KR100399763B1 - Method for manufacturing ZnO layer using sputtering deposition - Google Patents

Method for manufacturing ZnO layer using sputtering deposition Download PDF

Info

Publication number
KR100399763B1
KR100399763B1 KR10-2001-0010912A KR20010010912A KR100399763B1 KR 100399763 B1 KR100399763 B1 KR 100399763B1 KR 20010010912 A KR20010010912 A KR 20010010912A KR 100399763 B1 KR100399763 B1 KR 100399763B1
Authority
KR
South Korea
Prior art keywords
zno
film
temperature
deposition
zno film
Prior art date
Application number
KR10-2001-0010912A
Other languages
Korean (ko)
Other versions
KR20020070716A (en
Inventor
제정호
김인우
김현승
도석주
Original Assignee
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교 filed Critical 학교법인 포항공과대학교
Priority to KR10-2001-0010912A priority Critical patent/KR100399763B1/en
Publication of KR20020070716A publication Critical patent/KR20020070716A/en
Application granted granted Critical
Publication of KR100399763B1 publication Critical patent/KR100399763B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Abstract

본 발명은 진공조의 내부에 ZnO타깃과, 상기 ZnO 타깃으로부터 이격되어 대향하도록 배열된 사파이어 기판을 구비한 플라즈마를 발생시키는 스퍼터링 장치를 이용하여, ZnO막을 형성하는 방법을 제공한다. ZnO타깃을 제공하여 스퍼터링장치내에 사용가스에 노출시키는 단계; 적어도 하나의 반응성가스를 상기 스퍼터링장치에 공급하는 단계; 전원을 상기 스퍼터링장치에 공급하여 플라즈마를 형성하는 단계; 상기 플라즈마의 작용에 의하여 25∼350℃온도에서 사파이어 기판상에 ZnO막을 1∼200Å두께로 증착하는 단계; 및 상기 증착단계이후에 기판의 온도를 400∼700℃로 상승시킨 후 상기 1차 ZnO막위에 ZnO막을 1Å~5㎛ 의 두께로 증착하는 단계를 포함한다.The present invention provides a method for forming a ZnO film by using a sputtering apparatus for generating a plasma having a ZnO target in a vacuum chamber and a sapphire substrate arranged to face the ZnO target and facing away from the ZnO target. Providing a ZnO target to expose to use gas in the sputtering apparatus; Supplying at least one reactive gas to the sputtering device; Supplying power to the sputtering apparatus to form a plasma; Depositing a ZnO film at a thickness of 1 to 200 Å on a sapphire substrate at a temperature of 25 to 350 ° C. by the action of the plasma; And increasing the temperature of the substrate to 400 to 700 ° C. after the deposition step, and then depositing a ZnO film on the primary ZnO film to a thickness of 1 μm to 5 μm.

Description

스퍼터링증착법을 이용한 산화아연막의 제조방법{Method for manufacturing ZnO layer using sputtering deposition}Method for manufacturing zinc oxide film using sputtering deposition {Method for manufacturing ZnO layer using sputtering deposition}

본 발명은 기판상에 박막을 형성하는 방법에 관한 것으로, 더욱 상세하게는 기판상에 ZnO막을 스퍼터링증착하는 방법에 관한 것이다.The present invention relates to a method for forming a thin film on a substrate, and more particularly, to a method for sputter deposition of a ZnO film on a substrate.

고품질의 산화아연(ZnO)막을 얻기 위한 종래의 방법중의 하나는, MgO와 같은 버퍼층(완충막)을 ZnO막과 기판사이에 사용하는 방법이 시도되었다(참고문헌: Y. Chen, H. J. Ko, S. K. Hong, 및 T. Yao, Appl. Phys. Lett. 76,559(2000)]. 그러나, 이 방법은 MgO라는 이종물질을 추가로 사용하여 제조공정이 복잡하게 되고, 분자선에피택셜 성장법(Molecular Beam Epitaxy Method)을 사용하기 때문에 대량생산이나 산업계의 응용은 불가능하였다.One conventional method for obtaining a high quality zinc oxide (ZnO) film has been a method of using a buffer layer (buffer film) such as MgO between a ZnO film and a substrate (Ref .: Y. Chen, HJ Ko, SK Hong, and T. Yao, Appl. Phys. Lett. 76,559 (2000)] However, this method adds a heterogeneous substance called MgO, which complicates the manufacturing process and results in a molecular beam epitaxy. Because of the method, mass production or industrial applications were not possible.

고품질의 ZnO막을 얻기 위한 다른 방법은 두 단계 공정을 사용하였다[참고문헌: S. H. Park, B. C. Seo, 및 G. W. Yoon, J. Vac. Sci. Technol. A 18(5), Sep/Oct 2000]. 이 방법은 1차공정에서 약 1000Å의 다결정 버퍼층(완층)층을 먼저 증착시키는 것이다. 다음에 다결정막을 증착한다. 그러나, 이 방법은 1차 및 2차 공정 모두 다결정(Polycrystalline)막을 사용하기 때문에 (002)면의 상(Phase)외에 (101)면상에 불순물상이 발생하는 등, 고품질의 ZnO막을 제조하는 데는 한계가 있다.Other methods for obtaining high quality ZnO films have used a two step process [Ref. S. H. Park, B. C. Seo, and G. W. Yoon, J. Vac. Sci. Technol. A 18 (5), Sep / Oct 2000]. This method first deposits a polycrystalline buffer layer (complete layer) of about 1000 mW in the first step. Next, a polycrystalline film is deposited. However, since this method uses a polycrystalline film in both the primary and secondary processes, there are limitations in producing a high quality ZnO film, such as impurity phases on the (101) plane in addition to the (002) plane. have.

본 발명은 상기의 문제점을 해결하기 위해서 개량된 것으로서, 스퍼터링법을 이용하여 고품질의 에피택시(Epitaxy)막을 형성하는 방법을 제공하는 것을 목적으로 한다.The present invention has been made to solve the above problems, and an object thereof is to provide a method for forming a high quality epitaxy film using a sputtering method.

도1은 본 발명에 따른 박막 형성방법을 수행하기 위하여 사용되는 스퍼터링증착장치의 일 예를 보여주는 개략도.1 is a schematic view showing an example of a sputtering deposition apparatus used to perform a thin film forming method according to the present invention.

도2는 비교예1,2와 본 발명의 실시예에 따라 증착된 박막의 세타락킹의 반가전폭을 보여주는 그래프.2 is a graph showing the semi-full width of the seta rocking of the thin film deposited according to Comparative Example 1, 2 and the embodiment of the present invention.

도3은 비교예1,2와 본 발명의 실시예에 따라 증착된 박막의 X-선 회절측정결과를 보여주는 그래프.Figure 3 is a graph showing the X-ray diffraction measurement results of the thin film deposited according to Comparative Examples 1 and 2 and the embodiment of the present invention.

도 4a 내지 도 4c는 비교예1,2와 본 발명의 실시예에 따라 증착된 박막의 표면거칠기를 보여주는 그래프로서, 도 4a는 비교예1에서 증착한 경우, 도 4b는 본 발명의 실시예1에서 증착한 경우 및 도 4c는 비교예2에서 증착한 경우를 도시한 그래프.4A to 4C are graphs showing surface roughnesses of the thin films deposited according to Comparative Examples 1 and 2 and the embodiment of the present invention, and FIG. 4A is a deposition example 1 and FIG. 4C is a graph showing the case of deposition in Comparative Example 2.

본 발명은 상기의 목적을 달성하기 위하여 2 차원층(2 Dimensional layer)만을 증착하는 저온 증착 단계와, 저온 증착 단계의 증착온도 보다 기판의 온도를 높여서 나머지 막을 증착하는 고온 증착 단계를 포함하는 두 단계 증착방법을 사용하였다. 일반적으로 ZnO 증착시 기판의 온도가 높으면 막질은 향상되지만{(FWHM(Full Width at Half Maximum:반가전폭)의 감소}, 증착초기부터 2D 층 성장모드 보다는 3 D 원주상 또는 아일랜드 성장 모드를 가지지 때문에, 증착된 막의 거칠기는 증가한다 참고문헌 [Y.Chen, H.J.Hong 및 T.Yao, Applied Physics Letters Vol. 76, 559 Page (2000)], [A.Ohtomo, H.Kimura, T.Mkkino, Y.Segawa, H.Koinuma 및 M.Kawasaki, J.Crystal Growth, 214/215(2000) 284-288]. 반면 기판의 온도가 낮으면 증착초기에 2D 층 성장후 3D 원주상 또는 아일랜드 성장 모드로 전환되기 때문에, 막의 거칠기는 감소하지만, 막질은 고온증착에 비해 저하된 특징(반가전폭의 증가)을 가진다 참고문헌[S.I.Pa가, T.S.Cho, S.J.Doh, J.L.Lee 및 J.H.Je, Applied Physics Letters, Vol 77, 349(2000)]. 따라서, 궁극적으로는 각각의 온도에 따른 장점인 향상된 막질(즉, 낮은 반가전폭)과 낮은 거칠기를 동시에 가지는 막을 제공할 필요가 있다.In order to achieve the above object, the present invention includes two steps including a low temperature deposition step of depositing only a two-dimensional layer and a high temperature deposition step of depositing the remaining film by raising the temperature of the substrate rather than the deposition temperature of the low temperature deposition step. The deposition method was used. Generally, the higher the temperature of the substrate during ZnO deposition, the better the film quality (reduction of full width at half maximum), but since it has a 3D circumferential or island growth mode rather than a 2D layer growth mode from the beginning of deposition. , The roughness of the deposited film is increased. See, Y. Chen, HJHong and T. Yao, Applied Physics Letters Vol. 76, 559 Page (2000), A. Ohtomo, H. Kimura, T. Mkkino, Y. Segawa, H.Koinuma and M.Kawasaki, J.Crystal Growth, 214/215 (2000) 284-288] On the other hand, if the temperature of the substrate is low, the 2D layer is grown at the beginning of deposition and then switched to 3D circumferential or island growth mode Although the roughness of the film decreases, the film quality has a reduced characteristic (increase in half width) compared to high temperature deposition. Reference [SIPa, TSCho, SJDoh, JLLee and JHJe, Applied Physics Letters, Vol. 77, 349 (2000)] Thus, ultimately, the improved film quality (ie, low semi-full width), which is a benefit of each temperature, Need to provide a film having a roughness at the same time.

본 발명의 목적은 상기 문제점을 해결하기 위한 것으로서, 스퍼터링증착법을 이용한 낮은 반가전폭 및 낮은 거칠기의 ZnO 막을 제조하는 방법을 제공하는 데에 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a ZnO film having a low semi-full width and low roughness using a sputtering deposition method.

본 발명은 저온 증착 단계에서 증착된 막이 2D 층 성분만을 가지며, 고온 증착 단계는 저온 증착 단계보다 더 높은 온도에서 실시되는 것을 특징으로 한다.The present invention is characterized in that the film deposited in the low temperature deposition step has only 2D layer components, and the high temperature deposition step is carried out at a higher temperature than the low temperature deposition step.

이하, 본 발명의 실시예를 첨부도면을 참고하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

우선, 비교예1 및 2을 제시한다.First, Comparative Examples 1 and 2 are shown.

[비교예 1]Comparative Example 1

다음의 조건에 따라 스퍼터링 법으로 증착을 실시한다.The deposition is carried out by the sputtering method under the following conditions.

1단계증착을 실시한다.Carry out one-step deposition.

기본압력:10-6토르Basic Pressure: 10 -6 Torr

사용기체: Ar(99.99%), 산소(99.999%)Gas used: Ar (99.99%), oxygen (99.999%)

공정압력:2×10-2토르Process pressure: 2 x 10 -2 Torr

전력: 20 WPower: 20 W

기판:사파이어(Al2O3) (002)Substrate: Sapphire (Al 2 O 3 ) (002)

타깃: ZnOTarget: ZnO

기판온도:300℃Substrate temperature: 300 ℃

본 비교예에서 증착된 박막에 대하여 측정된 X-선 회절법에서 세타로킹(Θ-Rocking)을 실시한 결과, 도2에 보여진 바와 같이, 3차원 성장 모드를 보였다. 반가전폭을 측정한 결과, 0.72°인 것을 알 수 있다. 여기서 세타로킹의 반가전폭은 작을수록 에피택시정도가 크며 막질이 우수하다는 것을 의미한다. 기판의 거칠기는 30Å이었다.As a result of performing theta rocking in the X-ray diffraction method measured on the thin film deposited in the comparative example, as shown in FIG. 2, it showed a three-dimensional growth mode. As a result of measuring the half-width width, it turns out that it is 0.72 degrees. Here, the smaller the half-width width of theta locking means, the greater the epitaxy and the better the film quality. The roughness of the substrate was 30 kPa.

[비교예 2]Comparative Example 2

다음의 조건에서 스퍼터링증착을 실시하였다.Sputtering deposition was performed under the following conditions.

1단계 증착공정을 실시하였다.One step deposition process was performed.

기본압력:10-6토르Basic Pressure: 10 -6 Torr

사용기체:Ar(99.99%), 산소(99.999%)Gas used: Ar (99.99%), oxygen (99.999%)

공정압력: 2×10-6토르Process pressure: 2 × 10 -6 Torr

전력:20WPower: 20 W

기판:사파이어(Al203) (002)Substrate: Sapphire (Al 2 0 3 ) (002)

타깃:ZnOTarget: ZnO

기판온도:500℃Substrate temperature: 500 ℃

본 비교예2에서 증착된 박막에 대하여 측정된 X-선 회절법에서 분말주사(Θ-2Θ주사)을 실시한 결과, 도3에 보여진 바와 같이 (002) 및 (101)상을 동시에 가지는 다결정막이었다. 2가지 이상의 상이 동시에 존재한다는 것은 박막의 에피텍시가 현저히 감소하였다는 것을 의미한다. 기판의 표면거칠기는 약 3000Å으로 아주 거칠은 표면구조를 가지고 있음을 알 수 있다.Powder scanning (Θ-2Θ scanning) was performed by X-ray diffraction on the thin film deposited in Comparative Example 2, and as a result, it was a polycrystalline film having both (002) and (101) phases as shown in FIG. . The presence of two or more phases simultaneously means that the epitaxy of the thin film is significantly reduced. The surface roughness of the substrate is about 3000Å and it can be seen that it has a very rough surface structure.

[실시예1]Example 1

본 실시예는 스퍼터링법을 이용하여 ZnO 막을 증착하는 방법을 제시한다.This embodiment presents a method of depositing a ZnO film using a sputtering method.

본 발명의 실시예1을 도1을 참조하면서 설명한다.다만, 종래와 동일한 부분이나 상당하는 부분에서는 동일한 부호를 붙여진다.Embodiment 1 of the present invention will be described with reference to Fig. 1. However, the same reference numerals are given to the same or corresponding parts as in the prior art.

본 발명의 두 증착단계를 이용한 스퍼터링방법을 실시하기 위한 장치는, 도1와 같이, 진공조(1)내에는 캐소우드(3)가 설치되고, 캐소우드(3)의 하부에는 ZnO 타킷(2)이 부착되어 있다. 타킷(2)에는 DC바이어스를 인가하기 위한 플라즈마전력원(6)이 설치되어 있다. 그리고, 타킷(2)과 동일한 축상으로 평행하게 대향하는 애노우드(4)가 설치되고, 애노우드(4)의 상부에는 사파이어(Al2O3)기판(5)이 위치한다. 또한, 진공조(1)의 내부의 산소 및 알콘과 같은 기체를 이용하여 플라즈마를 발생시키기 위하여 플라즈마전력원(6)이 설치되며, 진공조(1)내부의 진공발생을 위하여 진공시스템(7)이 설치된다. 이와 같은 장치를 이용하여 스퍼터링 증착을 수행할 때, 플라즈마 전력원(6)으로 인해서 발생한 +로 이온화된 플라즈마 기체가 음의 바이어스전압이 가해진 타깃(2)에 충돌하여 타깃(2)의 물질을 스퍼터링시킨다. 이렇게 타깃(2)으로부터 떨어져 나온 입자가 기판(5)쪽으로 날아가서 기판(5)에 증착된다.In the apparatus for carrying out the sputtering method using the two deposition steps of the present invention, as shown in FIG. 1, a cathode 3 is installed in the vacuum chamber 1, and a ZnO target 2 is disposed below the cathode 3. ) Is attached. The target 2 is provided with a plasma power source 6 for applying a DC bias. An anode 4 facing the same axis in parallel with the target 2 is provided, and a sapphire (Al 2 O 3 ) substrate 5 is positioned above the anode 4. In addition, a plasma power source 6 is installed to generate a plasma by using a gas such as oxygen and alcon inside the vacuum chamber 1, and a vacuum system 7 for generating a vacuum inside the vacuum chamber 1. This is installed. When sputtering deposition is performed using such a device, the plasma gas ionized by + generated by the plasma power source 6 collides with the target 2 to which a negative bias voltage is applied, and the material of the target 2 is sputtered. Let's do it. Thus, particles falling off the target 2 fly toward the substrate 5 and are deposited on the substrate 5.

본 발명의 스퍼터링방법에 대하여 설명한다.The sputtering method of the present invention will be described.

우선, 도입관(8)을 통하여 인가방향으로 Ar(99.99%)의 불활성가스 및 산소(99.999%)를 진공챔버(7)내로 도입하고, 진공챔버(7)내의 가스압을 10-6토르로 한다. ZnO 타깃(2)에 플라즈마전력원(6)으로부터 약 20W의 전력을 공급하여, 플라즈마중의 Ar이온을 타깃(2)에 충돌시켜, 타깃(2)의 표면으로부터 스퍼터 입자를 형성하여, 스퍼터 입자를 약 300℃에서 약 17분동안 기판(5)의 (002)면상에 퇴적시켜 1차 ZnO막을 형성한다. 여기서, 약 17분은 2 D 층(2차원층)만이 생성되는 시간이다. 공정압력은 약 2×10-2토르이다. 이것을 저온 증착 단계라 한다.First, inert gas and oxygen (99.999%) of Ar (99.99%) are introduced into the vacuum chamber 7 through the introduction pipe 8, and the gas pressure in the vacuum chamber 7 is set to 10 -6 Torr. . About 20W of electric power is supplied to the ZnO target 2 from the plasma power source 6, the Ar ions in plasma collide with the target 2, sputter particles are formed from the surface of the target 2, and sputter particles Is deposited on the (002) plane of the substrate 5 at about 300 ° C. for about 17 minutes to form a primary ZnO film. Here, about 17 minutes is a time when only a 2D layer (two-dimensional layer) is produced. The process pressure is about 2 x 10 -2 torr. This is called the low temperature deposition step.

저온 증착 단계 실시후에 플라즈마 전력원(2)의 전력을 오프시키거나 또는 약하게 공급한 후에 기판가열을 위한 전력을 증가시켜서 원하는 온도로 상승시킨 후에 고온 증착 단계를 실시하여 1차 ZnO 막 상에 2차 ZnO막을 형성한다. 고온 증착 단계의 온도는 약 500℃이며, 고온 증착 단계의 공정온도가 저온 증착 단계의 공정온도보다 높다는 것을 제외하고는 저온 증착 단계의 공정의 조건과 동일하다.After the low temperature deposition step is performed, the power of the plasma power source 2 is turned off or weakly supplied, then the power for heating the substrate is increased to the desired temperature, and then the high temperature deposition step is performed to carry out the secondary on the primary ZnO film. A ZnO film is formed. The temperature of the high temperature deposition step is about 500 ° C. and is the same as the conditions of the low temperature deposition step except that the process temperature of the high temperature deposition step is higher than the process temperature of the low temperature deposition step.

이 실시예에서 증착된 박막에 대하여 측정된 Θ-로킹(rocking) 반가전폭(FWHM)은 도2에서 보여진 바와 같이, 0.005°였으며, 후술하는 비교예1에서 보여진 반가전폭 0.72°에 비해 월등히 낮은 값이다. 이는 본 발명의 실시예에 따라 증착된 ZnO박막이 종래의 기술에 따라 증착된 박막에 비해 에피택시(epitaxi)정도가 월등히 높은 것을 의미한다. 기판의 표면거칠기는 28Å으로 비교예에서 보인 거칠기 30Å와 거의 동일한 정도를 나타내고 있다. 이는 본 발명의 실시예에 사용된 기술을 적용함으로써 500℃의 고온 증착 단계를 행하여 증착하더라도 300℃의 저온에서 증착된 막과 동일한 수준의 거칠기를 가진다는 것을 의미한다.In this example, the measured Θ-rocking half-width (FWHM) of the deposited thin film was 0.005 °, as shown in FIG. 2, and is much lower than the half-width 0.72 ° shown in Comparative Example 1 described below. to be. This means that the ZnO thin film deposited according to the embodiment of the present invention has a much higher degree of epitaxy than the thin film deposited according to the prior art. The surface roughness of the substrate was 28 kW, which was almost the same as that of the roughness 30 k shown in the comparative example. This means that by applying the technique used in the embodiment of the present invention, even by performing a high temperature deposition step of 500 ° C., it has the same roughness as a film deposited at a low temperature of 300 ° C.

이상의 비교예와 실시예를 종합하면, ZnO 박막의 증착시 저온 증착 단계에서 2차원 층만 증착하고, 고온 증착 단계에서 저온 증착 단계 보다 높은 온도에서 증착을 행하면, 증착된 박막의 막질이 월등히 개선된다. 이를 보다 상세히 설명하면, 박막의 에피텍시가 향상되었으며 박막의 거칠기 또한 개선되었다. 도2에 보여진 바와 같이, 본 발명에 따른 2 단계의 증착을 행하면, 종래의 기술에 비하여 반가전폭이 0.72°에서 0.005°로 크게 감소하였다. 또한 도3에 보여진 바와 같이, 종래의 기술에 따라 증착된 박막은 (002) 및 (101) 면에서 세기가 피이크를 나타내는 것으로 보아 다결정박막임을 알 수 있으며, 반면에 본 실시예에 따라 증착된 박막은 (002) 면에서만 세기가 피이크를 나타내는 것으로 보아 단일상의 박막임을 알 수 있다. 이는 본 발명에 따라 증착된 박막이 종래기술에 따라 증착된 박막에 비해 에피택시 정도가 월등히 증가한 것을 의미한다. 도4는 박막의 거칠기를 비교한 것으로서, 본 실시예에 따라 2단계 증착으로 얻어진 2차 ZnO 박막의 거칠기는 28Å으로 동일한 조건의 300℃의 저온에서 1 단계로 증착한 1차 ZnO 박막과 동일한 수준의 거칠기(30Å)을 보이고 있다. 그리고 동일조건의 500℃의 고온에서 1 단계로 증착한 박막의 거칠기(3000Å)에 비해서는 월등히 개선된 표면거칠기를 보이고 있다.In summary, when the ZnO thin film is deposited, only the two-dimensional layer is deposited in the low temperature deposition step, and the deposition is performed at a higher temperature than the low temperature deposition step in the high temperature deposition step, and the film quality of the deposited thin film is significantly improved. In more detail, the epitaxy of the thin film was improved and the roughness of the thin film was also improved. As shown in Fig. 2, when the two-stage deposition according to the present invention is carried out, the semi-conducting width is greatly reduced from 0.72 ° to 0.005 ° compared with the prior art. In addition, as shown in Figure 3, the thin film deposited according to the prior art can be seen that the intensity of the peak in the (002) and (101) surface is a polycrystalline thin film, whereas the thin film deposited according to the present embodiment It can be seen that the silver is a single-phase thin film because the intensity represents the peak only on the (002) plane. This means that the degree of epitaxy is significantly increased compared to the thin film deposited according to the prior art. 4 is a comparison of the roughness of the thin film, the roughness of the second ZnO thin film obtained by the two-step deposition according to this embodiment is 28 Å the same level as the first ZnO thin film deposited in one step at a low temperature of 300 ℃ the same conditions The roughness of (30Å) is shown. In addition, compared to the roughness (3000 kPa) of the thin film deposited in one step at a high temperature of 500 ℃ under the same conditions, the surface roughness is significantly improved.

위에 기재된 실시예에서는 저온 증착 단계인 1차 공정온도를 300℃로 하고, 고온 증착 단계인 2차 공정온도를 500℃로 하였으나, 1차 공정온도를 25∼350℃로 하고 ZnO막의 두께를 1∼200Å로 하며, 고온 증착 단계인 2차 공정온도도 400∼700℃로 하고 ZnO막을 1Å∼5㎛ 의 두께로 하여도 실시예1과 동일한 결과를 얻을 수 있었다.In the above-described embodiment, the first process temperature of the low temperature deposition step is 300 ° C., the second process temperature of the high temperature deposition step is 500 ° C., but the first process temperature is 25-350 ° C., and the thickness of the ZnO film is 1-17. The same result as in Example 1 was obtained when the temperature was set to 200 Pa, the secondary process temperature, which is the high temperature deposition step, was set to 400 to 700 ° C., and the thickness of the ZnO film was 1 to 5 μm.

이상에서 설명한 바와 같이, 본 발명에 따라, 스퍼터링시 2 단계로 나누어, 1차공정은 저온에서 2차공정은 1차공정보다 높은 온도에서 행하면, 박막증착시 고온의 장점과 저온의 장점을 동시에 얻음으로써, 박막의 에피택시를 증가시키고 표면의 거칠기도 향상시킬 수 있다.As described above, according to the present invention, when the sputtering is divided into two stages, when the first process is performed at a lower temperature than the first process at a lower temperature, the advantages of high temperature and low temperature at the time of thin film deposition are simultaneously obtained. As a result, the epitaxy of the thin film can be increased and the surface roughness can be improved.

Claims (2)

진공조의 내부에 ZnO타깃과, 상기 ZnO 타깃으로부터 이격되어 대향하도록 배열된 사파이어 기판을 구비한 플라즈마를 발생시키는 스퍼터링 장치를 이용하여, 상기 사파이어 기판에 ZnO막을 형성하는 방법으로서:A method of forming a ZnO film on a sapphire substrate using a sputtering apparatus that generates a plasma having a ZnO target inside a vacuum chamber and a sapphire substrate arranged to face away from the ZnO target. 상기 사파이어 기판의 온도를 25∼350℃로 유지하면서 상기 사파이어 기판 상에 2차원 성장된 1차 ZnO막을 형성하는 저온 증착 단계; 및A low temperature deposition step of forming a two-dimensionally grown primary ZnO film on the sapphire substrate while maintaining the temperature of the sapphire substrate at 25 to 350 ° C; And 상기 사파이어 기판의 온도를 400∼700℃로 상승시킨 후 상기 1차 ZnO막 상에 2차 ZnO막을 형성하는 고온 증착 단계를 포함하는 스퍼터링증착법을 이용한 ZnO막의 제조방법.After the temperature of the sapphire substrate is raised to 400 ~ 700 ℃ a method of manufacturing a ZnO film using a sputtering deposition method comprising a high temperature deposition step of forming a secondary ZnO film on the primary ZnO film. 제 1 항에 있어서, 상기 1차 ZnO막은 1∼200Å인 스퍼터링증착법을 이용한 ZnO막의 제조방법.The method for producing a ZnO film according to claim 1, wherein the primary ZnO film has a sputtering deposition method of 1 to 200 GPa.
KR10-2001-0010912A 2001-03-02 2001-03-02 Method for manufacturing ZnO layer using sputtering deposition KR100399763B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0010912A KR100399763B1 (en) 2001-03-02 2001-03-02 Method for manufacturing ZnO layer using sputtering deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0010912A KR100399763B1 (en) 2001-03-02 2001-03-02 Method for manufacturing ZnO layer using sputtering deposition

Publications (2)

Publication Number Publication Date
KR20020070716A KR20020070716A (en) 2002-09-11
KR100399763B1 true KR100399763B1 (en) 2003-09-26

Family

ID=27696215

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0010912A KR100399763B1 (en) 2001-03-02 2001-03-02 Method for manufacturing ZnO layer using sputtering deposition

Country Status (1)

Country Link
KR (1) KR100399763B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100739484B1 (en) * 2005-10-27 2007-07-13 정운조 The method of deposition for ZnO
KR20160025792A (en) 2014-08-28 2016-03-09 (주)에스피테크 Interior Decorative Sound Absorbing Materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550462A (en) * 1978-10-07 1980-04-12 Toko Inc Preparation of zinc oxide thin film
JPH1030179A (en) * 1996-07-17 1998-02-03 Fuji Electric Co Ltd Production of zinc oxide film
KR20000031627A (en) * 1998-11-05 2000-06-05 정명식 Method for forming thin film on substrate by sputtering
KR20010076504A (en) * 2000-01-26 2001-08-16 박호군 METHOD FOR FABRICATING ZnO THIN FILM FOR ULTRAVIOLET DETECTION AND EMISSION SOURCE OPERATED AT ROOM TEMPERATURE, AND APPARATUS THEREFOR

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550462A (en) * 1978-10-07 1980-04-12 Toko Inc Preparation of zinc oxide thin film
JPH1030179A (en) * 1996-07-17 1998-02-03 Fuji Electric Co Ltd Production of zinc oxide film
KR20000031627A (en) * 1998-11-05 2000-06-05 정명식 Method for forming thin film on substrate by sputtering
KR20010076504A (en) * 2000-01-26 2001-08-16 박호군 METHOD FOR FABRICATING ZnO THIN FILM FOR ULTRAVIOLET DETECTION AND EMISSION SOURCE OPERATED AT ROOM TEMPERATURE, AND APPARATUS THEREFOR

Also Published As

Publication number Publication date
KR20020070716A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
US5232571A (en) Aluminum nitride deposition using an AlN/Al sputter cycle technique
US6274014B1 (en) Method for forming a thin film of a metal compound by vacuum deposition
EP2427586B1 (en) Method for the production of oxide and nitride coatings and its use
CN112376024B (en) Preparation method of oxide film
KR20150053240A (en) Deposition of Silicon Dioxide
WO1994019509A1 (en) Film forming method and film forming apparatus
KR20190085143A (en) Particle reduction in physical vapor deposition chamber
WO1996035640A1 (en) Carbon nitride cold cathode
Weissmantel et al. Ion beam sputtering and its application for the deposition of semiconducting films
JP2000068227A (en) Method for processing surface and device thereof
KR100399763B1 (en) Method for manufacturing ZnO layer using sputtering deposition
CN101586227A (en) Adopt ion plating on growth substrates, to prepare the method for aluminium nitride material
KR101117261B1 (en) Method and apparatus for forming of semiconductor material quantum dots in the dielectric thin film
US9719164B2 (en) Method of manufacturing compound film
JP2005519198A (en) Production method of titanium nitride film
JPH0499176A (en) Plasma treating device
Parsons et al. Thin Film Processes II
JP3441746B2 (en) Bias sputtering method and apparatus
Nam et al. In situ epitaxial growth of lead zirconate titanate films by bias sputtering at high RF power
KR20140110186A (en) Method for manufacturing cubic boron nitride thin film with reduced compressive residual stress and cubic boron nitride thin film manufactured using the same
Westwood Reactive sputtering: introduction and general discussion
US20050155675A1 (en) Amorphous ferrosilicide film exhibiting semiconductor characteristics and method of for producing the same
Felmetsger et al. Dual cathode DC–RF and MF–RF coupled S-Guns for reactive sputtering
JP2009275281A (en) Sputtering method and system
KR102551020B1 (en) PVD Titanium Dioxide Formation Using Sputter Etch to Stop the Initiation of Crystallization in Thick Films

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080912

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee