KR20020062865A - Apparatus for volatile organic compounds degradation by non-thermal plasma combined electro-oxidation catalysis. - Google Patents

Apparatus for volatile organic compounds degradation by non-thermal plasma combined electro-oxidation catalysis. Download PDF

Info

Publication number
KR20020062865A
KR20020062865A KR1020020026596A KR20020026596A KR20020062865A KR 20020062865 A KR20020062865 A KR 20020062865A KR 1020020026596 A KR1020020026596 A KR 1020020026596A KR 20020026596 A KR20020026596 A KR 20020026596A KR 20020062865 A KR20020062865 A KR 20020062865A
Authority
KR
South Korea
Prior art keywords
composition
type semiconductor
conductor
oxide
type
Prior art date
Application number
KR1020020026596A
Other languages
Korean (ko)
Inventor
임창규
안덕호
안덕
김기훈
Original Assignee
(주)유니에코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)유니에코 filed Critical (주)유니에코
Priority to KR1020020026596A priority Critical patent/KR20020062865A/en
Publication of KR20020062865A publication Critical patent/KR20020062865A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/17Exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE: An apparatus for volatile organic compounds degradation by non-thermal plasma combined electro-oxidation catalysis is provided, which can design energy conservative type by applying decomposing principle of semi-conductor catalyst to production principle of high voltage plasma. The system can treat large volume of harmful gas and high concentration by arranging the treatment equipment in parallel or series, thus curtailing installation area and saving operation cost. CONSTITUTION: The p type semi-conductor catalyst coated composition is formed as follows: (i) first, p type semi-conductor coating composition has the following formula; T-MO, where, T is titanium dioxide, MO is oxidized metal such as oxidized cobalt, the n type semi-conductor composition is prepared by this composition; (ii) second, n type semi-conductor having following composition, T-M, where, T is titanium dioxide, M is silicon, nickel, silver, n type semi-conductor is prepared based on this composition; (iii) third, p type semi-conductor coating composition having following formula, BT-M-MO, where, B is oxidized bismuth, T is titanium dioxide, M is reaction active metal such as platinum, molybdenum, tungsten, silver, cobalt, MD is vanadium pentoxide, oxidized silver, oxidized cobalt, oxidized nickel, zeolite, the p type semi-conductor coating composition is prepared based on this composition; (iv) the electrode is prepared by a sequence of p/n/p type with 30-50 μm/ 10-20 μm/ 30-50 μm; (v) to this electrode AC of 300-400 kHz, 6-10 kV, 0.5-5A and pulse power of +10 to +15 kV, 0.5-2A are applied to remove volatile organic compound and odorizing matter and to decompose dioxin, decomposing matter of ozone layer such as tetrachlorocarbon, freon gas, methyl chloroform and methyl bromide.

Description

산화촉매보조 비가열 플라즈마에 의한 휘발성유기화합물 제거장치.{Apparatus for volatile organic compounds degradation by non-thermal plasma combined electro-oxidation catalysis.}Apparatus for volatile organic compounds degradation by non-thermal plasma combined electro-oxidation catalysis.}

종래의 휘발성 유기화합물을 제거하기 위하여 전력소모가 매우 높은 방전전극 사이에 고유전율을 가진 입상 티탄산 바륨(BaTiO3)을 충전하여 저항 방전에 의하든지, 또는 K-밴드급의 고주파 플라즈마 전원을 사용하여 고진공 플라즈마 방전을 일으키던 것을 금속전극에 반도체 촉매 박막코팅을 함으로써 안정적인 용량 무성방전을 일으키며, 표면전계 효과에 의한 표면 전류 밀도를 높임으로써 반도체 촉매 코팅의 표면에서의 촉매 효율을 향상시켰다.In order to remove conventional volatile organic compounds, granular barium titanate (BaTiO 3 ) having a high dielectric constant is charged between discharge electrodes having a very high power consumption by resistive discharge or by using a K-band high frequency plasma power source. By coating a semiconductor catalyst thin film on the metal electrode that caused the high vacuum plasma discharge, stable capacitive discharge was caused, and the surface current density due to the surface electric field effect was increased to improve the catalyst efficiency on the surface of the semiconductor catalyst coating.

본 발명은 이러한 점을 개선하기 위하여 전극에 반도체 촉매 코팅을 하여 촉매 작용을 추가하였으며, 전자가속 원리에 의하여 교류방전 전극사이에 전자 포획에 의한 전자과승층이 형성되도록 (+)펄스 전극을 형성함으로써 안정적인 무성방전에 의하여 휘발성 유기화합물, 악취, 다이옥신, 오존층 파괴물질인 사염화탄소, 프레온가스, 할론, 메틸 크로로 포름, 메틸 브로 마이드를 효율적으로 분해 제거하고자 함에 그 목적이 있다.The present invention adds a catalytic action by applying a semiconductor catalyst coating to the electrode to improve this point, by forming a positive pulse electrode to form an electron transfer layer by electron trap between the AC discharge electrode by the electron acceleration principle Its purpose is to efficiently decompose and remove volatile organic compounds, odors, dioxin, carbon tetrachloride, freon gas, halon, methyl chloroform and methyl bromide.

《과제를 해결하기 위한 수단》Means to Solve the Problem

본 발명의 기본구조는 비가열 플라즈마부와 이에 300∼400㎑의 주파수를 가진 6∼10㎸(0.5∼5A) 교류전원과 +10∼+15㎸인 펄스전원의 인가로 구성되어 있다(도3). 그리고 각 전극은 첫 번째 p type 반도체 코팅이 30∼50㎛, 두 번째 n type 반도체 코팅이 10∼20㎛, 세 번째 p type 반도체 촉매 코팅이 30∼50㎛ 코팅되어 있다(도1).The basic structure of the present invention consists of an unheated plasma section, an application of a 6-10 kHz (0.5-5 A) AC power supply having a frequency of 300-400 kHz and a pulse power supply of + 10--15 kHz (FIG. 3). ). Each electrode is coated with a first p type semiconductor coating of 30 to 50 μm, a second n type semiconductor coating of 10 to 20 μm, and a third p type semiconductor catalyst coating of 30 to 50 μm (FIG. 1).

따라서 코팅에 대하여 살펴보면(도1) 첫째, (표면전류밀도) 1매의 전극에 교류의 전압에 따라 정전압이 인가될 경우 정전하에 의하여 순방향 바이어스가 되면 (+)/p/n/p type으로 첫 번째 p type 반도체 코팅의 다수 캐리어인 정공이 두 번째 박막 n type의 전자와 거의 결합하지 않고 터널효과(Tunnel effect)에 의하여 통과하여 세 번째 p type 반도체 촉매 코팅의 다수 캐리어인 정공과 결합하여 표면전류 밀도가 증폭된다(도2). 그러나 부전압이 인가될 경우는 (-)/p/n type인 코팅이 역방향 바이어스로 되어 전류의 흐름이 미약하게 되므로, 결과적으로 산화반응이 주반응으로 일어난다.Therefore, when looking at the coating (Fig. 1), first, (surface current density) when a constant voltage is applied to one electrode according to the voltage of the alternating current, when the forward bias is caused by the electrostatic charge, the first type is (+) / p / n / p type. Holes, which are the majority carriers of the first p-type semiconductor coating, pass through the tunnel effect with little coupling with electrons of the second thin-film n-type, and they are combined with the holes, which are the majority carriers of the third p-type semiconductor catalyst coating. Density is amplified (Figure 2). However, when a negative voltage is applied, the coating of negative (-) / p / n type is reverse biased and the flow of current is weak, resulting in the oxidation reaction as the main reaction.

둘째, (전압) 각 반도체 코팅이 직렬접속으로 이루어져 있기 때문에 전체 코팅의 직렬접속 정전용량은 다음식으로 나타낼 수 있다.Second, since each semiconductor coating (voltage) consists of a series connection, the series connection capacitance of the entire coating can be expressed by the following equation.

[CT: 전체 정전 용량, CP1: 첫 번째 p type 정전용량, Cn2: 두 번째 n type 정전용량, CP3: 세 번째 p type 촉매 정전용량][C T : total capacitance, C P1 : first p type capacitance, C n2 : second n type capacitance, C P3 : third p type catalyst capacitance]

따라서 교류에서의 정전용량에 대한 저항을 계산하면Therefore, if you calculate the resistance to capacitance in alternating current,

[R :저항, f : 주파수][R: resistance, f: frequency]

으로 되어 p type 반도체 촉매 코팅을 1회 하는 것보다 저항값이 높아지므로 V=IR에 의하여 최종 p type 반도체 촉매 표면에 효율적인 고전압이 인가된다.Since the resistance value is higher than that of coating the p type semiconductor catalyst once, an effective high voltage is applied to the surface of the final p type semiconductor catalyst by V = IR.

셋째, (유전율과 활성화에너지)각각의 유전율이 다른 반도체 박막을 코팅하였을 때 전체 유전율은 각각의 유전율의 합에 해당된다. 즉ε T=ε p1+ε n2+ε p3이므로 [실시예]에 의하여 코팅한 반도체 각각의 유전율은 50∼200에 달하므로 전체로써는 150∼600이라는 높은 유전율을 나타낸다. 이에 따라 표면전계효과에 의하여 최종 p type 반도체 촉매 표면에는 높은 전류밀도에 의하여 형성된 전기 2중층이 휘발성 유기화합물의 전극 표면에로의 확산을 활성화시키며 동시에 분해에 소요되는 활성화 에너지 장벽을 낮추어 준다.Third, when dielectric films with different dielectric constants (constant and activation energy) are coated, the total dielectric constant corresponds to the sum of the dielectric constants. That is, since ε T = ε p1 + ε n2 + ε p3 , the dielectric constant of each of the semiconductors coated according to [Example] reaches 50 to 200, and thus exhibits a high dielectric constant of 150 to 600 as a whole. Accordingly, due to the surface field effect, the electric double layer formed by the high current density on the surface of the final p-type semiconductor catalyst activates the diffusion of the volatile organic compound into the electrode surface and at the same time lowers the activation energy barrier required for decomposition.

넷째, (전류) 박막을 코팅하였을 때 전장의 강도는로 d가 얇을수록 E가 커지기 때문에 [실시예]에 따라 코팅된 유전체의 중화에 필요한 전류가 코팅 표면에 다량으로 흐른다. 즉 i=jS가 커진다. (i : 전류, j : 표면 전계 강도, S : 면적)Fourth, the electric field strength when the (current) thin film is coated Since the thinner the furnace d, the larger the E, according to the [Example], a large amount of current flows to the coating surface in order to neutralize the coated dielectric. I = jS becomes large. (i: current, j: surface field strength, S: area)

다음으로 전극배치에 대하여 살펴보면(제 3도),Next, look at the electrode arrangement (Fig. 3),

첫째, (플라즈마의 증폭) 교류전원이 인가되는 양전극사이의 펄스전원 전극에 의하여 전자의 증폭작용이 일어나게 된다. 이는 3극 진공관의 (-)/(+)/(+) 원리와 전자가속의 (-)/(+)/(+) 원리 및 300∼400㎑ 교류에 의한 전자집단의 플라즈마 진동 내에 펄스 (+)전극을 배치하면 펄스 전압(Vp)이 교류전압(Va)보다 높을 경우(Vp>Va) 펄스 (+)전극 주위에 전자과승층이 생겨 플라즈마 진동수를 보여준다.First, (amplification of plasma) the amplification of electrons is caused by the pulse power supply electrode between the two electrodes to which the AC power is applied. This is because the positive (-) / (+) / (+) principle of a three-pole vacuum tube, the negative (-) / (+) / (+) principle of electron acceleration, and the pulse (+) When the electrode is placed, when the pulse voltage Vp is higher than the alternating voltage Va (Vp> Va), an electron transfer layer is formed around the pulse (+) electrode, resulting in a plasma frequency. Shows.

(fpe: 플라즈마 진동수, Wpe: 각 주파수, ne: 전자 집단의 수, 개/㎤)(f pe : plasma frequency, W pe : each frequency, n e : number of electron groups, pc / cm 3)

둘째, (변위전류) 300∼400㎑의 교류전원에 의하여 양전극사이에는 변위전류가 흐른다.Second, (displacement current) displacement current between both electrodes by AC power of 300 ~ 400 300 Flows.

(id : 변위전류,ε o: 진공유전율, A : 전극면적, i : 전도전류)(id: displacement current, ε o : vacuum dielectric constant, A: electrode area, i: conduction current)

즉 변위전류 id는 전극에 흐르는 i와 같은 전류이며 두전극은 하나의 콘덴서와 같은 작용을 하나, 변위전류는 저항을 따라 흐르는 전류가 아니고 전극사이의 공간을 따라 흐르는 전류이기 때문에 본 발명의 특징인 에너지 절약형으로 설계할 수 있다.That is, the displacement current id is the same current as i flowing in the electrode, and the two electrodes act as one capacitor, but the displacement current is not the current flowing along the resistance but the current flowing along the space between the electrodes. It can be designed to be energy-saving.

셋째, (이온의 이동 태도) 고주파수의 교류전원을 플라즈마 생성에 사용하면 전극사이의 공기 기체는 주파수의 변동에 따라 전극간에 포착되는 이온의 수가 증가하게 된다. 즉로써 나타내어진다. (μ i: 이온의 이동 태도, E : 전계, W : 각 주파수, ℓ : 전극간 거리) 이를 나타내면 다음과 같다.Third, when a high-frequency AC power source is used for plasma generation, the number of ions trapped between the electrodes increases as the air gas between the electrodes changes in frequency. In other words It is represented as ( μ i : ion movement attitude, E: electric field, W: each frequency, ℓ: distance between electrodes)

넷째, (무성방전) 전극 표면에 반도체 코팅을 하여 고주파수의 교류전원을인가하면 전극간에 직접방전이 일어나지 않고 무성방전(Silent discharge)이 일어나며 낮은 전압에서도 지속적으로 방전을 유지할 수 있는 잇점이 있다.Fourth, (silent discharge) The application of a high-frequency AC power by applying a semiconductor coating on the surface of the electrode does not cause direct discharge between the electrodes, the silent discharge (Silent discharge) occurs, there is an advantage that can maintain the discharge continuously at low voltage.

다섯째, (공기 기체 절연파괴) 전극 표면에 코팅된 반도체의 유전율을ε s, 전극사이의 공기 기체의 유전율을ε a라 하고, 반도체의 전계를 Es, 공기 기체의 전계를 Ea라 하였을 때로 되기 때문에 공기 기체의 유전율은 약 1이고, 반도체의 유전율은 150∼600이므로 절연내력이 약한 공기 기체에 강한 전계가 가해져 공기 기체의 절연파괴가 쉽게 일어나 각종 유해물질의 분해가 활발히 이루어진다.Fifth, the dielectric constant of the semiconductor coated on the electrode surface is ε s , the dielectric constant of the air gas between the electrodes is ε a , and the electric field of the semiconductor is E s and the electric field of the air gas is E a . Since the dielectric constant of the air gas is about 1 and the dielectric constant of the semiconductor is 150 to 600, a strong electric field is applied to the air gas having a weak dielectric strength, so that the breakdown of the air gas occurs easily, and the decomposition of various harmful substances is actively performed.

다음으로 촉매 측면에서 살펴보면Next, on the catalyst side

첫째, (나노입자) [실시예]에서와 같이 주촉매인 이산화티탄늄을 졸-겔법에 의하여 10∼20nm 크기로 제조하여, 반응 활성점을 구성하는 백금, 모리브덴, 텅그스텐, 은, 코발트의 금속은 원자 흡광단위인 1∼2nm 크기로 도핑(doping) 한다. 그리고 제올라이트 13X를 사용하여 기체 가스의 흡착량을 증대 시켰다.First, (nanoparticles), as in [Example], titanium dioxide, a main catalyst, was prepared in a size of 10-20 nm by a sol-gel method, and platinum, molybdenum, tungsten, silver, Cobalt metal is doped to a size of 1 to 2 nm, which is an atomic absorption unit. And zeolite 13X was used to increase the adsorption amount of gaseous gas.

둘째, (불순물 도핑) 촉매를 p type, n type으로 제조하기 위하여 불순물을 p type에는 붕소, n type에는 인을 각각 도핑하여 제조 하였다.Second, in order to prepare the (impurity doping) catalyst in p type, n type, impurities were prepared by doping boron in p type and phosphorus in n type, respectively.

다음으로, (홀 효과) 효율적인 전자장을 형성시키면서 플라즈마 전자집단군의 플라즈마 방전 내에서의 체류시간을 증가시키고, 자장에 의한 홀 효과(Hall effect) Ey=RixBz를 추가하기 위하여 전장의 방향과 직각인 방향으로 자장이 형성되도록 영구자석을 설치하였다.Next, in order to increase the residence time in the plasma discharge of the plasma electron population group while forming an (electron effect) efficient electromagnetic field, and to add the Hall effect E y = Ri x B z by the magnetic field, Permanent magnets were installed so that the magnetic field was formed in a direction perpendicular to the direction.

[Ey: y 방향 전기장의 세기, R : 홀 계수, ix: x 방향의 전류밀도, Bz : z 방향의 자속밀도(Wbm-2)][E y : intensity of electric field in y direction, R: Hall coefficient, current density in i x : x direction, magnetic flux density in Bz: z direction (Wbm -2 )]

따라서 전체 전자장의 힘 F=-q[E+B]로 나타낼 수 있다.Thus the force of the entire field F = -q [E + B].

(-q : 전자의 전하,: 전자의 유동속도)(-q is the charge of the electron, : Flow velocity of electrons)

이상의 반도체 코팅 측면, 전극 배치 및 인가전원, 촉매 측면, 전자장 측면을 종합하여 다음과 같이 휘발성 유기화합물이 분해 제거된다.The volatile organic compounds are decomposed and removed as follows by integrating the semiconductor coating side, electrode arrangement and applied power source, catalyst side, and electromagnetic field side.

CxHyOz + 고전압 → CxHyOz*-------------------------(식 3)CxHyOz + high voltage → CxHyOz * ------------------------- (Equation 3)

H2O + 고전압 → H2O*--------------------------------(식 4)H 2 O + high voltage → H 2 O * -------------------------------- (Equation 4)

O2+ 고전압 → O2 *----------------------------------(식 5)O 2 + high voltage → O 2 * ---------------------------------- (Equation 5)

반도체 표면 + 고전압 → e-+ h+- -------------------(식 6)High-voltage semiconductor surface + → e - + h + - ------------------- ( formula 6)

(* : 전기적으로 여기된 상태를 나타냄)(*: Indicates an electrically excited state)

H2O*+ h++ 고전압 → H++ ·OH ------------------------(식 7)H 2 O * + h + + high voltage → H + + OH ------------------------ (Equation 7)

O2+ h++ 고전압 → (O) + (O) ------------------------(식 8)O 2 + h + + high voltage → (O) + (O) ------------------------ (Equation 8)

촉매 표면에 흡착 및 공기 기체중의 CxHyOz*+ h++ ·OH + (O) + 고전압 →CO2+ H2O --------------------------------------------(식 9)Adsorption on catalyst surface and CxHyOz * + h + + OH + (O) + high voltage → CO 2 + H 2 O in air gas -------------------- ------------------------ (Equation 9)

Cl, Br + M → MCl, MBr -----------------------(식 10)Cl, Br + M → MCl, MBr ----------------------- (Equation 10)

(M : 삼체 물질)(M: trimeric substance)

《실시 예》<< Example >>

〈첫번째 p type 반도체 전극 제조〉<First p type semiconductor electrode fabrication>

티타늄 알콕사이드를 5wt% 황산수용액/알콕사이드 몰비를 50으로 하여 두 용액을 혼합한 후 2∼3시간 교반하여 가수분해 반응을 일으킨다. 이에서 얻어진 올소티탄산(orthotitanic acid)100g을 기준으로 하여 붕소 0.7∼1.5wt% 수용액 200∼350g과 메타놀 50∼75g을 혼합하여 고압수은등(1㎾) 조사하에서 2∼3시간 교반한다. 그 후 산화구리 100∼150g, 산화코발트를 20∼50g을 혼합하여 2∼8시간 최종 교반한다.Titanium alkoxide is mixed with two solutions with a 5 wt% aqueous sulfuric acid solution / alkoxide molar ratio of 50, followed by stirring for 2-3 hours to cause a hydrolysis reaction. Based on 100 g of ortho titanic acid thus obtained, 200-350 g of boron 0.7-1.5 wt% aqueous solution and 50-75 g of methanol are mixed and stirred for 2 hours under high pressure mercury lamp (1 kPa). Thereafter, 100 to 150 g of copper oxide and 20 to 50 g of cobalt oxide are mixed and finally stirred for 2 to 8 hours.

분산이 완료된 반도체 조성물을 스테인레스 메쉬 또는 매트, 니켈 소결매트에 30∼50㎛(건조도막) 코팅한 후 350∼500℃에서 6∼12시간 소성하여 p type 반도체 전극을 만든다.The dispersion-finished semiconductor composition is coated with a stainless steel mesh, a mat, or a nickel sintered mat at 30 to 50 μm (dry coating film), and then fired at 350 to 500 ° C. for 6 to 12 hours to form a p type semiconductor electrode.

〈두번째 n type 반도체 전극 제조〉<Second n type semiconductor electrode fabrication>

티타늄 알콕사이드를 5wt% 황산수용액/알콕사이드 몰비를 50으로 하여 두 용액을 혼합한 후 2∼3시간 교반하여 가수분해 반응을 일으킨다. 이에서 얻어진 올소티탄산(orthotitanic acid)100g을 기준으로 하여 실리콘 10∼30g, 인 0.5∼1.0wt% 수용액 200∼350g과 메타놀 50∼75g을 혼합하여 고압수은등(1㎾) 조사하에서 2∼3시간 교반한다. 그 후 니켈 10∼50g, 은 10∼50g을 혼합하여 2∼8시간 최종 교반한다.Titanium alkoxide is mixed with two solutions with a 5 wt% aqueous sulfuric acid solution / alkoxide molar ratio of 50, followed by stirring for 2-3 hours to cause a hydrolysis reaction. Based on 100 g of ortho titanic acid obtained therefrom, 10-30 g of silicon, 200-350 g of phosphorus 0.5-1.0 wt% aqueous solution, and 50-75 g of methanol are stirred for 2 hours under high pressure mercury lamp irradiation. do. Thereafter, 10 to 50 g of nickel and 10 to 50 g of silver are mixed and finally stirred for 2 to 8 hours.

분산이 완료된 반도체 조성물을 첫 번째 p type이 코팅된 면위에 10∼20㎛(건조도막) 코팅한 후 350∼500℃에서 6∼12시간 소성하여 p/n type 헤테로 접합을 만든다.After dispersing, the semiconductor composition is coated on the first p type coated surface with 10 to 20 μm (dry coating), and then fired at 350 to 500 ° C. for 6 to 12 hours to form a p / n type heterojunction.

〈세번째 p type 반도체 촉매 전극 제조〉<The third p type semiconductor catalyst electrode manufacturing>

티타늄 알콕사이드를 5wt% 황산수용액/알콕사이드 몰비를 50으로 하여 두 용액을 혼합한 후 2∼3시간 교반하여 가수분해 반응을 일으킨다. 이에서 얻어진 올소티탄산(orthotitanic acid)100g을 기준으로 하여 붕소 0.7∼1.5wt% 수용액 200∼350g과 메타놀 50∼75g을 혼합하여 고압수은등(1㎾) 조사하에서 2∼3시간 교반한다. 그 후 반응 활성점을 얻기 위하여 1∼2nm 입자 크기로 분산된 0.1∼1wt% 백금 콜로이드 수용액 100∼200g, 0.1∼1wt% 모리브덴 콜로이드 수용액 100∼200g, 0.1∼1wt% 텅그스텐 콜로이드 수용액 100∼200g, 0.1∼1wt% 은 콜로이드 수용액 100∼200g, 0.1∼1wt% 코발트 콜로이드 수용액 50∼100g과 메타놀 100∼150g을 혼합하여 고압수은등(1㎾) 조사하에서 2∼3시간 교반한다.Titanium alkoxide is mixed with two solutions with a 5 wt% aqueous sulfuric acid solution / alkoxide molar ratio of 50, followed by stirring for 2-3 hours to cause a hydrolysis reaction. Based on 100 g of ortho titanic acid thus obtained, 200-350 g of boron 0.7-1.5 wt% aqueous solution and 50-75 g of methanol are mixed and stirred for 2 hours under high pressure mercury lamp (1 kPa). Then, in order to obtain a reaction active point, 100-200 g of 0.1-1 wt% platinum colloid aqueous solution dispersed in 1-2 nm particle size, 100-200 g of 0.1-1 wt% molybdenum colloid aqueous solution 100-200 g, 0.1-1 wt% tungsten colloid aqueous solution 100- 200 g, 0.1-1 wt% of silver colloid aqueous solution 100-200 g, 0.1-1 wt% Cobalt colloid aqueous solution 50-100 g, and methanol 100-150 g are mixed, and it stirs for 2-3 hours under high pressure mercury lamp irradiation.

그후 산화비스므스 20∼70g, 오산화 바나듐 2∼10g, 산화 은 10∼50g, 산화코발트 5∼15g, 산화 니켈 5∼20g을 혼합하고 제올라이트 13X를 20∼50g을 투입하여 2∼8시간 최종 교반한다.Thereafter, 20 to 70 g of bismuth oxide, 2 to 10 g of vanadium pentoxide, 10 to 50 g of silver oxide, 5 to 15 g of cobalt oxide, and 5 to 20 g of nickel oxide are mixed, and 20 to 50 g of zeolite 13X is added, followed by final stirring for 2 to 8 hours. .

분산이 완료된 반도체 조성물을 두 번째 p/n type 헤테로 접합 위에 30∼50㎛(건조도막) 코팅한 후 350∼500℃에서 6∼12시간 소성하여 최종 p/n/p type의 반도체 촉매 전극을 만든다.The dispersion-finished semiconductor composition is coated on a second p / n type heterojunction on a 30-50 μm (dry coating film) and then fired at 350 to 500 ° C. for 6 to 12 hours to form a final p / n / p type semiconductor catalyst electrode. .

도1은 반도체 조성물이 헤테로 접합으로 코팅된 전극의 단면도.1 is a cross-sectional view of an electrode in which a semiconductor composition is coated with a heterojunction.

도2는 정전압일 때의 에너지 밴드2 is an energy band at constant voltage

도3은 본 발명에 따른 비가열 플라즈마 시스템의 전극배치도 (1모듈)3 is an electrode arrangement diagram (1 module) of a non-heating plasma system according to the present invention.

도4는 시스템의 전체 구성도(6모듈)4 is an overall configuration diagram of the system (6 modules)

도5는 실시 예에 따른 실험결과5 is a test result according to the embodiment

〈도면의 주요 부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

(1) p type 반도체 코팅(1) p type semiconductor coating

(2) n type 반도체 코팅(2) n type semiconductor coating

(3) p type 반도체 촉매 코팅(3) p type semiconductor catalyst coating

(4) 교류전원(4) AC power

(5) 펄스전원(5) pulse power

..

상기한 바와 같이 고전압 플라즈마 생성원리에 반도체 촉매에 의한 분해원리를 적용함으로써 에너지 소모가 적은 에너지 절약형으로 설계할 수 있으며 처리 장치를 병렬 및 직렬로 설치함으로써 대용량, 고농도의 유해가스를 처리할 수 있고, 설치 면적이 적으며, 유지관리비가 적게 드는 잇점이 있다.As described above, it is possible to design energy-saving type with low energy consumption by applying decomposition principle of semiconductor catalyst to high voltage plasma generation principle, and process large and high concentration of harmful gas by installing processing devices in parallel and in series. It has the advantage of small installation area and low maintenance cost.

Claims (4)

첫째 : p type 반도체 코팅 조성물로 다음의 구성식을 가진 것으로써First: p type semiconductor coating composition having the following formula T - MOT-MO 여기에서 T는 이산화 티타늄, MO는 산화물 금속으로써 산화구리,산화 코발트에 해당하며, 이를 바탕으로 제조한 p type 반도체 조성물.Here, T is titanium dioxide, MO is an oxide metal, and corresponds to copper oxide and cobalt oxide, p type semiconductor composition prepared based on this. 둘째 : n type 반도체 코팅 조성물로 다음의 구성식을 가진 것으로써Second: n type semiconductor coating composition having the following formula T - MT-M 여기에서 T는 이산화 티타늄, M은 금속으로써 실리콘, 니켈, 은 에 해당하며, 이를 바탕으로 제조한 n type 반도체 조성물.Here, T is titanium dioxide, M is a metal, and corresponds to silicon, nickel, silver, n-type semiconductor composition prepared based on this. 셋째 : p type 반도체 촉매 코팅 조성물로 다음의 구성식을 가진 것으로써Third: p type semiconductor catalyst coating composition having the following formula BT - M - MOBT-M-MO 여기에서 B는 산화비스므스, T는 이산화 티타늄, M은 반응 활성점 금속으로써 백금, 모리브덴, 텅그스텐, 은, 코발트에 해당하며, MO는 산화물 금속으로써 오산화 바나듐, 산화 은, 산화 코발트, 산화 니켈, 제오라이트에 해당하며, 이를 바탕으로 제조한 p type 반도체 촉매 코팅 조성물.Here, B is bismuth oxide, T is titanium dioxide, M is a reactive active metal and platinum, molybdenum, tungsten, silver, cobalt, MO is an oxide metal, vanadium pentoxide, silver oxide, cobalt oxide, It corresponds to nickel oxide and zeolite, p-type semiconductor catalyst coating composition prepared based on this. 청구항 1의 각각의 조성물을 p/n/p type 반도체 촉매의 순서로 30∼50㎛/10∼20㎛/30∼50㎛로 코팅한 전극구조.An electrode structure in which each composition of claim 1 is coated at 30 to 50 µm / 10 to 20 µm / 30 to 50 µm in the order of a p / n / p type semiconductor catalyst. 청구항 2의 전극을 배치하여 300∼400㎑, 6∼10㎸, 0.5∼5A인 교류와 +10∼+15㎸, 0.5∼2A인 펄스 전원을 인가하여 휘발성 유기화합물 및 악취제거, 다이옥신, 오존층 파괴물질인 사염화 탄소, 프레온 가스, 할론, 메틸 클로로 포름, 메틸 브로마이드를 분해 제거하는 장치.The electrode of claim 2 is disposed and applied with alternating current of 300 to 400 kPa, 6 to 10 kPa, 0.5 to 5 A and pulsed power of +10 to +15 kPa, 0.5 to 2 A to remove volatile organic compounds and odors, and to destroy dioxin and ozone layer. A device for decomposing and removing the substances carbon tetrachloride, freon gas, halon, methyl chloroform and methyl bromide. 분해 장치 내에 영구자석을 설치하여 반도체 표면에 홀 효과에 의한 홀 기전력이 일어나도록 한 장치 구조.A device structure in which permanent electromagnets are installed in the decomposition device to generate hole electromotive force due to the Hall effect on the semiconductor surface.
KR1020020026596A 2002-05-06 2002-05-06 Apparatus for volatile organic compounds degradation by non-thermal plasma combined electro-oxidation catalysis. KR20020062865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020026596A KR20020062865A (en) 2002-05-06 2002-05-06 Apparatus for volatile organic compounds degradation by non-thermal plasma combined electro-oxidation catalysis.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020026596A KR20020062865A (en) 2002-05-06 2002-05-06 Apparatus for volatile organic compounds degradation by non-thermal plasma combined electro-oxidation catalysis.

Publications (1)

Publication Number Publication Date
KR20020062865A true KR20020062865A (en) 2002-07-31

Family

ID=27726311

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020026596A KR20020062865A (en) 2002-05-06 2002-05-06 Apparatus for volatile organic compounds degradation by non-thermal plasma combined electro-oxidation catalysis.

Country Status (1)

Country Link
KR (1) KR20020062865A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771672B2 (en) 2005-12-17 2010-08-10 Airinspace B.V. Air purification device
US8003058B2 (en) 2006-08-09 2011-08-23 Airinspace B.V. Air purification devices
US20170029300A1 (en) * 2012-11-21 2017-02-02 The Hong Kong University Of Science And Technology Pulsed electric field for drinking water disinfection
CN110980894A (en) * 2019-11-25 2020-04-10 上海第二工业大学 Electrochemical degradation method for volatile organic compounds

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11156185A (en) * 1997-11-28 1999-06-15 Fujitsu Ltd Gas reactor
JP2000317312A (en) * 1999-05-06 2000-11-21 Tohoku Ricoh Co Ltd Photocatalytic reaction method, data recording method and member such as filter or the like utilizing photocatalytic reaction
KR20000075146A (en) * 1999-05-29 2000-12-15 곽정환 Air cleaner using photocatalysis
JP2001187319A (en) * 1999-12-28 2001-07-10 Daido Steel Co Ltd Method and device for cleaning gas
KR20010070547A (en) * 2001-05-21 2001-07-27 이명희 Apparatus for removing volatile organic compounds by high voltage and high frequency plasma.
KR20010086942A (en) * 2000-03-04 2001-09-15 안길홍 Preparation method of p-n Type photocatalytic TiO2 coatings and its applications to remove eviromental air pollutants using electric power
KR20020026323A (en) * 2002-03-06 2002-04-09 (주)유니에코 Nitrogen Oxides degradation apparatus combined non-thermal plasma with electrocatalytic reduction reactions.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11156185A (en) * 1997-11-28 1999-06-15 Fujitsu Ltd Gas reactor
JP2000317312A (en) * 1999-05-06 2000-11-21 Tohoku Ricoh Co Ltd Photocatalytic reaction method, data recording method and member such as filter or the like utilizing photocatalytic reaction
KR20000075146A (en) * 1999-05-29 2000-12-15 곽정환 Air cleaner using photocatalysis
JP2001187319A (en) * 1999-12-28 2001-07-10 Daido Steel Co Ltd Method and device for cleaning gas
KR20010086942A (en) * 2000-03-04 2001-09-15 안길홍 Preparation method of p-n Type photocatalytic TiO2 coatings and its applications to remove eviromental air pollutants using electric power
KR20010070547A (en) * 2001-05-21 2001-07-27 이명희 Apparatus for removing volatile organic compounds by high voltage and high frequency plasma.
KR20020026323A (en) * 2002-03-06 2002-04-09 (주)유니에코 Nitrogen Oxides degradation apparatus combined non-thermal plasma with electrocatalytic reduction reactions.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771672B2 (en) 2005-12-17 2010-08-10 Airinspace B.V. Air purification device
US8003058B2 (en) 2006-08-09 2011-08-23 Airinspace B.V. Air purification devices
US20170029300A1 (en) * 2012-11-21 2017-02-02 The Hong Kong University Of Science And Technology Pulsed electric field for drinking water disinfection
US10941060B2 (en) * 2012-11-21 2021-03-09 The Hong Kong University Of Science And Technology Pulsed electric field for drinking water disinfection
CN110980894A (en) * 2019-11-25 2020-04-10 上海第二工业大学 Electrochemical degradation method for volatile organic compounds

Similar Documents

Publication Publication Date Title
US8974735B2 (en) Air purification system
CN100404968C (en) Surface discharge type air cleaning device
CN101279715B (en) Device for removing volatile organic matter and generating hydrogen with non-equilibrium plasma
Du et al. Synthesis of BiVO4/WO3 composite film for highly efficient visible light induced photoelectrocatalytic oxidation of norfloxacin
CN100441273C (en) Photoelectricity catalytic reactor for degrading organic contaminant and degradation method
CN1847736B (en) Discharge device and air conditioner having said device
US20080159924A1 (en) Gas Ionization Source
JP2001087620A (en) Method and apparatus for treating substance
CN112893435A (en) Dielectric barrier discharge plasma repairing method and device for POPs contaminated soil
CN205760514U (en) Low temperature spiral corona plasma VOCsemission-control equipment
CN108283870B (en) Plasma waste gas comprehensive treatment device
Tsai et al. DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application
CN112169582A (en) High-voltage electric-assisted photocatalytic purification device with sterilization and odor purification functions
CN102230410A (en) Automobile exhaust gas purification device realizing photocatalysis based on plasmas
CN108421638A (en) Catalytic association corona and dielectric barrier discharge air purification regulator control system
KR20020062865A (en) Apparatus for volatile organic compounds degradation by non-thermal plasma combined electro-oxidation catalysis.
CN104437304B (en) A kind of photocatalysis lamp and manufacture method thereof
CN208260501U (en) A kind of comprehensive emission-control equipment
CN108325351A (en) A kind of double medium low temperature plasma gas purifiers of electromagnetic induction coupling
CN112156647A (en) High-voltage auxiliary photocatalytic purification module, purification device and method
KR101284706B1 (en) Environment-friendly material for pollutant decomposition and sterilization, and method for producing the same
WO2004021403A2 (en) Charging and capture of particles in coronas irradiated by in-situ x-rays
KR101611131B1 (en) Electric precipitator and method for manufacturing the same
JP3888806B2 (en) Photoelectron emitting material and negative ion generator using the same
CN106352424B (en) Wide-spectrum ultraviolet sterilization system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application