reduced from 0.72 ° to 0.005 ° compared with the conventional technology. In addition, as shown in Figure 3, the thin film deposited according to the prior art can be seen that the intensity of the peak in the (002) and (101) surface is a polycrystalline thin film, whereas the thin film deposited according to the present embodiment It can be seen that the silver is a single-phase thin film because the intensity represents the peak only on the (002) plane. This means that the degree of epitaxy is significantly increased compared to the thin film deposited according to the prior art. Figure 4 is a comparison of the roughness of the thin film, the roughness of the thin film obtained by the two-step deposition according to the present embodiment is 28 Å the same level of roughness (30 Å) of the thin film deposited in one step at a low temperature of 300 ℃ under the same conditions It is showing. In addition, compared to the roughness (3000 kPa) of the thin film deposited in one step at a high temperature of 500 ℃ under the same conditions, the surface roughness is significantly improved.
위에 기재된 실시예에서는 1차 공정온도를 300℃로 하고 , 2차 공정온도를 500℃로 하였으나, 1차 공정온도를 25∼350℃로 하고 ZnO막의 두께를 1∼200Å로 하며, 2차 공정온도도 400∼700℃로 하고 ZnO막을 1Å∼5㎛ 의 두께로 하여도 실시예1과 동일한 결과를 얻을 수 있었다.In the above-described embodiment, the primary process temperature is 300 ° C., the secondary process temperature is 500 ° C., but the primary process temperature is 25-350 ° C., the thickness of the ZnO film is 1-200 kPa, and the secondary process temperature is The same result as in Example 1 was obtained even when the thickness was 400 to 700 ° C and the ZnO film was 1 µm to 5 µm.
이상에서 설명한 바와 같이, 본 발명에 따라, 스퍼터링시 2 단계로 나누어, 1차공정은 저온에서 2차공정은 1차공정보다 높은 온도에서 행하면, 박막증착시 고온의 장점과 저온의 장점을 동시에 얻음으로써, 박막의 에티텍시를 증가시키고 표면의 거칠기도 향상시킬 수 있다.As described above, according to the present invention, when the sputtering is divided into two stages, when the first process is performed at a lower temperature than the first process at a lower temperature, the advantages of high temperature and low temperature at the time of thin film deposition are simultaneously obtained. As a result, the epitaxy of the thin film can be increased and the surface roughness can be improved.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0010912A KR100399763B1 (en) | 2001-03-02 | 2001-03-02 | Method for manufacturing ZnO layer using sputtering deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0010912A KR100399763B1 (en) | 2001-03-02 | 2001-03-02 | Method for manufacturing ZnO layer using sputtering deposition |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020070716A true KR20020070716A (en) | 2002-09-11 |
KR100399763B1 KR100399763B1 (en) | 2003-09-26 |
Family
ID=27696215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0010912A KR100399763B1 (en) | 2001-03-02 | 2001-03-02 | Method for manufacturing ZnO layer using sputtering deposition |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100399763B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100739484B1 (en) * | 2005-10-27 | 2007-07-13 | 정운조 | The method of deposition for ZnO |
KR20160025792A (en) | 2014-08-28 | 2016-03-09 | (주)에스피테크 | Interior Decorative Sound Absorbing Materials |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5550462A (en) * | 1978-10-07 | 1980-04-12 | Toko Inc | Preparation of zinc oxide thin film |
JPH1030179A (en) * | 1996-07-17 | 1998-02-03 | Fuji Electric Co Ltd | Production of zinc oxide film |
KR100398699B1 (en) * | 1998-11-05 | 2004-02-05 | 학교법인 포항공과대학교 | How to form a thin film on a substrate by sputtering |
KR100343949B1 (en) * | 2000-01-26 | 2002-07-24 | 한국과학기술연구원 | METHOD FOR FABRICATING ZnO THIN FILM FOR ULTRAVIOLET DETECTION AND EMISSION SOURCE OPERATED AT ROOM TEMPERATURE, AND APPARATUS THEREFOR |
-
2001
- 2001-03-02 KR KR10-2001-0010912A patent/KR100399763B1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100739484B1 (en) * | 2005-10-27 | 2007-07-13 | 정운조 | The method of deposition for ZnO |
KR20160025792A (en) | 2014-08-28 | 2016-03-09 | (주)에스피테크 | Interior Decorative Sound Absorbing Materials |
Also Published As
Publication number | Publication date |
---|---|
KR100399763B1 (en) | 2003-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5232571A (en) | Aluminum nitride deposition using an AlN/Al sputter cycle technique | |
US6499427B1 (en) | Plasma CVD apparatus | |
EP2427586B1 (en) | Method for the production of oxide and nitride coatings and its use | |
US4572841A (en) | Low temperature method of deposition silicon dioxide | |
Yamaya et al. | Use of a helicon-wave excited plasma for aluminum-doped ZnO thin-film sputtering | |
CN112376024B (en) | Preparation method of oxide film | |
JP2005005280A (en) | Method for passivating semiconductor substrate | |
WO1994019509A1 (en) | Film forming method and film forming apparatus | |
KR20220097483A (en) | Methods for reducing material surface roughness | |
US10392691B2 (en) | Semiconductor silicon-germanium thin film preparation method | |
KR20190085143A (en) | Particle reduction in physical vapor deposition chamber | |
WO1996035640A1 (en) | Carbon nitride cold cathode | |
JP2000068227A (en) | Method for processing surface and device thereof | |
Weissmantel et al. | Ion beam sputtering and its application for the deposition of semiconducting films | |
US9719164B2 (en) | Method of manufacturing compound film | |
CN101586227A (en) | Adopt ion plating on growth substrates, to prepare the method for aluminium nitride material | |
KR100399763B1 (en) | Method for manufacturing ZnO layer using sputtering deposition | |
KR101117261B1 (en) | Method and apparatus for forming of semiconductor material quantum dots in the dielectric thin film | |
Parsons et al. | Thin Film Processes II | |
JP2001291882A (en) | Method of manufacturing thin film | |
JP2001237446A (en) | Thin-film polycrystalline silicon, silicon-based photoelectric conversion element and its manufacturing method | |
JP2775263B2 (en) | Member covered with carbon film | |
EP4340047A1 (en) | Method for manufacturing cigs light absorption layer for solar cell through chemical vapor deposition | |
KR20170095463A (en) | Hybrid physical-vapor epitaxy method and apparatus for fabrication of thin films | |
CN113224200B (en) | Gallium nitride semiconductor radiation detector, preparation method thereof and detection equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20080912 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |