KR20010070547A - Apparatus for removing volatile organic compounds by high voltage and high frequency plasma. - Google Patents

Apparatus for removing volatile organic compounds by high voltage and high frequency plasma. Download PDF

Info

Publication number
KR20010070547A
KR20010070547A KR1020010029181A KR20010029181A KR20010070547A KR 20010070547 A KR20010070547 A KR 20010070547A KR 1020010029181 A KR1020010029181 A KR 1020010029181A KR 20010029181 A KR20010029181 A KR 20010029181A KR 20010070547 A KR20010070547 A KR 20010070547A
Authority
KR
South Korea
Prior art keywords
organic compounds
volatile organic
high frequency
semiconductor
high voltage
Prior art date
Application number
KR1020010029181A
Other languages
Korean (ko)
Inventor
이명희
Original Assignee
이명희
김우성
우원산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이명희, 김우성, 우원산업 주식회사 filed Critical 이명희
Priority to KR1020010029181A priority Critical patent/KR20010070547A/en
Publication of KR20010070547A publication Critical patent/KR20010070547A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE: A removal equipment of volatile organic compounds (VOCs) using high voltage and high frequency plasma is provided, which can decompose molecules of volatile organic compounds (VOCs), oxygen and water by forming electron-holes on the surface of an oxidative semiconductor and by electrically exciting the molecules, so that the system can treat VOC of large amount and high concentration rapidly. CONSTITUTION: The system comprises the followings: (i) to high voltage plasma parts of an oxidative semiconductor catalytic electrode and a titanium dioxide semiconductor catalytic electrode, apply pulse 12kV and alternating current 30kV; and (ii) to high frequency plasma parts of the above electrodes, apply alternating current of +20 kV/+10kV/-20kV and 200kHz, 450V for decomposing volatile organic compounds by electrolysis method.

Description

고전압과 고주파 프라즈마에 의한 휘발성 유기화합물 제거장치{Apparatus for removing volatile organic compounds by high voltage and high frequency plasma.}Apparatus for removing volatile organic compounds by high voltage and high frequency plasma.

본 발명은 산화성 반도체 촉매전극에 의하여 제조된, 휘발성 유기화합물을 분해 제거하는 고전압과 고주파 프라즈마 장치에 관한 것으로써 산업활동에 의해 발생하는 휘발성 유기화합물의 제거에 전기화학분해 방법을 적용함으로써 에너지의 절약과 비용의 절감, 효율증대 및 경량, 단순화와 대용량, 고농도의 신속한 처리가 가능하면서도 2차 오염물질의 발생이 없는 장치를 제공하기 위한 것이다.The present invention relates to a high voltage and high frequency plasma apparatus for decomposing and removing volatile organic compounds prepared by an oxidative semiconductor catalyst electrode, and saves energy by applying an electrochemical decomposition method to the removal of volatile organic compounds generated by industrial activities. It is to provide a device that can reduce the cost, increase the efficiency and light weight, simplify and large capacity, high concentration and rapid treatment, but do not generate secondary pollutants.

오염발생원으로부터 배출되는 휘발성 유기화합물 제거방법으로 흡착, 소각,냉각응축, 생물학적 처리 같은 방법이 있다. 여기서 흡착법은 활성탄 같은 흡착제를 이용하여 흡착, 회수 혹은 제거하는 방법으로서 하한폭발한계 25% 이상 농도를 가진 휘발성 유기화합물을 제거할 수 있으며, 설치비가 저렴하나 케톤, 알데하이드, 에스테르류, 스티렌류와 같은 물질은 활성탄 표면에서 중합을 일으켜 활성탄의 미세공을 막아 흡착기능을 저하시키는 경향이 있으며, 흡착을 통하여 발생된 폐기물의 처리 등이 문제점으로 대두되고 있다. 또한 기존의 휘발성 유기화합물 처리방법에 비해 처리용량이 적기 때문에 유량이 큰 프로세스에는 부적합하다. 소각법에는 직접연소법과 촉매연소법이 있으며 많은 양의 휘발성 유기물을 처리할 수 있는 장점을 가지고 있으나 부하 변동이 심하거나 농도가 낮고 유량이 적을 경우에는 비경제적이며, 시스템이 비교적 대형이어서 설치면적이 많이 들게 되어 설비 확장이 어렵다는 단점이 있고, 연소에 따른 질소산화물, 탄산가스, 매연 등과 같은 2차 대기오염물질이 발생될 수 있다. 그리고 연소에 소요되는 연료비 등의 유지관리비가 많이 소요된다. 생물학적 처리방법은 호기성 미생물을 주로 사용하는데 유지관리비가 적게 드는 장점은 있으나 미생물의 활동에 필요한 유기화합물의 부하변동이 심하거나 일정한 온도 범위, PH라든지 미생물과 담체와의 적합성을 유지하기가 어려운 점이 있다.Removal of volatile organic compounds from pollutant sources include adsorption, incineration, cooling and condensation. The adsorption method is a method of adsorption, recovery or removal using an adsorbent such as activated carbon, which can remove volatile organic compounds having a lower explosion limit of 25% or more, and the installation cost is low, but ketones, aldehydes, esters, styrenes, etc. Substances tend to degrade the adsorption function by causing polymerization on the surface of activated carbon to block micropores of activated carbon, and treatment of wastes generated through adsorption is a problem. In addition, the process capacity is lower than the conventional volatile organic compound treatment method, which is not suitable for a high flow rate process. Incineration has direct combustion method and catalytic combustion method, and it has the advantage of dealing with a large amount of volatile organics, but it is uneconomical in case of heavy load fluctuation, low concentration and low flow rate. As a result, it is difficult to expand equipment, and secondary air pollutants such as nitrogen oxides, carbon dioxide, and soot may be generated due to combustion. And a lot of maintenance costs, such as fuel costs required for combustion. The biological treatment method mainly uses aerobic microorganisms, but the maintenance cost is low. However, the load of organic compounds required for the activity of the microorganisms is severe, or it is difficult to maintain compatibility with the microorganisms and the carrier for a certain temperature range or PH. .

본 발명은 이와 같은 제 결점을 감안 해결하기 위하여 안출된 것으로서, 산화성 반도체 촉매와 이에 고전압 교류와 직류 및 고주파수 교류를 에너지원으로, 사용하여 전극반응에 의하여 휘발성 유기 화합물을 전기분해 시킴으로써 밀폐된 반응 탱크내에서 대용량, 고농도를 신속하게 처리가능하고, 구조의 경량, 단순화 및 에너지 절약형으로 제작 가능하게 함에 그 목적을 두고 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks, and is an enclosed reaction tank in which an oxidative semiconductor catalyst and a high voltage alternating current, direct current and high frequency alternating current are used as energy sources to electrolyze volatile organic compounds by electrode reaction. Its purpose is to be able to process large capacity and high concentration quickly, and to make the structure light, simple and energy-saving.

《과제를 해결하기 위한 수단》Means to Solve the Problem

본 발명의 기본 구조는 고전압 프라즈마부와 고주파 프라즈마부로 이루어져 있으며, 고전압 프라즈마부는 pulse 12㎸와 교류 30㎸의 전원이 공급되어지며, 고주파 프라즈마부 직류 +20㎸ / +10㎸ / -20㎸와 주파수 200㎑, 450V의 교류전원이 공급되어진다.The basic structure of the present invention is composed of a high voltage plasma unit and a high frequency plasma unit, the high voltage plasma unit is supplied with a power of pulse 12 ㎸ and AC 30 ,, high frequency plasma unit DC +20 ㎸ / +10 ㎸ / -20 ㎸ and frequency An AC power supply of 200 kV and 450 V is supplied.

이에 따라 전기화학분해 측면에서 살펴보면 유입되는 휘발성 유기화합물의 전자결합이 고전압 프라즈마부에서 전기적으로 여기된 불안정한 상태로 고주파 프라즈마부로 진입하게 된다.Accordingly, in terms of electrochemical decomposition, the electromagnetic coupling of the incoming volatile organic compounds enters the high frequency plasma part in an unstable state that is electrically excited from the high voltage plasma part.

이와 같은 작용을 나타내게 되면If you exhibit this effect

CxHyOz + 고전압 → CxHyOz* CxHyOz + high voltage → CxHyOz *

H2O + 고전압 → H2O* H 2 O + high voltage → H 2 O *

O2+ 고전압 → O2 * O 2 + high voltage → O 2 *

(* 전기적으로 여기된 상태를 나타냄)(* Indicates an electrically excited state)

따라서 CxHyOz*→ CO2+ H2OThus CxHyOz * → CO 2 + H 2 O

로 반응이 신속히 이루어지도록 전류 2배 효과(current doubling effect) 작용을 하게 된다.As a result, the current doubling effect acts to speed up the reaction.

또한 반도체 공학적 측면에서 살펴보면 고전압 프라즈마부에서 pulse 12㎸ 및 교류 30㎸, 고주파 프라즈마부의 +10㎸, +20㎸ 고전압이 인가되는 전극은 산화성 반도체 촉매전극으로 되어 있으며 -20㎸ 부전압이 인가되는 전극은 이산화티타늄 반도체 촉매 전극으로 되어 있고, 200㎑, 450V 교류전원이 인가되는 고주파 프라즈마부는 산화성 반도체 촉매 전극으로 이루어져 있다. 즉 반도체 공학적인 해석에 의하여 p-n-p Type으로 구성되어져 순방향인 +/-/+ 전압이 인가될 경우 양전하의 가속 작용이 일어나 휘발성 유기화합물의 산화분해반응이 증대되도록 하여 준다.In addition, in terms of semiconductor engineering, the electrodes with high voltage plasma 12 volts and alternating current 30 ㎸, high frequency plasma portions with +10 ㎸ and +20 ㎸ high voltage are composed of oxidative semiconductor catalyst electrodes and -20 ㎸ negative voltage. Is a titanium dioxide semiconductor catalyst electrode, and a high frequency plasma portion to which a 200 kW, 450 V AC power is applied is made of an oxidative semiconductor catalyst electrode. That is, it is composed of p-n-p type by semiconductor engineering analysis, so that when positive + /-/ + voltage is applied, it accelerates positive charges and increases oxidative decomposition reaction of volatile organic compounds.

또한 촉매작용 측면에서 살펴보면 산화성 반도체 촉매는 티타늄 알콕사이드(Titanium alkoxide)로부터 제조된 아나타제형 이산화티타늄이 촉매의 반응중심물질로써 고주파 프라즈마부에서 200㎑, 450V의 교류전장이 인가되면 표면전계현상에 의하여 교류전압의 파형에 따라 전자가 가속되어 전자-정공의 분리 작용이 일어나게 된다. 다시 말하면 교류전원의 정전압에 의하여 산화성 반도체 표면에서 정공에 의한 산화작용이 일어나고 부전압에 의하여 전자에 의한 환원작용이 일어나게 된다.In terms of catalysis, the oxidative semiconductor catalyst is an anatase type titanium dioxide prepared from titanium alkoxide, which is the reaction center of the catalyst. Electrons are accelerated according to the waveform of the electron-hole separation. In other words, the oxidation of the holes occurs on the surface of the oxidative semiconductor by the constant voltage of the AC power source, and the reduction of electrons occurs by the negative voltage.

이와 같은 촉매 반응을 반응식으로 나타내면If this catalytic reaction is represented by the reaction formula

a) 정전압일 때의 주반응a) Main reaction at constant voltage

H2O*+ h+→ 2H++½O2 H 2 O * + h + → 2H + + ½O 2

H2O*+ h+→ H++ ·OH(OH 라디칼)H 2 O * + h + → H + + OH (OH radical)

·OH + h+→ HOOH + h + → HO

2HO → (0) + H2O2HO → (0) + H 2 O

h+→ h+trap(표면에 포착된 정공으로 직접 산화작용)h + → h + trap (oxidizes directly to the holes trapped on the surface)

a) 부전압일 때의 부반응a) side reactions at negative voltage

2H++ e-→ H2 2H + + e - → H 2

표면흡착 O2 *+ e-→ ·O2 - Surface adsorption O 2 * + e - → · O 2 -

· O2 -+ H+→ HO2·(peroxo 라디칼) · O 2 - + H + → HO 2 · (peroxo radical)

이상과 같은 촉매반응이 일어나게 된다.The above catalytic reaction occurs.

따라서 CxHyOz*→ CO2+ H2OThus CxHyOz * → CO 2 + H 2 O

촉매작용 ( ·OH+h+trap)Catalysis (OH + h + trap)

로 반응이 신속히 이루어지다.The reaction is done quickly.

그리고 전자장 측면에서 살펴보면 +20kV / +10kV / -20kV는 직류전원으로써 정지된 균일한 장(phase)이 되며, 고주파 프라즈마부의 200kHz, 450V는 시간에 따라 전계와 자계가 변화하는 즉 전자의 속도가 변화하는 교류전원 다시말하면 움직이는 장으로 형성되어 있다. 이와 같은 정지된 장과 움직이는 장 사이에서는 상대적인 전자장이 형성되며, 교류전원의 양극사이는 시간에 따라 변화하는 전하인 변위전류가 흐르게 된다.In terms of the electromagnetic field, + 20kV / + 10kV / -20kV becomes a uniform phase stopped by a DC power supply, and the 200kHz and 450V of the high frequency plasma part change the electric field and magnetic field with time, that is, the speed of the electron changes. AC power, that is, it is formed as a moving field. A relative electromagnetic field is formed between the stationary field and the moving field, and a displacement current, a charge that changes with time, flows between the anodes of the AC power source.

이와 같은 변위전류는 에너지의 소비가 매우 적기때문에 본 발명의 가장 큰 특징으로서 가동에 소요되는 전기에너지의 소모가 적은 에너지 절약형 장치가 될 수 있다.Since the displacement current is very low in energy consumption, the biggest feature of the present invention can be an energy-saving device with low consumption of electrical energy required for operation.

《실시 예》<< Example >>

<산화성 반도체 촉매 전극제조><Oxidative semiconductor catalyst electrode production>

티타늄 알콕사이드를 5wt% 황산수용액/알콕사이드 몰비를 50으로 하여 두 용액을 혼합한 후 2∼3시간 교반하여 가수분해 반응을 일으킨다. 이에서 얻어진 올소티탄산(orthotitanic acid)100g을 기준으로 하여 4wt% 수산화리듐 수용액 20∼30g과 메타놀 1.5∼3.0g과 1wt% 염화백금산 5∼15g을 혼합하여 고압수은 등 조사하에서 1∼5시간 교반한다. 그후 산화비스무스 5∼10g을 혼합하여 1∼5시간 교반한 후 10% 암모니아수에 20wt%로 용해시킨 요드화 은 또는 요드화칼륨을 5∼40g을 투입하고 오산화바나듐, 삼산화 텅크스텐, 삼산화 모리브덴을 각각 1∼5g, 이산화망간을 5∼25g, 산화구리를 10∼40g, 산화코발트를 1∼2g 투입하여 2∼8시간 최종교반한다.Titanium alkoxide is mixed with two solutions with a 5 wt% aqueous sulfuric acid solution / alkoxide molar ratio of 50, followed by stirring for 2-3 hours to cause a hydrolysis reaction. Based on 100 g of the obtained orthotitanic acid, 20 to 30 g of a 4 wt% lithium hydroxide aqueous solution, 1.5 to 3.0 g of methanol, and 5 to 15 g of 1 wt% chloroplatinic acid are mixed and stirred for 1 to 5 hours under high pressure mercury. . Then, 5 to 10 g of bismuth oxide was mixed and stirred for 1 to 5 hours, and then 5 to 40 g of silver iodide or potassium iodide dissolved in 20% by weight in 10% aqueous ammonia was added, and vanadium pentoxide, tungsten trioxide, and molybdenum trioxide were added thereto. 1 to 5 g of each, 5 to 25 g of manganese dioxide, 10 to 40 g of copper oxide, and 1 to 2 g of cobalt oxide were added and finally stirred for 2 to 8 hours.

분산이 완료된 반도체 조성물을 스테인레스 메쉬 또는 스테인레스 화이버 매트에 코팅한 후 350∼500℃에서 6∼12시간 소성하여 최종 산화성 반도체 촉매전극을 얻는다.The dispersion-finished semiconductor composition is coated on a stainless mesh or stainless fiber mat, and then fired at 350 to 500 ° C. for 6 to 12 hours to obtain a final oxidative semiconductor catalyst electrode.

이산화티타늄 반도체 촉매전극 제조> < Titanium Dioxide Semiconductor Catalyst Electrode Fabrication>

티타늄 알콕사이드를 5wt% 황산수용액/알콕사이드 몰비를 50으로 하여 두 용액을 혼합한 후 2∼3시간 교반하여 가수분해 반응을 일으킨다.Titanium alkoxide is mixed with two solutions with a 5 wt% aqueous sulfuric acid solution / alkoxide molar ratio of 50, followed by stirring for 2-3 hours to cause a hydrolysis reaction.

이에서 얻어진 올소티탄산 100g을 기준으로 하여 4wt% 수산화리듐 수용액 20∼40g과 산화란타니움 10∼20g을 혼합하여 2∼4시간 교반한다. 그후 10% 암모니아수에 20wt%로 용해시킨 요드화 은 또는 요드칼륨을 10∼40g을 투입하고, 카본을 0.5∼2.0g 혼합하여 2∼8시간 최종교반한다. 분산이 완료된 반도체 조성물을 스테인레스 메쉬 또는 스테인레스 화이버매트에 코팅한 후 350∼500℃에서 6∼12시간 소성하여 최종 이산화티타늄 반도체 촉매전극을 얻는다.20-40 g of aqueous 4 wt% aqueous lithium hydroxide solution and 10 to 20 g of lanthanum oxide are mixed and stirred for 2 to 4 hours, based on 100 g of oligo titanic acid obtained therefrom. Thereafter, 10 to 40 g of silver iodide or potassium iodide dissolved in 20% by weight in 10% ammonia water is added, 0.5 to 2.0 g of carbon is mixed and finally stirred for 2 to 8 hours. After the dispersion is completed, the semiconductor composition is coated on a stainless mesh or stainless fiber mat, and then calcined at 350 to 500 ° C. for 6 to 12 hours to obtain a final titanium dioxide semiconductor catalyst electrode.

도1은 고전압 프라즈마부의 기본도1 is a basic diagram of a high voltage plasma unit

도2는 고주파 프라즈마부의 기본도2 is a basic diagram of a high frequency plasma unit

<도면의 주요 부분에 대한 부호의 설명><Description of the code | symbol about the principal part of drawing>

1 - 산화성 반도체 촉매 전극1-oxidative semiconductor catalyst electrode

2 - 이산화티타늄 반도체 촉매전극2-Titanium Dioxide Semiconductor Catalytic Electrode

..

상기한 바와 같이 본 발명은 전기에너지에 의하여 산화성 반도체 표면에 전자-정공을 형성시킴과 동시에 고전장에 의한 휘발성 유기화합물, 산소, 수분의 분자를 전기적으로 여기시켜 분해함으로써 대용량, 고농도를 신속하게 처리할 수 있을 뿐만 아니라 설치면적의 감소, 유지관리비가 적은 에너지 절약형으로 설계할 수 있음으로 반응 효율을 극대화시킬 수 있는 효과가 있다.As described above, the present invention forms electron-holes on the surface of an oxidative semiconductor by electrical energy and electrically excites and decomposes molecules of volatile organic compounds, oxygen, and moisture due to high fields, thereby rapidly processing large capacity and high concentration. In addition, the energy efficiency can be maximized by reducing the installation area and designing an energy-saving type with low maintenance cost.

Claims (3)

산화성 반도체 촉매전극의 제조방법에 있어서 다음의 구성식을 가진 것으로써 BT-MO-XIn the method for producing an oxidative semiconductor catalyst electrode, having the following structural formula, BT-MO-X 여기에서 B는 비스무스, T는 이산화티타늄, MO는 산화물금속으로써 오산화바나늄, 삼산화 텅크스텐, 삼산화 모리브덴, 이산화망간, 산화구리, 산화코발트에 해당하며, X는 요드은 또는 요드칼륨을 바탕으로 제조한 산화성 반도체 촉매전극Here, B is bismuth, T is titanium dioxide, and MO is an oxide metal, which corresponds to vanadium pentoxide, tungsten trioxide, molybdenum trioxide, manganese dioxide, copper oxide, and cobalt oxide, and X is manufactured based on iodide or potassium iodide. An oxidative semiconductor catalytic electrode 이산화티타늄 반도체 촉매전극의 제조방법에 있어서 다음의 구성식을 가진 것으로써 LaT-XIn the method for producing a titanium dioxide semiconductor catalyst electrode, LaT-X having the following structural formula 여기에서 La는 란타니움, T는 이산화티타늄, X는 요드은 또는 요드칼륨을 바탕으로 제조한 이산화티타늄 반도체 촉매전극Where La is lanthanum, T is titanium dioxide, and X is iodide or potassium iodide. 산화성 반도체 촉매전극과 이산화티타늄 반도체 촉매전극의 고전압 프라즈마부에 pulse 12kV 및 교류 30kV, 고주파 프라즈마부 +20kV / +10kV / -20kV 및 고주파수 200kHz, 450V인 교류를 인가하여 전기분해방법에 의하여 휘발성 유기화합물을 분해 제거하는 장치Volatile organic compounds were applied by the electrolysis method by applying pulse 12kV and AC 30kV, high frequency plasma part + 20kV / + 10kV / -20kV and high frequency 200kHz, 450V to the high voltage plasma part of the oxidizing semiconductor catalyst electrode and the titanium dioxide semiconductor catalyst electrode. Device to disassemble and remove
KR1020010029181A 2001-05-21 2001-05-21 Apparatus for removing volatile organic compounds by high voltage and high frequency plasma. KR20010070547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010029181A KR20010070547A (en) 2001-05-21 2001-05-21 Apparatus for removing volatile organic compounds by high voltage and high frequency plasma.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010029181A KR20010070547A (en) 2001-05-21 2001-05-21 Apparatus for removing volatile organic compounds by high voltage and high frequency plasma.

Publications (1)

Publication Number Publication Date
KR20010070547A true KR20010070547A (en) 2001-07-27

Family

ID=19709989

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010029181A KR20010070547A (en) 2001-05-21 2001-05-21 Apparatus for removing volatile organic compounds by high voltage and high frequency plasma.

Country Status (1)

Country Link
KR (1) KR20010070547A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020026323A (en) * 2002-03-06 2002-04-09 (주)유니에코 Nitrogen Oxides degradation apparatus combined non-thermal plasma with electrocatalytic reduction reactions.
KR20020037303A (en) * 2002-03-06 2002-05-18 (주)유니에코 Closed loop system for nondegradable waste water treatment by semiconductor electrode and pulse power supply.
KR20020062865A (en) * 2002-05-06 2002-07-31 (주)유니에코 Apparatus for volatile organic compounds degradation by non-thermal plasma combined electro-oxidation catalysis.
US8105546B2 (en) * 2005-05-14 2012-01-31 Air Phaser Environmental Ltd. Apparatus and method for destroying volatile organic compounds and/or halogenic volatile organic compounds that may be odorous and/or organic particulate contaminants in commercial and industrial air and/or gas emissions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260402A (en) * 1984-06-04 1985-12-23 Mitsubishi Electric Corp Silent discharge ozone generator
EP0180335A1 (en) * 1984-10-01 1986-05-07 Exxon Research And Engineering Company Improved carboxylic anhydride catalysts
JPH01305855A (en) * 1988-06-03 1989-12-11 Nippon Oil & Fats Co Ltd Ceramic composition for reduction-reoxidation type semiconductor capacitor
JPH02186550A (en) * 1989-01-12 1990-07-20 Tdk Corp Electrode material
JPH04171022A (en) * 1990-11-01 1992-06-18 Mitsubishi Heavy Ind Ltd Waste gas cleaning method
JPH0521266A (en) * 1991-04-30 1993-01-29 Sumitomo Metal Ind Ltd Method of manufacturing grain boundary insulated semiconductor porcelain matter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260402A (en) * 1984-06-04 1985-12-23 Mitsubishi Electric Corp Silent discharge ozone generator
EP0180335A1 (en) * 1984-10-01 1986-05-07 Exxon Research And Engineering Company Improved carboxylic anhydride catalysts
JPH01305855A (en) * 1988-06-03 1989-12-11 Nippon Oil & Fats Co Ltd Ceramic composition for reduction-reoxidation type semiconductor capacitor
JPH02186550A (en) * 1989-01-12 1990-07-20 Tdk Corp Electrode material
JPH04171022A (en) * 1990-11-01 1992-06-18 Mitsubishi Heavy Ind Ltd Waste gas cleaning method
JPH0521266A (en) * 1991-04-30 1993-01-29 Sumitomo Metal Ind Ltd Method of manufacturing grain boundary insulated semiconductor porcelain matter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020026323A (en) * 2002-03-06 2002-04-09 (주)유니에코 Nitrogen Oxides degradation apparatus combined non-thermal plasma with electrocatalytic reduction reactions.
KR20020037303A (en) * 2002-03-06 2002-05-18 (주)유니에코 Closed loop system for nondegradable waste water treatment by semiconductor electrode and pulse power supply.
KR20020062865A (en) * 2002-05-06 2002-07-31 (주)유니에코 Apparatus for volatile organic compounds degradation by non-thermal plasma combined electro-oxidation catalysis.
US8105546B2 (en) * 2005-05-14 2012-01-31 Air Phaser Environmental Ltd. Apparatus and method for destroying volatile organic compounds and/or halogenic volatile organic compounds that may be odorous and/or organic particulate contaminants in commercial and industrial air and/or gas emissions

Similar Documents

Publication Publication Date Title
Pletcher Indirect oxidations using electrogenerated hydrogen peroxide
Savall Electrochemical treatment of industrial organic effluents
Qin et al. Dye-sensitized TiO2 film with bifunctionalized zones for photocatalytic degradation of 4-cholophenol
CN108529714B (en) Photoelectrochemical reaction tank and method for treating hydrogen sulfide waste gas and waste water by using same
CN1263686C (en) Photoelectrocatalysis and oxidation device for treating organic substance in water
CN102092820A (en) Method and device for removing organic matters from water by using double-pool double-effect visible light in response to photo-electro-Fenton reaction
Hui et al. A three-stage fixed-bed electrochemical reactor for biologically treated landfill leachate treatment
CN109721148B (en) Heterojunction interface electron transfer induced ozone catalytic oxidation water treatment method with bromate reduction capability
CN102923826A (en) Device for compositely catalytic oxidation treatment of organic wastewater and preparation method of catalytic anode
CN102701515A (en) Electrochemical method for processing garbage percolate concentrated solution
CN113754022B (en) Treatment method of manganese ion-containing sewage
Shen et al. Electrochemically Enhanced Photocatalytic Degradation of Organic Pollutant on p-PbO2-TNT/Ti/TNT Bifuctional Electrode
Liu et al. Coupling photocatalytic fuel cell based on S-scheme g-C3N4/TNAs photoanode with H2O2 activation for p-chloronitrobenzene degradation and simultaneous electricity generation under visible light
CN112657493A (en) Manufacturing method of carbon nanotube film and continuous flow electro-Fenton system based on limited-area catalyst
CN115069269A (en) CoMoS x O y Electrocatalyst, preparation method thereof and application of electrocatalyst in degradation of organic pollutants by electroactive persulfate system
CN105036260A (en) Electro-Fenton high-efficiency continuous-flow filtration type treating method for organic waste water
KR20010070547A (en) Apparatus for removing volatile organic compounds by high voltage and high frequency plasma.
CN1377728A (en) Three phase three-diemsnional electrode photoelectric reactor
CN102614762B (en) Plasma-based waste gas treatment system
CN108855194B (en) Nitrogen-doped nano BiOX type photocatalyst with high catalytic activity and preparation method thereof
Xiaoli et al. Photoelectrocatalytic degradation of phenol using a TiO 2/Ni thin-film electrode
CN210385474U (en) Device for efficiently purifying waste gas of garbage source
CN114671495B (en) Preparation method and application of high-activity stable anode material
CN115092991A (en) Wastewater fuel cell based on carbon quantum dot and ferrocene co-doped p-type MOF photocathode and preparation and application thereof
CN114368808A (en) Method for purifying water based on activated peroxymonosulfate of electronogen quinone intermediate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application